LAST TIME

Thm ("Diagonalization thm")
An $n \times n$ matrix A is diagonalizable iff A has n linindep. eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$, Then,
$\lambda_{1} \ldots \lambda_{n}$-corresp. e.v.

$$
A=P D P^{-1} \quad \text { with } \quad D=\left[\begin{array}{lll}
\lambda_{1} & \lambda_{2} & 0 \\
0 & & \ddots \\
0 & & \lambda_{n}
\end{array}\right], P=\left[\begin{array}{lll}
\vec{v}_{1} & \cdots & \vec{v}_{n}
\end{array}\right]
$$

Case of mon-distinct eigenvalues
The Let A be $n \times n$ mat. whose distind e.v. are $\lambda_{1}, \ldots, \lambda_{p}$ $m_{1}, \ldots, m_{p}-$ alg. n_{1}, \ldots, l_{1}.ties
(a) for each $k=1, \ldots, p$, the dimension d_{k} of λ_{k}-eigenpace is $\leqslant m_{k}$ "geonetricmultiplicity" of the e.v. λ_{k}
(b) A is diagonalizable iff $d_{k}=m_{k}$ for all $k .\left(\Leftrightarrow \sum_{k=1}^{p} d_{k}=n\right)$
(e) If A is dragonalizatile and B_{k}-basis for $E \lambda_{k}$, then $B_{1} \cup B_{2} \cup \ldots \cup B_{p}$ - basis of eigenvectors for \mathbb{R}^{n}.

Ex: $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$
Q: diagonalize if possible

Sol: $\lambda=5,-3$ eigenvalues
22 alg. multiplicities
basis for $E_{5}: \quad \vec{v}_{1}=\left[\begin{array}{c}-8 \\ 4 \\ 1 \\ 0\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}-16 \\ 4 \\ 0 \\ 1\end{array}\right]$

$$
\text { geom.mult. }=2\} \begin{aligned}
& \Rightarrow A \begin{array}{c}
\text { diagond } \\
\text { izable }
\end{array} \\
& (b)
\end{aligned}
$$

basis for $E_{-3}: \quad \vec{V}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] \quad \vec{V}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right] \quad$ gcon.mult $=2 J$
by (c), $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{s}, \vec{v}_{n}\right\}$ is a basis for $\mathbb{R}^{\{ }$.

So: $A=P D P^{-1}, \quad P=\left[\begin{array}{cccc}-8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right], D=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3\end{array}\right]$

Linear transformations and diagonalization
The Let $A=P D P^{-1}$ with D a diagonal matrix.
Let B be the basis for \mathbb{R}^{n} formed from the columns of P.
Then the mater of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ w.r.t. B is D.

$$
\begin{aligned}
& \vec{x} \longmapsto A \vec{x}
\end{aligned}
$$

$$
\begin{aligned}
& {[T]_{B} \text { is diagonal. }}
\end{aligned}
$$

Sol: $A=P D P^{-1}$ with $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right], D=\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]$
$\overrightarrow{b_{1}} \quad \vec{b}_{2}$
Thus, for $B=\left\{\vec{b}_{1}, \vec{b}\right\},[T]_{B}=D$.
I.e mappings $\vec{x} \longmapsto A \vec{x}$ and $\vec{u} \longmapsto D \vec{u}$ describe the sane lin.tranf. w.r.t. different bases.

Note: The above has a gereralizetion:

$$
\begin{aligned}
& \text { if } A \sim C \text {, ide., } A=P C P^{-1} \text {, and } T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text {, then } \\
& \begin{array}{l}
\text { not necessarily } \\
\text { diagon-1 }
\end{array} \\
& {[T]_{B}=C} \\
& \vec{x} \longmapsto A \vec{x} \\
& \text { basis formed out of volumes of } P \text {. } \\
& \text { Conversely, the matrix of } T \text { w.r.t. any basis } B \\
& \vec{x} \xrightarrow[A]{\text { multi by }} A \vec{x}
\end{aligned}
$$ is similar to A

def. A in. transf $T: V \rightarrow V$ is "diagonalizable" if $[T]_{B}$ is a diagonal matrix for some basis B for V.

- Sometimes we can fund eigenvectors and eigenvalues geometrically.

