Propertius of determinants

$$
\begin{array}{rlrl}
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B) & \\
\operatorname{Ex}: A=\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right], B=\left[\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right] & A D=\left[\begin{array}{ll}
2 & 5 \\
4 & 13
\end{array}\right] \\
\operatorname{det} A=3 & \operatorname{det} B=2 & \operatorname{det}(A B) & =26-20=6 \\
& =\operatorname{det} A \cdot \operatorname{det} B
\end{array}
$$

Grollary: $\operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A}$ for A invertible

- A is invertible if $\operatorname{det} A \neq 0$
($\operatorname{det} A=0 \Leftrightarrow$ columns of A form a lin. dep. set

$$
\Leftrightarrow \text { rows of } A \text { form a lin. dep. set) }
$$

WARNING: $\quad \operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$ generally
Ex: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], D=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

- $\operatorname{det} A^{\top}=\operatorname{det} A$

$$
1=\operatorname{det} \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{A+D} \neq \underbrace{\operatorname{det} A}_{0}+\underbrace{\operatorname{det} A}_{0}
$$

$\cdot \operatorname{det}(c A)=C^{n} \operatorname{det} A \quad(\operatorname{not} c \operatorname{det} A!)$

- Let is linear in $i^{- \text {th }}$ column (row):

$$
\begin{array}{rlrl}
T: \mathbb{R}^{n} \longrightarrow & \mathbb{R} & \text { is a linear mapping: } \\
\vec{x} \longmapsto & T(c \vec{x})=c T(\vec{x}) \\
& \frac{\left[\vec{a}_{1} \ldots \vec{a}_{i-1} \vec{x} \vec{a}_{i+1} \ldots \vec{a}_{n}\right]}{}+\ldots T & T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})
\end{array}
$$

Cramer's rule (Poole 4.2)
For $A=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]$ an $n \times n$ matrix and $\vec{b} \in \mathbb{R}^{n}$,
column's
denote $A_{i}(\vec{b})=\left[\vec{a}_{1} \cdots \vec{b}-\vec{a}_{n}\right] \quad$ (column in A is replaced by \vec{b}) column:
Thy (Cramer's rule)
Let A be an invertible $n \times n$ matrix and let $\vec{b} \in \mathbb{R}^{n}$. Then the unique solution $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ of the system $A \vec{x}=\vec{b}$ is given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(\vec{b})}{\operatorname{det} A}, 1=1, \ldots, n
$$

Ex: $\quad \begin{aligned} & 4 x_{1}+5 x_{2}=2 \\ & 2 x_{1}+3 x_{2}=6\end{aligned} \quad$ solve using Crammer's rule
Sol: $A=\left[\begin{array}{ll}4 & 5 \\ 2 & 3\end{array}\right] \quad \vec{b}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$

$$
\operatorname{det} A=2
$$

$$
\begin{array}{lr}
A_{1}(\vec{b})=\left[\begin{array}{ll}
2 & 5 \\
6 & 3
\end{array}\right] & A_{2}(\vec{b})=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right] \\
\operatorname{det}=-24 & \operatorname{det}
\end{array}
$$

$$
x_{1}=\frac{\operatorname{det} A_{1}(\vec{b})}{\operatorname{det} A}=\frac{-24}{2}=-12, \quad x_{2}=\frac{\operatorname{det} A_{2}(\vec{b})}{\operatorname{det} A}=\frac{20}{2}=10
$$

Ex: for which values of parameter S, the system

$$
\begin{aligned}
& 3 s x_{1}-2 x_{2}=1 \\
& -6 x_{1}+5 x_{2}=2
\end{aligned}
$$

(a) has a unique solution
(b) write the solution using Cramer's rule.

Sol: $A=\left[\begin{array}{cc}3 s & -2 \\ -6 & s\end{array}\right] \quad \operatorname{det} A=3 s^{2}-12=3(s-2)(s+2)$
(a) $\operatorname{det} A \neq 0 \quad$ if $\quad s \neq \pm 2$
(b)

$$
A_{1}(\vec{b})=\left[\begin{array}{cc}
1 & -2 \\
2 & s
\end{array}\right], \text { det }=s+4 \quad A_{2}(\vec{b})=\left[\begin{array}{ll}
3 s & 1 \\
-6 & 2
\end{array}\right], \text { dat }=\begin{gathered}
6 s+6 \\
6(11 \\
6(s+1)
\end{gathered}
$$

So: $x_{1}=\frac{s+4}{3(s-2)(s+2)}, x_{2}=\frac{6(s+1)}{3(s-2)(s+2)}=\frac{2(s+1)}{(s-2)(s+2)}$
Formula for A^{-1}
$\begin{aligned} & \text { Formula for } A \\ & \text { - for } A \text { an an } n \times n \text { matrons } \\ & \text { is called the "adjoint" (or "adjugate") of matrix } A\end{aligned} \quad\left[C_{j i}\right]=\left[C_{i j}\right]^{\top}=\left[\begin{array}{cccc}C_{11} & C_{21} & \ldots C_{n n} \\ C_{12} & C_{22} & \ldots C_{n 2} \\ C_{1 n} & \vdots & C_{2 n} & C_{n n}\end{array}\right]$ and denoted adj A

Tho Let A be an invertible $n \times n$ matrix. Then

$$
\left.A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A . \quad E_{q u i v a l e n t l y}, \quad A^{-1}\right)_{i j}=\frac{C_{j i}}{\operatorname{det} A}
$$

Ex: $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -3 \\ 2 & 1 & -6\end{array}\right] \quad$ find $\left(A^{-1}\right)_{12}$
Sol: $\left(A^{-1}\right)_{12}=\frac{C_{21}}{\operatorname{det} A}$
$\operatorname{det} A=\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -3 \\ 2 & 1 & -6\end{array}\right|=R_{3}-2 R_{2}\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 0\end{array}\right|=-\left|\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right|=1$
$C_{21}=-\left|\begin{array}{cc}1 & 1 \\ 1 & -6\end{array}\right|=7$
So, $\left(A^{-1}\right)_{12}=\frac{7}{1}=7$

Determinants as area or volume
The (a) if $A=\left[\vec{a}_{1} \vec{a}_{2}\right]$ is a 2×2 matrix, the area of the parallelogram determined by \vec{a}_{1}, \vec{a}_{2} is $|\operatorname{det} A|$
(b) if $A=\left[\vec{a}_{1} \vec{a}_{2} \vec{a}_{3}\right]$ is a 3×3 matrix, the volume of the parallelipiped determined by $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ is $|\operatorname{det} A|$

Ex: Find the area of the parallelegran with vertices at $(-2,-2),(0,3),(4,-1),(6,4)$

Sol: trail late the parallel legran by $(2,2)$ to have \vec{O} as a vertex

$$
\text { Area }=|\underbrace{\operatorname{det}\left[\begin{array}{ll}
2 & 6 \\
5 & 1
\end{array}\right]}_{-28}|=28
$$

Thu* (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a in.transf. determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2}, then $\operatorname{Area}(T(S))=|\operatorname{det} A| \cdot$ Area (S)
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be alin.transt. determined by a 3×3 matrix A.

If $S: s$ a parallelipiped: \mathbb{R}^{3}, then Volume $(T(S))=|\operatorname{det} A|$. Volume (S)

- Ir fact. Thm* gereralizes to furte-area regions S of $\mathbb{R}^{2} /$ frite-volune regions S of \mathbb{R}^{3}
- Gocollary: if $\operatorname{det} A= \pm 1$, then T preserves arcas/volunes

