ξ Some
Properties of matrix operations

$$
\begin{array}{ll}
A(B+C)=A B+A C & (A B)^{\top}=B^{\top} A^{\top} \\
(A+B) C=A C+B C & (A B)^{-1}=B^{-1} A^{-1} \\
A(B C)=(A B) C & \left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top} \\
A B \neq B A \text { generally } & \left(A^{\top}\right)^{\top}=A
\end{array}
$$

Invertible matrix the (v.1)
Let A be nan matrix. The following jaime equiva lent:
a) A is invertible
b) $A \vec{x}=\vec{b}$ has a unique solution l er every $\vec{b} \in \mathbb{R}^{n}$
c) $A \vec{x}=\overrightarrow{0}$ has only the trial solution
d) RREF of A is I_{n}
$a) \Rightarrow b):$ for A invertible, the unique sol of $A \vec{x}=\vec{b}$ is $\vec{x}=A^{-1} \vec{b}$
$\mathcal{E x}_{\mathrm{x}:}\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=A^{-1} \vec{b}=\frac{1}{1}\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]\left[\begin{array}{c}0 \\ -1\end{array}\right]=\left[\begin{array}{c}3 \\ -2\end{array}\right]$

Block multiply: cation - Poole pp. 148-149.
[Pope 2.3]
Linear inclependence
def A set of vectors $\vec{V}_{1}, \ldots, \vec{V}_{k}$ in \mathbb{R}^{n} is linearly dependent if there are scalars c_{1}, \cdots, c_{k} (not all zero) s.t. $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0} \quad$ (linear dependence relation)

- a set of vectors that is not lin. dependent is called linearly independent

Thy a set of vectors is lin. dependent iff one of the vectors can be written as a $l i n$. comb. of the others.
Idea: $(\Rightarrow): C_{1} \vec{v}_{1}+\ldots+C_{k} \vec{v}_{k}=\overrightarrow{0} \quad$ lin. dep. relation assume $C_{1} \neq 0 . \rightarrow$ divide by C_{1}
Then: $\vec{v}_{1}=-\frac{c_{2}}{c_{1}} \vec{v}_{2}-\ldots-\frac{c_{4}}{c_{1}} \vec{v}_{2}$

$$
\left.(\Leftrightarrow): s_{a y}, \vec{v}_{1}=\frac{v_{2}}{c_{1}} d_{2} \vec{v}_{2}+\ldots+d_{k} \vec{v}_{k} \text {. Then: } \vec{v}_{1}-d_{2} \vec{v}_{2} \ldots-d_{k} \vec{v}_{k}=\overrightarrow{0} \quad \text { lin. dep. rel. }\right]
$$

Ex: The set $\overrightarrow{0}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ is lin dep: $1 \cdot \overrightarrow{0}+0 \cdot \vec{v}_{2}+\ldots+0 \cdot \vec{v}_{k}=\overrightarrow{0}$

- a single vector $\{\vec{v}\}$ is linindep. iff $\vec{v} \neq \overrightarrow{0}$.
-a set of two vectors $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is lin. dependent iff one is a multiple of the other.

$$
E_{x}:\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\} \text { lin...dep. },\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\} \text { lin. dep. }
$$

Ex: $\left._{x}\left\{\begin{array}{l}1 \\ 2 \\ 2 \\ 0 \\ \vec{v}_{1}\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1 \\ \vec{v}_{2}\end{array}\right],\left[\begin{array}{c}1 \\ 4 \\ 2 \\ \vec{v}_{3}\end{array}\right]\right\}$-lin. dep. or not?
Sol: $c_{1}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 1 \\ -1\end{array}\right]+c_{3}\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \quad$ Mag. $\left[\begin{array}{ccc|c}1 & 1 & 1 & 0 \\ 2 & 1 & 4 & 0 \\ 0 & -1 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$c_{1}=-35$
$c_{2}=25$
eo-mary solutions, in pact. nortrivesolutions $c_{1} c_{2}\left(c_{3}\right)=s$ free variable
$c_{3}=5$
\Rightarrow the set is lin dep.
e.g. retting $S=1: \quad c_{1}=-3, c_{2}=2, c_{3}=1$
$\Rightarrow-3 \vec{v}_{1}+2 \vec{v}_{2}+\vec{v}_{3}=\overrightarrow{0} \quad$ lin. dey. relation.
The: a set of k vectors in \mathbb{R}^{n} is always lir. dep. if $k>n$.

Subspaces (Pope 3.5)
def A subspace of \mathbb{R}^{n} is any collection S of vectors in \mathbb{R}^{n} such that
(a) The vector $\overrightarrow{0}$ is in S
(b) If $\vec{u}, \vec{v} \in S$ then $\vec{u}+\vec{v} \in S$ ("S is closed under addition")
(c) If $\vec{u} \in S, c \in \mathbb{R}$ a scalar , then $c \vec{u} \in S$ ("S is chord under scalar multiplication")

$$
\left.\left.\cdot(b)+c_{c}\right) \Rightarrow \text { if } \begin{array}{l}
\vec{v}_{1}, \ldots, \vec{v}_{k} \in S \\
c_{1}, \ldots, c_{k}
\end{array}\right\} \text { scalars }
$$