Ex: $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ - matrix of the lin. transf. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$-reflection

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{c}
x \\
-y
\end{array}\right]
$$

vectors which T maps parallel to themselves, $T \vec{v}=\lambda \vec{v}$ are

$$
\begin{aligned}
& \cdot \vec{v}=\left[\begin{array}{l}
x \\
0
\end{array}\right] \xrightarrow{T} \vec{v}, \lambda=1 \\
& \text { vector } 5 \text { parallel to } \\
& \cdot \vec{v}=\left[\begin{array}{l}
0 \\
y
\end{array}\right] \stackrel{T}{\longmapsto}-\vec{v}, \lambda=-1
\end{aligned}
$$

vectors parallel to

$$
y \text {-axis }
$$

So: $\lambda=1, \lambda=-1$ e eigenvalues, $E_{1}=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right), E_{-1}=\operatorname{span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$

Complex eigenvalues
Ex: $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

A has no eigenvectors: \mathbb{R}^{2} !
char. eq: $\operatorname{det}(A-\lambda I)=\left|\begin{array}{ll}-\lambda & -1 \\ 1 & -\lambda\end{array}\right|=\lambda^{2}+1=0$
complex roots: $\lambda=i$, $\lambda=-i$
If we allow A to act on \mathbb{C}^{2} :
$\underline{E x}_{*}^{*} \quad A=\left[\begin{array}{cc}0.5 & -0.6 \\ 0.75 & 1.1\end{array}\right] \quad Q: f_{\text {ind }}$ eigervalues \& eigenvectors
Sol: char eq. $0=\left|\begin{array}{cc}0.5-\lambda & -0.6 \\ 0.75 & 1.1-\lambda\end{array}\right|=\lambda^{2}-1.6 \lambda+1 \quad$ solutov: $\lambda=\frac{1.6 \pm \sqrt{(-1.6)^{2}-4}}{2}$

$$
=0.8 \pm 0.6 i
$$

for $\lambda=0.8-0.6 i$,

$$
A-\lambda I=\left[\begin{array}{cc}
-0.3+0.6 i & -0.6 \\
0.75 & 0.3+0.6 i
\end{array}\right]
$$

(1) $(-0.3+0.6 i) x_{1}-0.6 x_{2}=0$
(2) $0.75 x_{1}+(0.3+0.6 i) x_{2}=0$
nontriv. sol. exists \Rightarrow both eqs determine the same relation betveen x_{1} and $x_{1},(1) \Leftrightarrow(2)$
$\Leftrightarrow x_{1}=-(0.5+0.8 i) x_{2} \quad$ cloose $x_{2}=5 \Rightarrow$ bais for the eigenspace: $\vec{v}_{1}=\left[\begin{array}{c}-2-4 i \\ 5\end{array}\right]$
sinilarly, for $\lambda=0.8+0.6 ;$, eigenvector $\vec{v}_{2}=\left[\begin{array}{c}-2+4 i \\ 5\end{array}\right]$

- for A a matnx with real entries,

$$
A \vec{x}=\lambda \vec{x} \quad \Rightarrow \quad A \overline{\vec{x}} \mid=\bar{\lambda} \overline{\vec{x}}
$$

complex coringation $(\overline{a+i b}=a-1 b)$
So: Gmplex eigevalues $\lambda=a+i b$ ocur in conjugate pars.
In ε_{x}^{*} :

$$
\begin{array}{lll}
\lambda=0.8-0.6 i & \bar{\lambda}_{1}=0.8+0.6 i & \text {-cojugate } \\
\vec{v}_{1}=\left[\begin{array}{c}
-2-4 i \\
5
\end{array}\right] & \vec{v}_{2}=\left[\begin{array}{c}
-2+4 i \\
5
\end{array}\right] & \text {-6yjgete }
\end{array}
$$

$\varepsilon_{x}:$ $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ with a, b real, nenter. Eyenvalues: $\lambda=a \pm i b$ add

$$
C=\underbrace{\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]}_{\substack{\text { rcaing by } \\
r=|\lambda|=\sqrt{a^{2}+b^{2}}}} \underbrace{\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]}_{\substack{\text { rotition } b y \\
\varphi=\text { argemert } \\
\text { of } a+i b}} .
$$

Back to $\sum x^{*} \quad A=\left[\begin{array}{cc}0.5 & -0.6 \\ 0.75 & 1.1\end{array}\right] \quad \lambda=0.8-0.6: \quad \vec{v}_{1}=\left[\begin{array}{c}-2-4 i \\ 5\end{array}\right]$
Let $P=\left[\begin{array}{ll}\operatorname{Re} \vec{v}_{1} & \operatorname{Im} \vec{v}_{1}\end{array}\right]=\left[\begin{array}{cc}-2 & -4 \\ 5 & 0\end{array}\right]$
Let $C=P^{-1} A P=\cdots=\left[\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right]$

- pure notation by $\varphi=\arctan \frac{0.6}{0.8}$ since $|\lambda|=\sqrt{0.8^{2}+0.6^{2}}=1$
Thus: $A=P C P^{-1}$

The Let A be a real 2×2 matrix with complex eigenvalue $\lambda=a-i b$ and \vec{U} the gores. eigenvector in \mathbb{C}^{2}. Then

$$
A=P \subset P^{-1} \text { with } P=[\operatorname{Re} \vec{v} \operatorname{Im} \vec{v}], C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

