Eigenvectors and eigenvalues (Poole 4.1, 4.3)
def An eigenvector of an $n \times n$ matrix A is a nonzero vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$.
some scalar
A scalar λ is called an eigenvalue of A if $A \vec{x}=\lambda \vec{x}$ has a rontriv. solution \vec{x}. Such \vec{x} is called an eigenvector of A orrespanding to λ.
Ex: $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

$$
\vec{u}=\left[\begin{array}{c}
6 \\
-5
\end{array}\right], \vec{v}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

$Q:$ are \vec{u}, \vec{v} eigenvectors?

Sol:
$A \vec{u}=\left[\begin{array}{c}-24 \\ 20\end{array}\right]=(-4) \vec{u} \Rightarrow \begin{aligned} & \vec{u} \text { is an eigenvector } \\ & \\ & \text { with } \lambda=-4 \text { eigenvalue }\end{aligned}$
$A \vec{v}=\left[\begin{array}{c}-9 \\ 11\end{array}\right] \neq \lambda \vec{v} \quad \Rightarrow \quad \vec{v}$ is not an eigenvector
Schematically:

Ex: Show that $\lambda=7$ is an eigenvalue for $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$, find the corresponding eigenvectors
Sol: $\lambda=7$ is an eigenvalue if $A \vec{x}=7 \vec{x}$ has a nontrivesolution

$$
\begin{aligned}
& \Leftrightarrow A \vec{x}-7 \vec{x}=\overrightarrow{0} \Leftrightarrow(A-7 I) \vec{x}=\overrightarrow{0} \\
& A-7 I=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]-\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{cc}
-6 & 6 \\
5 & -5
\end{array}\right]
\end{aligned}
$$

- columns are lin. dep.
\Rightarrow there are nontriv. solution of homog. eq. $\Rightarrow \lambda=7$ is an eigenvalue

Aug. Mat.: $\left[\begin{array}{cc|c}-6 & 6 & 0 \\ 5 & -5 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{array}{ll}
x_{1} \quad \begin{array}{l}
x_{2}=s \\
f_{\text {ce }}
\end{array}
\end{array}
$$

general sol: : $\vec{x}=S\left[\begin{array}{l}1 \\ 1\end{array}\right]$ - each such vector with $S \neq 0$ is an eigenvector for $\lambda=7$.

WARNING: We used row reduction of $A-\lambda I$ to find eigenvectors, but it cannot be used to find eigenulues. REF of A has different eigenvalues than A (generally).
For $A n \times n, \lambda$ is an eigenvalue if $(A-\lambda I) \vec{x}=\overrightarrow{0}$ has a nontriv. solution.
Set of solutions of $(*)=$ null $(A-\lambda I) \subset \mathbb{R}^{n}$
$=$ the eigenspace E_{λ} of A corresponding to $\lambda=\{\overrightarrow{0}\} \cup\{$ all eigenvectors $\operatorname{lor} \lambda\}$

Ex: $A=\left[\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right], \lambda=2$ find the basis for the eigenspace E_{2}.
Sol:
$A-2 I=\left[\begin{array}{lll}2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6\end{array}\right]$.
Aug. Mat. $\operatorname{Ror}(x):\left[\begin{array}{ccc|c}2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & -\frac{1}{2} & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

eigerpace for $\lambda=2$

The Eigenvalues of a triangular matrix are the diagonal entries.

$$
\text { Idea: } A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
0 & a_{22}-\lambda & a_{23} \\
0 & 0 & a_{33}-\lambda
\end{array}\right]
$$

$$
\begin{aligned}
\lambda \text {-e.v. } \Leftrightarrow & \operatorname{det}(A-\lambda I)=0 \quad \Leftrightarrow \quad \lambda \in\left\{a_{11}, a_{22}, a_{33}\right\} \\
& \left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)
\end{aligned}
$$

Ex: $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & -1 & 2\end{array}\right]$
lover-triangular

$$
\lambda=3,0,2
$$

Note: $\lambda=0$ is an e.v. $\Leftrightarrow A \vec{x}=\overrightarrow{0} \quad \Leftrightarrow A$ non -invertible harenatrue sol.
Invertible matrix the (cont'd): $A_{n} n \times n$ matrix A is invertible of:

- If $\operatorname{det} A \neq 0$
\because If D is not an eigenvalue of A.
The If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{r}\right\}$ are eigavectors that correspond to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A, then $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is a lin.indep. set.

Characteristic equation
Ex: find the eigenvalues of $A=\left[\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right]$
Sol: λ e.v. $\Leftrightarrow(A-\lambda I) \vec{x}$ has a rantriv. sol. $\Leftrightarrow A-\lambda I: s$ non-invertible $\Leftrightarrow \operatorname{det}(A-\lambda I)=0$

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right|=(2-\lambda)(-6-\lambda)-9=\lambda^{2}+4 \lambda-21=(\lambda+7)(\lambda-3)
$$

Thus, get $=0$ if $\lambda \in\{3,-7\}$.. So; $\lambda=3, \lambda=-7$-eigenvalues.

- λ is an eigenvalue of A if λ satisfies the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Ex: $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 3\end{array}\right] \quad Q:$ find the char.eq.
Sol:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
3-\lambda & 1 & 2 \\
0 & 1-\lambda & 5 \\
0 & 0 & 3-\lambda
\end{array}\right|=(3-\lambda)^{2}(1-\lambda)
$$

So, char. eq.: $\quad \underbrace{-(\lambda-\beta)^{2}(\lambda-1)}_{\text {char. pdynemial of } A}=0$
Note: $\lambda=3$-e.v. with (algebraic) multiplicity 2. (Multiplicity as a root of char.eq.)
Ex: A 6x6, char. poly $=\lambda^{6}-4 \lambda^{5}-12 \lambda^{4} \quad$ Q: find eigenvalues and their multiplicities
Sol: chax.poly $=\lambda^{4}(\lambda-c)(\lambda+2)$. So, e.v. ${ }^{2}$

$$
\begin{array}{ll}
\lambda=6 & \text { mull }=1 \\
\lambda=0 & \text { mull }=4 \\
\lambda=-2 & \text { mu lt. }=1
\end{array}
$$

- For A $n \times n$, chan eq. has n roots (counting with multiplicities).

Some of them can be complex.

