LAST TIME: $T: V \rightarrow W$

$$
\begin{aligned}
& \quad B_{:\left[\vec{v}_{1},-, \vec{v}_{n}\right]} C \text { - bases } \\
& {[T]:=\left[\left[T\left(v_{1}\right)\right]_{C} \cdots\left[T\left(v_{n}\right)\right]_{C}\right]} \\
& W \leftarrow V \\
& {[T(\vec{x})]_{C}=C_{C \leftarrow B}[\vec{x}]_{B}}
\end{aligned}
$$

Ex: $\quad V=\operatorname{span}(\sin x, \cos x) \subset F, \quad D: V \rightarrow V$

$$
\begin{aligned}
& {[D]_{B_{a}}=?} \\
& \text { basis }\{\sin x, \cos x\}
\end{aligned}
$$

$$
f(x) \mapsto f^{\prime}(x)
$$

Sol:

$$
[D]_{B}=[[\underbrace{D(\sin x}_{\cos x})]_{B}[\underbrace{D(\cos x)}_{-\sin x}]_{B}]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Ex: $D: P_{3} \rightarrow P_{2}$

$$
B=\left\{1, x, x^{2}, x^{3}\right\} \text { basis for } P_{3}
$$

$$
p(x) \longmapsto p^{\prime}(x)
$$

a) find $[D]_{B}$

Sol:

$$
\begin{aligned}
& [\begin{array}{l}
D]=[\underbrace{\left[1^{\prime}\right]}_{0} c \\
C
\end{array} \underbrace{\left[x^{\prime}\right]}_{1} c \underbrace{\left[\left(x^{2}\right)^{\prime}\right.}_{2 x}]_{C} \underbrace{\left[\left(x^{3}\right)^{\prime}\right.}_{3 x^{2}}] c] \\
& C\left[\begin{array}{llll}
0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=A
\end{aligned}
$$

b) use $B^{\prime}=\left\{x^{3}, x^{2}, x, 1\right\}$ for P_{3} instead

$$
[D]_{B^{\prime}}=\left[\left[\left(x^{3}\right)^{\prime}\right]_{C}\left[\left(x^{2}\right)^{\prime}\right]_{C}\left[(x)^{\prime}\right]_{C},\left[1^{\prime}\right]_{C}\right]=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
3 & 0 & 0 & 0
\end{array}\right]
$$

c) $\left.\left[\begin{array}{ll}{\left[D\left(5-x+2 x^{3}\right.\right.}\end{array}\right)\right]_{C}^{(5-x)} \underset{\substack{\text { an ot tain } \\ \text { directly }}}{\rightarrow} \Rightarrow[D(p(x))]_{C}=\left[\begin{array}{c}-1 \\ 0 \\ 6\end{array}\right]$
can obtain as $A[p(x)]_{B}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]\left[\begin{array}{c}5 \\ -1 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 6\end{array}\right]$ Nv
$\underline{\varepsilon_{x}}$

$$
\begin{array}{l}
: T: P_{2} \rightarrow P_{2} \quad B=\left\{1, x, x^{2}\right\} \\
P(x)
\end{array}>P(2 x-1) \quad[T \underbrace{T(1)}_{1}]_{B}[\underbrace{T(x)}_{2 x-1}]_{B}[\underbrace{T\left(x^{2}\right)}_{4 x^{2}-2 x+1}]_{B}]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & -2 \\
0 & 0 & 4
\end{array}\right] .
$$

Rem Consider $I: V \rightarrow V$. Then $\underset{B}{\underset{C}{[} \underset{\sim}{T}]_{B}}=\underset{C \in B}{P}$
two bases for V

$$
\begin{aligned}
& \text { // } \begin{array}{c}
\text { charger }[\vec{u}]_{B} \\
\text { to }[\vec{u}]_{C}
\end{array}
\end{aligned}
$$

