$\frac{\text { LAST TIME }}{\text { set }}$

- $B=\left\{\vec{v}_{1}, \ldots, \vec{V}_{k}\right\}$ is a basis for a subspace $S$ in $\mathbb{R}^{n}$
if 1) $S=\operatorname{span}(B)$

2) $B$ is lininder.

- basis for $\operatorname{rou}(A)=\{$ nonzero nous of REF of $A\}$

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 1 & 6 \\
2 & -1 & 0 & 1 & -1 \\
-3 & 2 & 1 & -2 & 1 \\
4 & 1 & 6 & 1 & 3
\end{array}\right] \rightarrow R=\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & -1 \\
-0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\left\{\left[\begin{array}{lllll}1 & 0 & 1 & 0 & -1\end{array}\right],\left[\begin{array}{lllll}0 & 1 & 2 & 0 & 3\end{array}\right],\left[\begin{array}{lllll}0 & 0 & 0 & 1 & <\end{array}\right]\right\}-$ basis $\operatorname{for} \operatorname{row}(A)$

- basis for col $(A)=\{$ pivotal columns of $A\}$

$$
\left\{\left[\begin{array}{c}
1 \\
2 \\
-3 \\
4
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-2 \\
1
\end{array}\right]\right\} \text { - basis } \operatorname{\text {Dor}} \text { col (A) }
$$


$\Rightarrow\left\{\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 0 \\ 4 \\ 1\end{array}\right]\right\}$-basis for null (A).
\&REF of $A$

- To find a basis for null $(A)$, solve $R \vec{x}=\overrightarrow{0}$ for leading vars in terns of free vars. Write the general sol as a lin. omb. of (1) vector $\vec{v}_{1}, \ldots, \vec{v}_{k}$ with proneckers These $\vec{v}_{1}, \ldots, \vec{v}_{k}$ form basis far null $(A)$.
\# See vars

$$
=\text { free vars }
$$

Remark: Another way to construct a basis for col ( $A$ ): construct a basis for row $\left(A^{\top}\right)$ and transpose row basis vectors back into columns.

$$
\left.\left.\begin{array}{l}
\text { Ex: } \left.A^{\top}=\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
1 & -1 & 2 & 1 \\
3 & 0 & 1 & 6 \\
1 & 1 & -2 & 1 \\
6 & -1 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 6 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{llll}
\left\{\left[\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 0 & 6
\end{array}\right]\right. \text {, } \\
0 & 0 & 1 & 3
\end{array}\right] \\
\text {-basis for row }\left(A^{\top}\right)
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
3
\end{array}\right]\right\} \text {-basis for col (A) (different from the one we } \begin{aligned}
& \text { constructed before!) }
\end{aligned}
$$

Dimension
Basis theorem Let $S$ be a subspace of $\mathbb{R}^{n}$. Then any two bases for $S$ have the same number of vectors.
def If $S$ is a subs price of $\mathbb{R}^{n}$, the number of vectors in a basis bor $S$ is called the dimension of $S$. Notation: $\operatorname{dim} S$.

Ex: $\mathbb{R}^{n}$ has a basis $\underbrace{\hat{e}_{1}, \ldots, \vec{e}_{n}}_{n}\} \Rightarrow \operatorname{dim} \mathbb{R}^{n}=n$.
For A man matrix,

$$
\left.\begin{array}{rl}
\operatorname{dim} \operatorname{row}(A)= & \# \begin{array}{rl}
\text { nonzero rus } \\
\text { in REF } \\
\operatorname{Rim} A \\
\operatorname{dim} \\
\operatorname{col}(A)= & \# \text { pivotal columns } \\
\operatorname{dim} \operatorname{null}(A)= & \# \text { free vars } \\
& \text { in } A \vec{x}=\overrightarrow{0}
\end{array}=\operatorname{rank}(A) \\
3
\end{array}\right] \operatorname{rank}(A)
$$

def Nullity of $A$ is the dimension of null $(A)$.
The: For any matrix $A, \operatorname{dim} \operatorname{rou}(A)=\operatorname{dim} \operatorname{col}(A)$

$$
(=\operatorname{rank}(A))
$$

So, $\operatorname{rank}(A)=\#$ Cin.indep.rous in $A=\#$ lin. indef. columns in $A$ suencisingly!
Corollary: $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$

$$
\left(\operatorname{rank}(A)=\operatorname{dim} \operatorname{ros}(A)=\operatorname{dim} \operatorname{col}\left(A^{\top}\right)=\operatorname{ram}\left(A^{\top}\right)\right)
$$

Rank the: $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$

$$
\begin{gathered}
\text { \#pivotal columns \# ron-pintal } \\
\text { chains }
\end{gathered}
$$

Ex: for $4 \times 5$ matrix $A$ above, $\operatorname{dim} \operatorname{row}(A)=3=\operatorname{dim} \operatorname{col}(A)$,
$\operatorname{dim} \operatorname{null}(A)=2 \leftarrow$ nullity rank

$$
\begin{aligned}
& 3+2=5 \\
& i \hat{i} \text { rail nullity } \# \text { columns }
\end{aligned}
$$

- for $A$ man matrix, $\vec{A} \vec{x}=\vec{b}$ is constant for any $\vec{b} \in \mathbb{R}^{\prime}$ iff REF of $A$ has a pinot in every roo.