Ex: let $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{R}^{n}$. Then $S=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$ is a subspace of \mathbb{R}^{n}. check:
(a) $\overrightarrow{0}=0 \cdot \vec{v}_{1}+0 \cdot \vec{v}_{2} \in S \quad$
(b)

$$
\begin{array}{r}
\vec{u}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \Rightarrow \vec{u}+\vec{v}=\left(c_{1}+d_{1}\right) \vec{v}_{1}+c_{i}+d_{2} \vec{v}_{2} \\
\vec{v}=d_{1} \vec{v}_{1}+d_{2} \vec{v}_{2}
\end{array}
$$

(c) $c \vec{u}=\left(c c_{1}\right) \vec{v}_{1}+\left(c c_{2}\right) \vec{v}_{2} \in S$

Generally: for $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{n}, \quad S=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{k}\right)$ is a subspace of \mathbb{R}^{n} "subspace spared by $\vec{v}_{1}, \ldots, \vec{v}_{k}$ "

Remark: For $\vec{v} \not{ }_{0} \overrightarrow{0}$ in \mathbb{R}^{2} or \mathbb{R}^{3}, span (\vec{v}) - a line throughtle origin.

- For $\left.\overrightarrow{v_{1}}\right) \vec{v}_{2}$ in \mathbb{R}^{2} or \mathbb{R}^{3} einindep., $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$ is a plane through $\overrightarrow{0}$

- For $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}=\mathbb{R}^{3}$
hinder., $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{r}_{s}\right)=\mathbb{R}^{3}$ space.
$\underline{E_{x}}: S=\mathbb{R}^{n}$ is a subspace of \mathbb{R}^{n}. Also, $S=\{\overrightarrow{0}\}$ is a subspace -"zero subspace"

Ex: A line $L^{\text {in } \mathbb{R}^{2}}$ not through the origin is not a subspace

Ex $S=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x+z=1\right\}$ is not a subspace $\left(\right.$ doer not catain $\left.\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right)$
Ex: $S=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, y=x^{2}\right\}$ is not a subspace $\left(\left[\begin{array}{l}1 \\ 1\end{array}\right] \in S\right.$ but $\left.\left[\begin{array}{l}2 \\ 2\end{array}\right] \notin S\right)$
Subspaces associated with a matrix
del Let A be an $m \times n$ matrix

1. The row space of A is the subspace row $(A) \circ \mathbb{R}^{n}$ spanned by rows of A
2. The column space of A is the subspace col (A) of \mathbb{R}^{m} spaniard by columns of A

Remark: $\operatorname{col}(A)=\left\{\right.$ vectors of the form $\left.A \vec{x}, \vec{x} \in \mathbb{R}^{n}\right\}$
Ex: $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 3 & -3\end{array}\right]$
a) is $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in $\operatorname{col}(A)$?
b) is $\vec{\omega}=\left[\begin{array}{ll}4 & S\end{array}\right]$ in $\operatorname{rou}(A)$?
c) describe $\operatorname{rou}(A)$ and $c o l(A)$

Sol a) $\vec{b} \in \operatorname{GI}(A)$ af lin.sys. $A \vec{x}=\vec{b}$ is consistent
Aus. $\left[\begin{array}{cc|c}1 & -1 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & 3\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ consistent $\Rightarrow \vec{b} \in \operatorname{col}(A)$
 $R_{i}+c R_{j}, i>j$

$$
\left[\frac{A}{\vec{\omega}}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
3 & -3 \\
4 & 5
\end{array}\right] \underset{R_{3}-3 R_{1}}{\underset{R_{4}-4 R_{1}}{ }}\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & 0 \\
\hline 0 & 9
\end{array}\right] \xrightarrow[R_{4}-9 R_{2}]{ }\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & 0 \\
\hline 0 & 0
\end{array}\right] \Rightarrow \vec{\omega} \in \operatorname{row}(A)
$$

c) similarly $\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ \frac{3}{x} & -3 \\ \hline & y\end{array}\right] \rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 0 & 0 \\ \hline 0 & 0\end{array}\right] \Rightarrow \begin{aligned} & \text { any }\left[\begin{array}{ll}x & y\end{array}\right] \text { is in } \operatorname{rou}(A) \text {, } \\ & \text { so } \operatorname{row}(A)=\mathbb{R}^{2}\end{aligned}$
$\operatorname{col}(A):\left[\begin{array}{cc|c}1 & -1 & x \\ 0 & 1 & y \\ 3 & -3 & z\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & x \\ 0 & 1 & y \\ 0 & 0 & z-3 x\end{array}\right]$ consistent iff $z-3 x=0$
So, $\quad \operatorname{col}(A)=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, z-3 x=0\right\}$
The If A is row equivalent to B then $\operatorname{rov}(A)=\operatorname{rov}(B)$
def Let A be an $m \times n$ matrix. The null space of A is the set of solutions of the homogeneous eq. $A \vec{x}=\overrightarrow{0}$. It is denoted null (A).

- null (A) is a subspace of \mathbb{R}^{n}.

Ex: $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]$ is $\vec{v}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ in null (A) ?
Sol: $A \vec{v}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=\overrightarrow{0}$ so $\vec{v} \in \operatorname{null}(A)$.

