Back to linear transformations (for a moment)
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear tran formation. domain codomain
"Range" of $T=$ the set of all :mages $T(\vec{x})$ for any $\vec{x} \in \mathbb{R}^{n}$
"Kernel" of $T=\left\{\vec{x} \in \mathbb{R}^{n} \mid T(\vec{x})=0\right\} \quad$-all vendors that are mapped
range (T) is a subspace of \mathbb{R}^{m}
$\operatorname{ker}(T)$ is a subspace of \mathbb{R}^{n}
Ex: For $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a matrix transformation, $\vec{x} \mapsto A \vec{x}$

$$
\operatorname{range}(T)=\operatorname{col}(A)
$$

and $\operatorname{ker}(T)=\operatorname{null}(A)$

- $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is "onto"
if range $(T)=\operatorname{codmain}(T) \quad\left(=\mathbb{R}^{m}\right)$
- T is "one-to-one" if
each $\vec{b} \in \operatorname{range}(T)$
is the image of exactly one vector in the domain.
(equivalently, $\operatorname{ker}(T)=\{\overrightarrow{0}\}$-zer subspace of \mathbb{R}^{n})
Ex: A matrix transl $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto if $A \vec{x}=\vec{b}$ consistent $\forall \vec{b}$ $\vec{x} \mapsto A \vec{x} \quad \Leftrightarrow$ if A has a pivot in each row \Leftrightarrow if $\operatorname{rank}(A)=m$

$$
\begin{aligned}
T \text { is } 1-1 & \Leftrightarrow \operatorname{null}(A)=\{\overrightarrow{0}\} \\
& \Leftrightarrow \operatorname{nullity}(A)=0 .
\end{aligned}
$$

- we can consider linear transformations between subspaces,

$$
T: \underset{\substack{n \\ \mathbb{R}^{n}}}{S} \rightarrow \bigcap_{\mathbb{R}^{m}}^{S^{\prime}}
$$

Coordinate systems (Poole 6.3)
Th m
Let $S \subset \mathbb{R}^{n}$ be a subspace and $B=\left\{\vec{b}_{1, \ldots}, \vec{b}_{p}\right\}$ a basis for S.
Then for every vector $\vec{v} \in S$, there :s exactly one way to write \vec{v} as a linear combination of the basis vedors in B :

$$
\vec{v}=c_{1} \vec{b}_{1}+\ldots+c_{p} \vec{b}_{p} .
$$

Γ Let $\vec{v}=c_{1} \vec{b}_{1}+\ldots+c_{p} \vec{b}_{p} \quad$ two ways to write \vec{v} as a lin. omb.,

$$
\vec{v}=d_{1} \vec{b}_{1}+\cdots+d_{p} \vec{b}_{p}
$$

with different coifs
Subtracting, we get $\vec{o}=\left(c_{1}-d_{1}\right) \vec{b}_{1}+\ldots+\left(c_{p}-d_{p}\right) \vec{b}_{p}$.
but \bar{b} 's are lin.indep. \Rightarrow all coifs mut be zero $\Rightarrow c_{1}=d_{1}, \ldots, c_{p}=d_{p}$,
def Coifs C_{1}, \ldots, C_{p} in $(*)$ are called the coordinates of \vec{v} w.r.t. B. eden vector $[\vec{v}]_{B}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{p}\end{array}\right]$ is called the coordinate vector of \vec{v} w.r.t. B.
Ex: $\mathcal{E}=\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$ stand.baris for \mathbb{R}^{3}. Find the word. vector of $\vec{v}=\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right]$ w.r.t. \mathcal{E}.

$\begin{array}{lll}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3}\end{array}$

- Generally: for any $\vec{v} \in \mathbb{R}^{n}, \quad[\vec{v}]_{\mathcal{E}_{\sigma}}=\vec{v}$
stand. basis in \mathbb{R}^{n}.

Ex: $\quad \vec{v}_{1}=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 3\end{array}\right] \quad \vec{x}=\left[\begin{array}{c}1 \\ 10 \\ 11\end{array}\right]$
$B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$-bails for $S=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$
Q : a) is \vec{x} in S ?

$$
\text { b) if yes, } f_{\text {ind }}[\vec{x}]_{B}
$$

Sol: $\vec{x} \in S$ if eq. $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{x}^{(* *)}$ is consistent.
Aug. Mat. $\left[\begin{array}{cc|c}2 & -1 & 1 \\ 5 & 0 & 10 \\ 1 & 3 & 11\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \begin{gathered}(x+*) \quad \text { consistent, } \\ c_{1}=2, c_{2}=3\end{gathered}$ $c_{1}=2, c_{2}=3$-solution

$=2 \vec{v}_{1}+3 \vec{v}_{2}$
Basis B determines a coordinate system on S : points of S are in \mathbb{R}^{3} but are determined by $[\vec{x}]_{B} \in \mathbb{R}^{2}$.
marring $\underset{\vec{x}}{S} \mapsto \mathbb{R}^{2}$ in called the "coordinate mapping":
Ex: $B=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ basis for \mathbb{R}^{2}. Find $\vec{x} \in \mathbb{R}^{2}$ with $[\vec{x}]_{B}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$\overrightarrow{b_{1}} \quad \vec{b}_{2}$

$$
\vec{x}=-2 \vec{b}_{1}+3 \vec{b}_{2}
$$

Sol: $\quad \vec{x}=-2 \vec{b}_{1}+3 \vec{b}_{2}=\left[\begin{array}{l}1 \\ 6\end{array}\right]$
 B-coordinat gid on \mathbb{R}^{2}

Coordinates in \mathbb{R}^{n}

$$
\underline{E x x}^{\text {hall }} B=\left\{\left[\begin{array}{l}
2 \\
1 \\
b_{1}
\end{array}\right],\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} \text { for } \mathbb{R}^{2}, \vec{x}=\left[\begin{array}{c}
4 \\
5
\end{array}\right] \quad \text { Q: fid }[\vec{x}]_{B}
$$

Sol: $c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}=\vec{x} \Leftrightarrow \underbrace{\left[\begin{array}{cc}\vec{b} & \vec{b}_{2} \\ 2 & -1 \\ 1 & 1\end{array}\right]}_{\vec{P}_{B}}\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}\vec{x} \\ 4 \\ 5\end{array}\right] \quad$ matrix changing B-coordinates of \vec{x} to
stand. coordinates.
solution: $[\vec{x}]_{B}=\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right]=P_{B}^{-1} \vec{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
For any bars B for \mathbb{R}^{n}, let $P_{B}=\left[\vec{b}, \ldots \vec{b}_{n}\right]$.

Coordinate mapping

Let B be a basis for S. Then the coordinate mapping []$_{B}: S \rightarrow \mathbb{R}^{P}$ is a $1-1$ lin. transf. from S onto \mathbb{R}^{P}.

is called an isomorphism.
Every vector calculation in S is repeated in S^{\prime} and vice versa,
So S and S^{\prime} are "the same".
Thus, a subspace S with a bails of p vectors is indistinguishable from \mathbb{R}^{p}.