Fundamental The of invertible matrices, v. 2
Let $A$ be an $n \times n$ matrix. The folloung statements are equivalent:
(a) $A$ is invertible
(b) $A \vec{x}=\vec{b}$ has a unique solution for any $\vec{b}$ : $\mathbb{R}^{n}$
(c) $A \vec{x}=\overrightarrow{0}$ has only the trivial solution
(d) RREF of $A$ is $I_{n}$
(e) $A$ is a product of elementary matrices $\leftarrow$ we didn't discuss this
(f) $\operatorname{rank}(A)=n$
(g) nullity $(A)=0$
(h) column vectors of $A$ are lin. in dep.
(i) column vectors of $A$ span $\mathbb{R}^{n}$
(j) column vectors of $A$ form a basis for $\mathbb{R}^{n}$
(k) row vectors of $A$ are lin.indep.
(B) row vectors of $A$ pan $\mathbb{R}^{n}$
$(m)$ row vectors of $A$ form a basis for $\mathbb{R}^{n}$

Eli show that vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 9 \\ 7\end{array}\right]$ form a basis for $\mathbb{R}^{3}$
Sol:

$$
\begin{aligned}
& \text { Q: } A=\left[\begin{array}{lll}
\vec{u} & \vec{v} & \vec{u}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 4 \\
2 & 0 & 9 \\
3 & 1 & 7
\end{array}\right] \quad \text { ( (f) } \\
& \rightarrow\left[\begin{array}{ccc}
1 & -1 & 4 \\
0 & 2 & 1 \\
0 & 0 & 7
\end{array}\right] \\
& \quad \operatorname{REF}
\end{aligned}
$$

$$
((f) \Leftrightarrow(j) \text { implies }\{\vec{u}, \vec{v}, \vec{u}\}: \text { a bass }
$$

$$
\text { if } \operatorname{rank}(A)=3)
$$

Tho Let $A$ be an $m \times n$ matrix, then
a) $\operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)$
b) the non matrix $A^{\top} A$ is invertible of $\operatorname{rank}(A)=n$.
$\left[\right.$ (a) $\quad \operatorname{null}\left(A^{\top} A\right)=\operatorname{null}(A) \quad$ - because $\quad A \vec{x}=\overrightarrow{0} \Rightarrow A^{\top} A \vec{x}=\overrightarrow{0}$, 10 null $(A) \subset$ null $\left(A^{\top} A\right)$ and $A^{\top} A \vec{x}=\overrightarrow{0} \Rightarrow x^{\top} A^{\top} A \vec{x}=0 \Rightarrow$

$$
\Rightarrow(A \vec{x}) \cdot(A \vec{x})=0 \Rightarrow A \vec{x}=0
$$

Thus: nullity $\left(A^{\top} A\right)=$ nullity $(A)$

$$
\Rightarrow \text { rank -nullity the } \operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)
$$

(S) $A^{\top} A$ invertible $\Leftrightarrow \operatorname{rank}\left(A^{\top} A\right)=n \Leftrightarrow \operatorname{ralk}(A)=n$.

$$
(a) \Leftrightarrow(f)
$$

E. $\quad \begin{aligned} & 1 \times 2 \\ & \end{aligned} \quad\left[\begin{array}{ll}1 & 2\end{array}\right]$

$$
A^{\top} A=\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

$$
\operatorname{rank}=1
$$ non-inventille!

Ex: (bor ramk-nullity) $A$. What are the possible values of nullity $(A)$ ?
Sol: $\operatorname{rank} A$ can be $0,1,2 \Rightarrow$ nullity $(A)=5-\operatorname{rank}(A)$ can be 3,4,5.

Ex: find a baris $\operatorname{Ror} S_{=s p a n}(\vec{u}, \vec{v}, \vec{u}), \vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], \vec{u}=\left[\begin{array}{c}-1 \\ 1 \\ 3 \\ 5\end{array}\right]$
Sol:

$$
\begin{aligned}
& S=\operatorname{col}(A), \quad A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & 1 \\
1 & 3 & 3 \\
1 & 4 & 5
\end{array}\right] \rightarrow \vec{u} \vec{u} \vec{u} \quad\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 2 \\
0 & 2 & 4 \\
0 & 3 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \Rightarrow\{\vec{u}, \vec{u}\}-b_{a}: s \text { for } S \text {. } \\
& \text { = pivotal } \\
& \text { columns of } A
\end{aligned}
$$

Proof of Basis the
Lemma Let $\vec{v}_{1}, \ldots \vec{u}_{k} b_{\text {arete }}$ vedors in $\mathbb{R}^{n}$ and $\vec{w}_{1}, \ldots, \vec{u}_{e}$ a set of vectors in $\operatorname{span}\left(\vec{v}_{1}, \ldots, \bar{v}_{k}\right)$. Then, if $l_{>k}$, the set $\vec{w}_{1}, \ldots, \vec{w}_{l}$ is lin dependent.
[ we have $\vec{w}_{i}=\underset{\text { some coefficients }}{a_{i 1} \vec{v}_{1}+\ldots+a_{2 k} \vec{v}_{k}}, i=1 \ldots l$. Let $\vec{a}_{i}=\left[\begin{array}{c}a_{i 1} \\ \vdots \\ a_{i k}\end{array}\right]$.
Matrix $A=\left[\vec{a}_{1} \ldots \vec{a}_{l}\right]$ has \# columns $>\#$ rows $\Rightarrow$ columns of $A$ are $l$ in. dep.
$\Rightarrow c_{1} \vec{a}_{1}+\ldots+c_{e} \vec{a}_{e}=\overrightarrow{0}$ some lin. dep. rel.
$\Rightarrow \quad c_{1} \vec{w}_{1}+\ldots+c_{l} \vec{w}_{l}=\overrightarrow{0} \quad$ a lin der. rel on $\vec{u}_{i}^{\prime} s$
「Argunent for bars theorem: Let $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}, C=\left\{\vec{w}_{1}, \ldots, \vec{w}_{e}\right\}$ two baser bor $S$. Assume $l>k$. Then by Leman, $C$ is lin. dep. - contradiction!

