Kernel and range (Poole 6.5)
For a lin transf. $T: V \rightarrow W$,

$$
\begin{aligned}
& \operatorname{range}(T)=\{T(\vec{v}) \mid \vec{v} \in V\} \quad \underset{\text { subspace }}{\subset} \\
& \operatorname{ker}(T)=\{\vec{V} \in V \mid T(\vec{v})=\overrightarrow{0}\} \quad \underset{\text { subspace }}{\subset}
\end{aligned}
$$

def For $T: V \rightarrow W$ lin.transf.,

$$
\begin{aligned}
& \operatorname{rark}(T):=\operatorname{dim} \operatorname{range}(T) \\
& \text { nullity }(T):=\operatorname{dim} \text { null }(T)
\end{aligned}
$$

Rank-nullity The: For $T: V \rightarrow W, \quad \operatorname{rank}(T)+n u l l i t y(T)=\operatorname{dim} V$
Ex: for A man matrix, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\vec{v} \longmapsto A \vec{v}
$$

$$
\operatorname{range}(T)=\operatorname{col}(A)
$$

$\operatorname{ker}(T)=\operatorname{null}(A)$
$\begin{aligned} \text { Ex: }^{D:} P_{3} & \longrightarrow P_{2} \quad \text { find Ger, range, rank, nullity } \\ p(x) & \longmapsto p^{\prime}(x)\end{aligned}$
Sol: $\operatorname{ker}(D)=\left\{p(x) \in P_{3} \mid D(p)=0\right\}=\{a\} \quad \Rightarrow$ nullity = dinker $=1$
def $T: V \rightarrow U$ is "one-to-one" if $T_{\text {maps }}$ distinct vectors :n V to dutnet vectors :i W T is "onto" if range $(T)=W$.
The. $T: V \rightarrow \omega$ is one-to-one of $\operatorname{ker}(T)=\{\overrightarrow{0}\}$
if $V=\omega, T: V \rightarrow \omega$ is $1-1$ if it is onto.

- if $T: V \rightarrow \omega$ is 1-1, image of a lirindep. set in V is a lin.indep. set in W.
def A in transf. $T: V \rightarrow \omega$ that is $1-1$ and onto is called an isomorphism.

$$
\begin{aligned}
& a+b x+c x^{2}+d x^{3} \quad \text { cartant polynomicels } \\
& \text { range }(D)=\left\{p(x) \in P_{2} \mid p(x)=q^{\prime}(x) \text { for some } q(x) \in P_{3}\right\}=\text { entire } \\
& a+b x+c x^{2}=\frac{d}{d x}(\underbrace{\left(a x+\frac{b}{2} x^{2}+\frac{c}{3} x^{3}\right.}_{g(x)}) \\
& \Rightarrow \text { rank }=\text { dim range }=3 .
\end{aligned}
$$

If $T: U \rightarrow V, \quad S: V \rightarrow W$ ein.trauf, an form the composition $S \circ T: U \rightarrow W$,

- $T: V \rightarrow W$ is neertible if thee exists $S: W \rightarrow V$ s.t. $\left\{\begin{array}{l}S \circ T=I_{V} \\ T \circ S=I_{\omega}\end{array}\right.$

Then $S=: T^{-1}$ is the neverge transformation of T.

- T is ivertible iff it is an iomorphism.

$$
\begin{gathered}
E_{x}: \quad T: \quad P_{n} \rightarrow \mathbb{R}^{n+1} \\
\\
a_{0}+a_{1} x+\ldots+a_{n} x^{n} \mapsto\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]
\end{gathered}
$$

$\varepsilon_{x}: T: M_{22} \rightarrow P_{3}$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto a+b x+c x^{2}+d x^{3}
$$

- Two vector spaces

$$
V, \omega \text { ace } \underset{\substack{\text { isomornhic } \\(\text { an ilionerphiss } \\ T: U \rightarrow W \text { exists })}}{ } \text { iff } d i m=\operatorname{dim} \omega
$$

Coordinates (in a vector space) (Poole 6.2)
Let V be a vispace with a basis $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$.
There is a unique way to write any $\vec{v} \in V$ as a lin. camb. of $\vec{v}_{1, \ldots}, \vec{v}_{n}$: $\vec{v}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}$. Then, c_{1}, \ldots, c_{n} are called the coordinates of \vec{v} url. B, and the column vector $[\vec{v}]_{B}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$ is called the coordinate vector of \vec{v} w.r.t. B

