LAST TIME

- if $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}$-basis for $S \subset \mathbb{R}^{n}$, colts in $\vec{v}=\vec{c}_{\tau} \vec{b}_{1}+\ldots+\vec{b}_{p}$ are "B- condinates" of $\vec{v} \in S, \quad[\vec{v}]_{B}=\left[\begin{array}{c}c_{1} \\ c_{p}\end{array}\right]$ - D-cordnate vector.
- if $S=\mathbb{R}^{n}$, then $\vec{v}=P_{B}[\vec{v}]_{B}$ where $P_{B}=[\underbrace{\vec{b}_{1}-\vec{b}_{n}}]$,

$$
[\vec{v}]_{B}=P_{B}^{-1} \vec{v}
$$

Coordinate mapping

Let B be a basis for S. Then the coordinatemanping $\left[J_{B}: S \longrightarrow \mathbb{R}^{P}\right.$ is a $I-1$ Pin.trassf. from S onto \mathbb{R}^{p}.
$\left(\begin{array}{rlrl}\text { A linear mapping } T: & S & \rightarrow S^{\prime} \\ & S_{n}^{n} \\ \mathbb{R}^{n} & \mathbb{R}^{m}\end{array}\right.$-rwiraces which is $1-1$ and onto
is called an isomorphism.
Every vector calculation in S is repeated in S^{\prime} and vice versa,

$$
\text { E.g. } \left.\left.c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}^{\prime} \quad \text { if } c_{1}\left[\vec{v}_{1}\right]_{B}+\ldots+c_{1}[]_{1}\right]_{1}\right]_{0}=\overrightarrow{0}
$$

So S and S^{\prime} are "the same."
Thus, a subspace S with a ball of p vectors is indistinguishable from \mathbb{R}^{p}.

Change of basis
Ex: S-subspace with two haves. $B=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}, C=\left\{\vec{c}_{1}, \vec{c}_{2}\right\}$ st.
$\vec{b}_{1}=4 \vec{c}_{1}+\vec{c}_{2}, \vec{b}_{2}=-6 \vec{c}_{1}+c_{2}$. Suppose that

$$
\vec{x}=3 \vec{b}_{1}+\vec{b}_{2}(x), \because e,[\vec{x}]_{B}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Q: find $[\vec{x}]_{C}$
Sol: Apply the cord. mapnng defined by C to (x) :

$$
[\vec{x}]_{C}=s\left[\vec{b}_{1}\right]_{C}+\left[\vec{b}_{2}\right]_{C}=\underbrace{\left[\left[\vec{b}_{1}\right]_{C}\left[\vec{b}_{2}\right]_{c}\right]^{1}}_{\left[\begin{array}{cc}
4 & -6 \\
1 & 1
\end{array}\right]}\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{[\vec{x}]_{B}}=\left[\begin{array}{cc}
4 & -6 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
6 \\
4
\end{array}\right]
$$

The Let $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{p}\right\}, C=\left\{\vec{c}_{1}, \ldots, \vec{c}_{p}\right\}$ be two bases for S.
Then there is a unique $p \times p$ matrix $\underset{C}{\underset{\leftarrow}{P}} \underset{B}{ }$ s.t. $[\stackrel{x}{x}]_{C}=\underset{C}{P}[\stackrel{\rightharpoonup}{x}]_{B}$
Explicitly: $\begin{array}{r}\quad P=\left[\begin{array}{l}\left.[\vec{b},]_{C} \ldots\left[\vec{b}_{p}\right]_{C}\right]\end{array} \quad \text {-change-ob-coordinates matrix }\right. \\ \text { from } B \text { to } C\end{array}$

Renc-k: (\#) implies

$$
[\vec{x}]_{B}=(\underset{C}{P})^{-1}[\vec{x}]_{C}
$$

Hence $B \leftarrow C=\binom{P}{C \leftarrow B}^{-1}$

Change of basis :n \mathbb{R}^{n}
Recall: if $B=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}, E=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ stand basis in \mathbb{R}^{n}, then $[\vec{b}]_{\mathcal{E}}=\vec{b}_{i}$ and $P_{\varepsilon \in B}=P_{B}=\left[\vec{b}_{1} \ldots \vec{b}_{n}\right]$

Change between two nonstandard bases for \mathbb{R}^{n}
$\underline{E x}_{*}^{*}: \quad \vec{b}_{1}=\left[\begin{array}{c}-9 \\ 1\end{array}\right] \quad \vec{b}_{2}=\left[\begin{array}{c}-5 \\ -1\end{array}\right] ; \quad \vec{c}_{1}=\left[\begin{array}{c}1 \\ -4\end{array}\right] \quad \vec{c}_{2}=\left[\begin{array}{c}3 \\ -5\end{array}\right] \quad \begin{aligned} & \text { two bases } \\ & \text { for } \mathbb{R}^{2}\end{aligned}$
Q: find $P_{C \in B}$
Sol we need $\left[\vec{b}_{1}\right]_{C}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right],\left[\vec{b}_{2}\right]_{C}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$
B_{y} def., $\left[\begin{array}{ll}\vec{c}_{1} & \vec{c}_{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\vec{b}_{1},\left[\begin{array}{ll}\vec{c}_{1} & \vec{c}_{2}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\vec{b}_{2}$
To solve two in. systems simultaneously, augment the colft.matrix by \vec{b}_{1} and \vec{b}_{2}

