Subspaces associated with a matrix
del Let A be an $m \times n$ matrix

1. The row space of A is the subspace row $(A) \circ \mathbb{R}^{n}$ spanned by rows of A
2. The column space of A is the subspace col (A) of \mathbb{R}^{m} spanned by columns of A

Remark: $\operatorname{col}(A)=\left\{\right.$ vectors of the $\left.\operatorname{form} A \vec{x}, \vec{x} \in \mathbb{R}^{n}\right\}$
Ex: $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 3 & -3\end{array}\right]$
a) is $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in $\operatorname{col}(A)$?
b) is $\vec{\omega}=\left[\begin{array}{ll}S & S\end{array}\right]$ in $\operatorname{rou}(A)$?
c) describe $\operatorname{rou}(A)$ and $c /(A)$

Sol a) $\vec{b} \in \operatorname{Col}(A)$ iff lin.sys. $A \vec{x}=\vec{b}$ is consistent
Aug. $\left[\begin{array}{cc|c}1 & -1 & 1 \\ 0 & 1 & 2 \\ 3 & 3 & 3\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ consistent $\Rightarrow \vec{b} \in \operatorname{col}(A)$
 using only operations
$R_{i}+c R_{j}$ $R_{i}+c R_{j}, i>j$

$$
\left[\frac{A}{\vec{\omega}}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
3 & -3 \\
4 & 5
\end{array}\right] \underset{R_{3}-3 R_{1}}{\longrightarrow}\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & 0 \\
\hline 0 & 9
\end{array}\right] \xrightarrow[R_{4}-9 R_{2}]{ }\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & 0 \\
\hline 0 & 0
\end{array}\right] \Rightarrow \vec{\omega} \in \operatorname{row}(A)
$$

c) similarly $\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 3 & -3 \\ x & y\end{array}\right] \rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 0 & 0 \\ \hline 0 & 0\end{array}\right] \Rightarrow \begin{aligned} & \text { any }\left[\begin{array}{ll}x & y\end{array}\right] \text { is in } \operatorname{rou}(A) \text {, } \\ & \text { So } \operatorname{row}(A)=\mathbb{R}^{2}\end{aligned}$
$\operatorname{col}(A):\left[\begin{array}{cc|c}1 & -1 & x \\ 0 & 1 & y \\ 3 & -3 & z\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & x \\ 0 & 1 & y \\ 0 & 0 & z-3 x\end{array}\right]$ consistent iff $z-3 x=0$
So, $\operatorname{col}(A)=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, z-3 x=0\right\}$

The If A is row equivalent to B then $\operatorname{rov}(A)=\operatorname{rou}(B)$
def Let A be an $m \times n$ matrix. The null space of A is the set of dol solutions of the homogeneous eq. $A \vec{x}=\overrightarrow{0}$. It is denoted null (A).

- null (A) is a subspace of \mathbb{R}^{n}.

Ex: $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]$ is $\vec{v}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ in null (A) ?
Sol: $A \vec{v}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=\overrightarrow{0}$ So $\vec{v} \in \operatorname{null}(A)$
def A basis for a subspace S of \mathbb{R}^{n} is a set of vectors in S that 1) spans S and
2) is linearly independent

Ex: standard unit vectors $\vec{e}_{1}, \ldots, \vec{e}_{n}$ in $\mathbb{R}^{n} \quad\left(\vec{e}_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right] \leftarrow\right.$ it place $)$
$-\operatorname{span} \mathbb{R}^{n}\left(\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=x_{1} \vec{e}_{1}+\ldots+x_{n} \vec{e}_{n}\right)$

- are lin indef.
$\Rightarrow\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ is a basis for $\mathbb{R}^{n} \quad$ (the "standard basis")
Ex: $S=\operatorname{span}(\underbrace{\vec{u}, \vec{v}, \vec{u})}_{\text {not lin.:ndep. }}$ where $\vec{w}=2 \vec{u}+\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{w}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$

$$
S \Rightarrow c_{1} \vec{u}+c_{2} \vec{v}+c_{3}{\underset{2 \vec{u}}{\vec{u}+\vec{v}}}_{\vec{u}}=\left(c_{1}+2 c_{3}\right) \vec{u}+\left(c_{2}+c_{3}\right) \vec{v}
$$

So, any vector: in S is a $\ell_{i n}$, comb. of just \vec{u}, \vec{v}

$$
\Rightarrow S=\underbrace{\operatorname{span}(\vec{v})}_{\text {lindep. }} \quad \Rightarrow\{\vec{u}, \vec{v}\}-\text { basis for } S \text {. }
$$

Basis for the row spare

$$
\text { Ex: } A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 1 & 6 \\
2 & -1 & 0 & 1 & -1 \\
-3 & 2 & 1 & -2 & 1 \\
4 & 1 & 6 & 1 & 3
\end{array}\right] \rightarrow R=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{row}(A)=\operatorname{row}(R) \leftarrow$ spanned by nonzero sous of R; they are line since A and R rowequivelent cone to intaicap ind p pattern)

$$
\Rightarrow\left\{\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & -1
\end{array}\right],\left[\begin{array}{lllll}
0 & 1 & 2 & 0 & 3
\end{array}\right],\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & \{
\end{array}\right]\right\}-\operatorname{rasis} \text { for } \begin{aligned}
\operatorname{row}(A)
\end{aligned}
$$

- For any A, a basis for rou(A) is given by the nonzero rows of any REF of A.

