Linear transformations

- A transformation (or function, or mapping) T from $\mathbb{R}^{\text {domain }}$ to \mathbb{R}^{m} is a rale assigning bo each vector $\vec{v} \in \mathbb{R}^{n}$ some vector, $T(\vec{v}) \in \mathbb{R}^{m}$
- A trasformaton $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if
(a) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for any $\vec{u}, \vec{v} \in \mathbb{R}^{n}$
(b) $T(c \cdot \vec{v})=c T(\vec{v})$

Ex: for A an $m \times n$ matrix, $T(\vec{v}):=A \vec{v}{ }^{(*)}$ is a linear transf. (matrixtiansf. determined by A). check: $(T(\vec{u}+\vec{v})=A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=T(\vec{u})+T(\vec{v})$,

$$
T(c \vec{v})=A(c \vec{v})=c A \vec{v}=c T(\vec{v}) \quad)
$$

Theorem Any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix trauf. (*), with $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) \ldots T\left(\vec{e}_{n}\right)\right]$ where $\vec{e}_{i}=\left[\begin{array}{c}0 \\ \vdots \\ \vdots \\ \vdots \\ 0\end{array}\right] \leqslant i$ th place $\in \mathbb{R}^{n}$
"standard matrix" of $T \quad$ Notation: $[T]:=A$ $=i^{\text {th }}$ colum of In.
-the stand matrix of A.

Ex: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(\vec{v})=3 \vec{v} \Rightarrow$
stand. matrix $\left.=\left[\begin{array}{ll}3 \\ 0 \\ 0\end{array} \begin{array}{l}0 \\ 3\end{array}\right]_{\pi}\right]$

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right)\right. \\
\overrightarrow{\vec{e}_{1}}
\end{gathered} \underset{T}{T}\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

$\mathcal{E}_{x}: R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation by 90° counterclockwise

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
-y \\
x
\end{array}\right]
$$

Stand. matrix: $R\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right], R\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$

$$
\Rightarrow \quad[R]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Rem: Rotation by an angle θ counterclockevive

$$
R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

has stand. matrix $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

- Composition of linear transformatoos

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be two lin. trastaractovs. Then one has the len.transt. $S \circ T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{P}$, mapping $\vec{v} \in \mathbb{R}^{m}$ to $S(T(\vec{v}))$,

- composition of S and T

WARNING: SOT first applies T to a vector and then S. So we "read" So T from night to left.

The The stand. matrix of the comprition V is the produd of standimatrices of S and T :

$$
[S \circ T]=[S][T]
$$

$$
p \times m \quad p \times n \quad n \times m
$$

Argument: $\vec{v} \stackrel{T}{\sim} T(\vec{v})=[T] \vec{v} \xrightarrow{S} S([T] \vec{v})=[S]([T] \vec{v})$ $=([S][T]) \vec{v}$

$$
\Rightarrow[S \cdot T]=[S][T]
$$

Ex: $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation by 90°
$S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ scaling by 3
$(S \circ R)\left[\begin{array}{l}x \\ y\end{array}\right]=S\left(\left[\begin{array}{c}-y \\ x\end{array}\right]\right)=\left[\begin{array}{c}-3 y \\ 3 x\end{array}\right]$
stand.mat. $[S \circ R]=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$=\left[\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right]$
def A in.trasf. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is "invertible" if there exsits a \ln. tranf. $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad$ s.t. $\quad S O T=i d=T \cdot S$. \quad Then $S=: T^{-1}$ is deroted In in Poole called the "inuerse" of T.

Thm T is ivetible iff $[T]$ is ivertisle matrix, and $\left[T^{-1}\right]=[T]^{-1}$.

Ex: R-rot. by $90^{\circ} \quad R^{-1}$ - rotation by 990°

$$
[R]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad\left[\begin{array}{l}
{[R]^{-1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \text {-inerse matix }} \\
{\left[R^{\prime-1}\right]}
\end{array}\right.
$$

Eк: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ projection to x-axi]

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{l}
x \\
0
\end{array}\right] \quad[T]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text {-non-inuetible matrix! }
$$

$\Rightarrow T$ not invertible.