$$
\left[\begin{array}{ll|l|}
\vec{c}_{1} & \vec{c}_{2} & \vec{b}_{1} \\
\vec{b}_{2}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & 3 & -9 & -5 \\
-4 & -5 & 1 & -1
\end{array}\right] \underset{R_{2}+4 R_{1}}{\longrightarrow}\left[\begin{array}{ll|ll}
1 & 3 & -9 & -5 \\
0 & 7 & -35 & -21
\end{array}\right] \rightarrow
$$

$$
\underset{\frac{1}{7} R_{2}}{\overrightarrow{1}}\left[\begin{array}{cc|cc}
1 & 3 & -9 & -5 \\
0 & 1 & -5 & -3
\end{array}\right] \underset{R_{1}-3 R_{2}}{ }\left[\begin{array}{ll|cc}
1 & 0 & 6 & 4 \\
0 & 1 & -5 & -3
\end{array}\right]
$$

Thus $\left[\vec{b}_{1}\right]_{C}=\left[\begin{array}{c}6 \\ -5\end{array}\right] \quad\left[\vec{b}_{2}\right]_{C}=\left[\begin{array}{c}4 \\ -3\end{array}\right] \quad$ and $\quad P-B=\left[\begin{array}{cc}6 & 4 \\ -5 & -3\end{array}\right]$
Observe: $\left[\begin{array}{ll|ll}\vec{c}_{1} & \vec{c}_{2} & \vec{b}_{1} & \vec{b}_{2}\end{array}\right] \rightarrow\left[I \mid{\underset{C}{B}}^{P_{B}}\right] \leftarrow$ works analogously
"to" "from" $C \in B$ "for any two basesfor \mathbb{R}^{n} (Graws-Jordar method bor omitting $C i B$?
Another way to construct $C(-B$

$$
\begin{aligned}
&{\underset{C}{C-B}}^{P_{C-\varepsilon}} P_{C-\varepsilon} \cdot P_{\varepsilon-B}=\left(P_{C}\right)^{-1} P_{B} \quad \text { or: } \quad \vec{x}=P_{C}[\vec{x}]_{C} \Rightarrow[\vec{x}]_{C}=P_{C}^{-1} \vec{x} \\
& \Rightarrow[\vec{x}]_{C}=\underbrace{P_{C}^{-1} P_{B}[\vec{x}]_{B}}_{C C B}
\end{aligned}
$$

$\underline{E x}$ (back to B, C of $E x^{*}$)

$$
\begin{array}{l}
\vec{b}_{1}=\underbrace{\left[\begin{array}{c}
-9 \\
1
\end{array}\right]}_{B} \vec{b}_{2}=\left[\begin{array}{c}
-5 \\
-1
\end{array}\right]
\end{array} \quad \underbrace{\vec{c}_{1}=\left[\begin{array}{c}
1 \\
-4
\end{array}\right] \quad \vec{c}_{2}=\left[\begin{array}{c}
3 \\
-5
\end{array}\right]}_{C}] \begin{aligned}
& P_{C}=B=\left[\begin{array}{cc}
1 & 3 \\
-4 & -5
\end{array}\right]^{-1}\left[\begin{array}{cc}
-9 & -5 \\
1 & -1
\end{array}\right]=\frac{1}{7}\left[\begin{array}{cc}
-5 & -3 \\
4 & 1
\end{array}\right]\left[\begin{array}{cc}
-9 & -5 \\
1 & -1
\end{array}\right]=\frac{1}{7}\left[\begin{array}{cc}
42 & 28 \\
-35 & -21
\end{array}\right] \\
&=\left[\begin{array}{cc}
6 & 4 \\
-5 & -3
\end{array}\right]
\end{aligned}
$$

$$
\underline{E_{x}}: B=\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}, C=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right\}, \vec{x}=\left[\begin{array}{l}
3 \\
1 \\
5
\end{array}\right] \therefore \mathbb{R}^{3}
$$

- Ind $[\vec{x}]_{B}:\left[\begin{array}{lll|l}0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 5\end{array}\right] \rightarrow\left[\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3\end{array}\right] \Rightarrow[\vec{x}]_{B}=\left[\begin{array}{l}1 \\ 5 \\ 3\end{array}\right]$

$$
\begin{aligned}
& \text { end } P_{C-B}:\left[\begin{array}{lll|lll}
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0
\end{array}\right]_{R_{2}-R_{1}} \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & -1 \\
0 & 1 & 1 & & 1
\end{array}\right] \rightarrow
\end{aligned}
$$

F nd $[\vec{x}]_{C}:[\vec{x}]_{C}={\underset{C}{-}}_{P}[\vec{x}]_{B}=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 5 \\ 3\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}-1 \\ 3 \\ 7\end{array}\right]$.

Rem if B, C, D three bares for \mathbb{R}^{n}, then

$$
P_{D \in B}=P \underset{D C}{ } P_{B}
$$

(or: $\left.P_{D}^{-1} P_{B}=\left(P_{D}^{-1} P_{C}\right)\left(P_{C}^{-1} P_{B}\right)\right)$