Basis for the column space
The For any matrix A, a basis for $\operatorname{col}(A)$ is given by pivotal columns of A.
columns that in a REF of A contain a leading entry
not of REF!
ε_{x} :

$$
A=\left[\begin{array}{cccccc}
1 \\
2 & 1 & 3 & 1 & 6 \\
-1 & 0 & 1 & -1 \\
-3 & 2 & 1 & -2 & 1 \\
4 & 1 & 6 & 1 & 3
\end{array}\right] \longrightarrow R=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So: a basis for col (A) is $\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{4}\right\}=\left\{\left[\begin{array}{c}1 \\ 2 \\ -3 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -2 \\ 1\end{array}\right]\right\}$

Basis for the null space
Ex: find a basis for null (A)
Sol: $\operatorname{null}(A)=($ set of solutions of $A \vec{x}=\overrightarrow{0})$ - compute by Gauss - Jordan

$$
\text { aug. mat. }[A \mid \vec{O}] \rightarrow[R \mid \vec{O}]=\left[\begin{array}{ccccc|c}
1 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$ elimination

$$
x_{1}+x_{3}-x_{5}=0
$$

$$
x_{2}+2 x_{3}+3 x_{5}=0
$$

$$
x_{4}+4 x_{5}=0
$$

$$
x_{1} \quad x_{2}\left(\begin{array}{lll}
x_{3} \\
x_{3}
\end{array} x_{4} x_{\pi} x_{5}\right.
$$

$$
\Rightarrow \begin{array}{l}
x_{1}=-x_{3}+x_{5} \\
x_{2}=-2 x_{3}-3 x_{5} \\
x_{4}=-4 x_{5}
\end{array} \quad \Rightarrow \underbrace{x_{2}}_{\overrightarrow{x_{1}}} \begin{array}{c}
x_{3} \\
x_{4} \\
x_{5}
\end{array}]=\left[\begin{array}{c}
-s+t \\
-2 s-3 t \\
s \\
-4 t \\
t
\end{array}\right]=\underbrace{[\begin{array}{c}
s \\
{\left[\begin{array}{c}
-1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]} \\
\text { free variables } \\
x_{\vec{v}}^{1} \\
{\left[\begin{array}{c}
1 \\
-3 \\
0 \\
4 \\
1
\end{array}\right]}
\end{array} \underbrace{\pi}_{\vec{v}}=s \vec{u}+t \vec{v}}_{\vec{u}}
$$

So, $\operatorname{nell}(A)=\operatorname{span}(\underbrace{\vec{u}}, \vec{v})$

$$
\Rightarrow\{\vec{u}, \vec{v}\}= \begin{cases}\left\{\left[\begin{array}{c}
-1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
0 \\
4 \\
1
\end{array}\right]\right\} \\
\text { in indef. } & \text { for null }(A) \text {. basis } \text {. } \quad \text { or REF of } A\end{cases}
$$

- To find a basis for null (A), solve $\vec{R} \vec{x}=\overrightarrow{0}$ for leading vars in terns of free vars. Write the general sol. as a lin. comb. of (tc) vector $\vec{v}_{1}, . . \vec{v}_{k}$ with prananeters \# free vars
These $\vec{v}_{1}, \ldots, \vec{v}_{k}$ form a basis for null (A).

Dimension
Basis theorem Let S be a subspace of \mathbb{R}^{n}. Then any two bases for S have the same number of vectors.
def If S is a subs race of \mathbb{R}^{n}, the number of vectors in a basis for S is called the dimension of S. Notation: $\operatorname{dim} S$
$\underline{E_{x}}: \mathbb{R}^{n}$ has a basis $\{\underbrace{\vec{e}_{1}, \ldots, \vec{e}_{n}}_{n}\} \Rightarrow \operatorname{dim} \mathbb{R}^{n}=n$.

For A man matrix, $\operatorname{dim} \operatorname{row}(A)=\#$ pivots $=: \operatorname{rank}(A)$

$$
\begin{aligned}
\operatorname{dim} \operatorname{col}(A)=\# \text { pivots }= & \operatorname{rank}(A) \\
\operatorname{dim} \operatorname{null}(A)= & \# \text { free vars }=:^{\prime \prime} \\
& \operatorname{in} A \vec{x}=\overrightarrow{0} i t y(A)^{\prime \prime}
\end{aligned}
$$

Rank the: $\quad \operatorname{rank}(A)+$ nullity $(A)=n$
Ex: for 4×5 matrix A above, $\operatorname{dim} \operatorname{row}(A)=3=\operatorname{dim} \operatorname{col}(A)$, $\operatorname{dim} \operatorname{null}(A)=2 \leftarrow$ nullity rank

$$
\begin{aligned}
& 3+2=5 \\
& \hat{\imath} \hat{\imath} \\
& \text { rank nullity } \# \text { columns }
\end{aligned}
$$