More on matrix algebra

$$
\text { matin } \times \text { powes }
$$

 if A is :nuctible, then $A^{-1}=$ invere of A,

$$
A^{-2}=A^{-1} A^{-1}, A^{-k}=\underbrace{A^{-1} \cdots A^{-1}}_{k}
$$

Ex: $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad A^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

$$
A^{3}=A^{2} A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

Properties of matrix operations

$$
A(D+C)=A D+A C
$$

$$
\begin{aligned}
& (A B)^{-1}=B^{-1} A^{-1} \quad, A, B \text { non inedible } \\
& (A B)^{\top}=B^{\top} A^{\top} \\
& \left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top} \\
& \left(A^{\top}\right)^{\top}=A
\end{aligned}
$$

Ex: solve for unkraoun matrix $X: \quad A^{-1} B=(A B)^{2}$ assuming $A, D, X \quad n \times n$, invertible
Sol:

$$
A X^{-1} B=A B A D \underset{\substack{\vec{F} \\ \text { mutiplyby } A^{-1} \text { on the left, } \\ \text { b, } B^{-1} \text { on the right }}}{ } \quad X^{-1}=B A \Rightarrow X=(B A)^{-1}=A^{-1} D^{-1}
$$

Invert: Sle matrix the (v.1)
Let A be nan matrix. The following sediments equiva lent:
a) A is invertible
b) $A \vec{x}=\vec{b}$ has a unique solution Rerevery $\vec{b} \in \mathbb{R}^{n}$
c) $A \vec{x}=\overrightarrow{0}$ has only the trial solution
d) RREF of A is I_{n}

$\underset{A}{\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]} \underset{\vec{b}}{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]} \underset{\vec{b}}{\left[\begin{array}{c}0 \\ -1\end{array}\right]} \Rightarrow\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=A^{-1} \vec{b}=\frac{1}{1}\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]\left[\begin{array}{c}0 \\ -1\end{array}\right]=\left[\begin{array}{c}3 \\ -2\end{array}\right]$
Block multiply: cation - Pinole pp. 148-149.

$$
\left[\begin{array}{l}
p \\
1
\end{array}\right]+2\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
-1 & 3 \\
0 & -3
\end{array}\right]
$$

Homogeneous linear systems
3 def A lin. syst. is homogeneous if the constant term in each equation is zero. Aug. Mat. of a honog. syr. has the form $[\Delta \mid \stackrel{\rightharpoonup}{0}]$
(equivalently: it is the matrix eq. $\quad A \vec{x}=\overrightarrow{0}$)
\mathcal{E}_{x} :

$$
\begin{aligned}
\begin{aligned}
x+2 y=0 \\
3 x+4 y=0
\end{aligned} \text {-lomog. ry. Arg. Mat. }: & {\left[\begin{array}{ll|l}
1 & 2 & 0 \\
3 & 4 & 0
\end{array}\right] \quad \Leftrightarrow\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \rightarrow \begin{array}{l}
x_{1}=0 \\
x_{2}=0
\end{array} }
\end{aligned}
$$

- $\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$ is always a sol. for any Lomog. mys. \Rightarrow any hong. Mys. is consistent.
ε_{x}

$$
\left.\left.\begin{array}{l}
x+2 y=0 \\
2 x+4 y=0
\end{array} \quad\left[\begin{array}{ll|l}
1 & 2 & 0 \\
2 & 4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
11 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x=-25 \\
y=5 \\
x \\
x \\
x
\end{array}\right]=5{ }^{-2}\right] \quad \begin{aligned}
& \text { leaching free }
\end{aligned}
$$

Sol: $\left[\begin{array}{l}x \\ y\end{array}\right]=s\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
-ifnitily many solution) (so \Rightarrow nontrivial sol.)
since there is a free variable

- a homogeneous eq. $A \vec{x}=\overrightarrow{0} \quad$ has ∞-mary solution if $n>m$.

$$
m \times n \text { matrix } \quad \text { (because \#free vars }=n-\underbrace{\operatorname{rank}(A)}_{\leq m}>0 \text {) }
$$