Rem If $\operatorname{dim} V=n$, then $[\vec{v}]_{B} \in \mathbb{R}^{n}$.
Ex: $P(x)=3-2 x+7 x^{2} \in P_{2}, \quad B=\left\{1, x, x^{2}\right\}$-stand basis for P_{2}
then: $[p(x)]_{B}=\left[\begin{array}{c}3 \\ -2 \\ 7\end{array}\right] \in \mathbb{R}^{3}$
Note: if we change the order of basis vectors to $B^{\prime}=\left\{x^{2}, x, 1\right\}$, the cord-vector will change to $[p(x)]_{B^{\prime}}=\left[\begin{array}{c}7 \\ -2 \\ 3\end{array}\right]$
Ex: $A=\left[\begin{array}{cc}1 & 5 \\ -7 & 2\end{array}\right] \in M_{22}, B=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ find $[A]_{B}$
Sol: $\begin{aligned} & A=1\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+5\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+(-7)\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+2\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] E_{12} \\ & E_{12}\end{aligned} \rightarrow\left[A_{B B}=\left[\begin{array}{c}1 \\ 5 \\ -7 \\ 2\end{array}\right]\right.$
Ex: $p(x)=1+2 x-x^{2}, \quad C=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$-basis for P_{2}. Find $[p(x)]_{C}$
Sol $1 \quad C_{1}(1+x)+C_{2}\left(x+x^{2}\right)+C_{3}\left(1+x^{2}\right)=1+2 x-x^{2}$
$\rightarrow c_{1}+c_{3}=1 \quad c_{1}=2$
$c_{1}+c_{2}=2 \rightarrow \begin{aligned} & c_{2}=0 \\ & c_{3}=-1\end{aligned} \rightarrow[p(x)]_{C}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$

$$
c_{2}+c_{3}=-1 \quad c_{3}=-1
$$

Thin: Let B be a locris for V. Then:
a) $[\vec{u}+\vec{v}]_{B}=[\vec{u}]_{B}+[\vec{v}]_{B}$
b) $[c \vec{u}]_{B}=c[\vec{u}]_{B}$

The Let B be a basis for V. Then a set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{k}\right\}$ in is lin. ides. if the set of coord vectors $\left\{\left[\vec{u}_{i}\right]_{B}, \ldots,\left[\vec{u}_{k}\right]_{B}\right\}$ in in in dep. in \mathbb{R}^{n}.

- Given V-v.sp., B-basis, one has the coordinate mapping
$T: V \rightarrow \mathbb{R}^{(n)^{\text {din }} V} \quad$-it is an isomorphism.

$$
\vec{v} \longmapsto[\vec{v}]_{B}
$$

Change of basis (Poole 6.3)
Let $B=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}, C=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be two bares for a usp. V and let $\underset{C-B}{P}=\left[\left[\vec{u}_{1}\right]_{C}\left[\vec{u}_{2}\right]_{C} \ldots\left[\vec{u}_{n}\right]_{C}\right]$ the $n \times n$ "change-of-baiis matrix from B to C."
Then: (a) $[\vec{x}]_{C}=P_{C}\left[{ }_{B}[\vec{x}]_{B}\right.$ for any $\vec{x} \in V$
(b) $P_{C \in B}$ is the unique matrix P with property $[\vec{x}]_{C}=P[\vec{x}]_{B}$ for any $\begin{aligned} & \vec{x} \in V\end{aligned}$ $\vec{x} \in V$
(c) $P B$ is revertible and $\binom{P}{P \in B}^{-1}={ }_{B \in C}^{P}$

Ex: $\left.V=P_{2}, \quad B=\begin{array}{lll}p_{1} p_{2} p_{2} \\ \left\{1, x, x^{2}\right.\end{array}\right\} \quad C=\begin{array}{ccc}q_{1} & q_{2} & q_{3} \\ 1+x, x+x^{2}, & \left.1+x^{2}\right\}\end{array}$
(i) find $\quad P_{B}, \stackrel{P}{B \leftarrow C}$
(ii) find $\left[1+2 x-x^{2}\right]_{C}$

Sol: $\underset{B \in C}{ } \mathbb{C}_{B}$ is easy: $\quad \underset{B}{P}=C=\left[\left[q_{1}\right]_{B}\left[q_{2}\right]_{B}\left[q_{3}\right]_{B}\right]=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$

$$
\Rightarrow{ }_{C C B}^{P}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]_{\text {Gris - Jordan }}^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
& 1 / 2
\end{array}\right]
$$

(ii) $\left[1+2 x-x^{2}\right]_{C}=\left(\underset{P}{C} B\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]\right.$