Matrices of composite and inverse Pin. transformations

- Let U, V, W be fin dim. vector spaces with bases B, C, D, respectively. Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be lin. transformations. Then

$$
\begin{array}{cc}
{[S \circ T]=[S]} & {[T]} \\
D \longleftarrow B & C \leftarrow B
\end{array}
$$

"matrix of the composite transf. is the product of the matrices"

- Let $T: V \rightarrow W$ be a lin.trask between n-dimensional v. spaces V and W. Let B and C be bases for V,W.
Then T is invertible iff the matrix $[T]$ is invertible.

$$
C \leftarrow B
$$

In this case, $\begin{aligned} & {\left[T^{-1}\right]=\binom{[T]}{B \leftarrow C}^{-1}}\end{aligned}$
Ex: $T: \mathbb{R}^{2} \rightarrow \mathcal{P}_{1}$ find T^{-1} (if T is invertible)

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \mapsto a+(a+b) \times
$$

Sol: Let $\mathcal{E}=\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ in $\mathbb{R}^{2}, \mathcal{E}^{\prime}=\{1, x\}$ in P_{1}.

$$
\begin{aligned}
& {[T]_{\mathcal{E}}=[\underbrace{T\left(\vec{e}_{1}\right)}_{1+x}]_{\mathcal{E}^{\prime}}[\underbrace{T\left(\vec{e}_{2}\right)}_{x}]_{\mathcal{E}^{\prime}}]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \Rightarrow } \\
& \Rightarrow {\left[T^{-1}\right]^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right] \Rightarrow \mathcal{E}^{\prime} \Rightarrow } \\
& \mathcal{E}^{\leftarrow} \\
& \Rightarrow\left[T^{-1}(a+b x)\right]_{\mathcal{E}}=\left[\begin{array}{c}
T^{-1}
\end{array}\right]_{\mathcal{E}^{\prime}}\left[a+b_{x}\right]_{\mathcal{E}^{\prime}}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
a \\
-a+b
\end{array}\right]
\end{aligned}
$$

Thus, $T^{-1}(a+b x)=\left[\begin{array}{c}a \\ b-a\end{array}\right]$

Change of basis for a in transf.
Let $T: V \rightarrow V$. How are $[T]_{B}$ and $[T]_{C}$ related for B, C

The: Let V be a fin. dim. vector space with bases B and C and let $T: V \rightarrow V$ be a intrans.
Then $\left|[T]_{C}=P^{-1}[T]_{B} P\right|$ with $P=\underset{B \leftarrow C}{P}$
Indeed: $\begin{aligned} & {[T]=} \\ C \leftarrow C & \underbrace{C \leftarrow B}_{P^{-1}}[T]\end{aligned}$
Ex: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad B=\mathcal{E}$ stand basis, $[T]_{\mathcal{E}}=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{l}
x+3 y \\
2 x+2 y
\end{array}\right] \quad \text { choose } C=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
-2
\end{array}\right]\right\}
$$

Then by $(*),[T]_{C}=\underbrace{\left[\begin{array}{cc}1 & 3 \\ 1 & -2\end{array}\right]^{-1}}_{C \leftarrow B} \underbrace{\left[\begin{array}{l}B \\ \end{array}\right]=\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]}_{\left[\begin{array}{ll}1 & {\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]} \\ B E C\end{array}\left[\begin{array}{cc}1 & 3 \\ 1 & -2\end{array}\right]\right.}$

Determinants (Poole 4.2)
Recall

- for a 2×2 matrix, $\begin{aligned} & \operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} \\ & \text { another notation } \\ & \text { for deterinarat }\end{aligned}$
- foralxI matrix

$$
\operatorname{det}\left[a_{11}\right]=\left|a_{11}\right|=a_{11}
$$

- for a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$,

$$
\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-
$$

$$
\text { - } a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31} \quad \leftarrow \text { cumbersome formula }
$$

mnemonic
rule for 3×3 matrices:

