Vector spaces (Mode 6.1)
def A vector space is a nonempty set V, objects - "vectors", with two operations:

- addition $\vec{u}+\vec{v} \in V$ for $\vec{u}, \vec{v} \in V$
- multiplication by scalars $c \vec{u} \in V$ for $\vec{u} \in V, c$ a scalar
such that:

1. $\vec{u}+\vec{v}$ is in V

Closure under addition
2. $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
commutativity of +
3. $\vec{u}+(\vec{v}+\vec{u})=(\vec{u}+\vec{v})+\vec{u}$ associativity of +
4. there exists an element $\overrightarrow{0}$ in V - the "zero vector" - such that $\vec{u}+\overrightarrow{0}=\vec{u}$ 5. for any $\vec{u} \in V$ there exults an element $-\vec{u} \in V$ st. $\vec{u}+(-\vec{u})=\overrightarrow{0}$.
6. $C \vec{u}$ is in V closure under scalar multiplication
7. $c(\vec{u}+\vec{v})=c \vec{u}+c \vec{v}, ~ 子 d i t a b a t i v i t y$
\&. $(c+d) \vec{u}=c \vec{u}+d \vec{u}\}$
2. $c(d \vec{u})=(c d) \vec{u}$ assoc of scalar product
10. $1 \vec{u}=\vec{u}$

Note: this def doesn't specify what kind of objects V consists of, and doesn't specify what the two operations look like.

For scalars in \mathbb{R}, V is a real vector spare
For scalars : \mathbb{C}, V it a complex vector space
Corollaries: $\overrightarrow{0}$ is unique, $-\vec{u}$ is unique, $0 \cdot \vec{u}=\overrightarrow{0},(-1) \vec{u}=-\vec{u}$.

$$
\left(\vec{o}^{\prime}=\vec{o}+\vec{o}^{\prime}=\vec{o}\right) \quad\left((-\vec{u})^{\prime}=(-\vec{u})+\vec{u}+(-\vec{u})^{\prime}=-\vec{u}\right)
$$

Main example up to now: spaces $\mathbb{R}^{n}, n \geqslant 1$ with usual vector addition and scalar multiplication.
Ex: $V=\{$ all 2×3 matrices $\}$ with usual matrix addition and scalar multiplication. note a "vector" in V is a 2×3 matrix.

For any $m, n \geqslant 1$ we have $\begin{aligned} V & =\{m \times n \text { matrices }\}=: \underbrace{M_{m n}}_{\text {notation }} \\ & \text { a vector space }\end{aligned}$
Ex: $P_{2}=\{$ polynomials of degree ≤ 2 with real coifs $\}$
if $p(x)=a_{0}+a_{1} x+a_{2} x^{2}, \quad q(x)=b_{0}+b_{1} x+b_{2} x^{2} \quad$ two elements: P_{2} (polynomials)
then: $p(x)+q(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}$ - element in P_{2} and $c p(x)=c a_{0}+c a_{1} x+c a_{2} x^{2}$ - element in P_{2}
zero-vector: $P_{2}: \overrightarrow{0}=$ zero polynomial $0+0 \cdot x+0 \cdot x^{2}$ (all coifs $=0$)
negative: $-p(x)=-a_{0}-a_{1} x-a_{2} x^{2}$
Generally: $P_{n}=\{$ polynomials of degree $\leq n\}$-vector space

$$
P=\text { \{all polynomials\} - vedor space }
$$

Ex: $\quad V=\left\{\right.$ all real-valued functions on a set $\left.D^{\text {eeg. }}\right\}$ addition: for $f, g \in V,(f+g)(x)=f(x)+g(x)$
Scalar multiplication: $(c f)(x)=c f(x)$
zero vector: function $f_{0}(x)=0$ for any $x \in \mathbb{D}$ negative: $\quad(-f)(x)=-f(x)$
E.g. $\mathbb{D}=\mathbb{R}, \quad f(x)=1+\sin 3 x, g(x)=2+7 x$
then: $(f+g)(x)=3+\sin 3 x+7 x, \quad(2 g)(x)=4+14 x$
Each function is a "point" (or "vector") in V.
def A subset W of a vector space V is called a subspace of V if a) $\vec{O} \in W$
b) $\vec{u}+\vec{v} \in W$ if $\vec{u}, \vec{v} \in W \quad$ (W closed under addition)
c) $c \vec{u} \in W$ if $\vec{u} \in W, c \in \mathbb{R}$
(L) cloned under scalar multiplication)

- reactions of V
- a subspace $W \subset V$ is automatically a vector space.

Ex: $W=\{\overrightarrow{0}\} \subset V$ is a subspace ("zero subspace")
Ex $P \subset\{$ all functions on $\mathbb{R}\} \quad$-subspace all polynomials

$$
P_{n} \subset P, n \geqslant 0 \text {-subspace }
$$

Ex: \mathbb{R}^{2} is not a subspace of \mathbb{R}^{3} (nat even a subset!) but $\left\{\left.\left[\begin{array}{l}s \\ t \\ 0\end{array}\right] \right\rvert\, s, t \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{3} that "look and acts"

Subspace spammed by a set
The If $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are: V, then
(a) $W=\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)$ is a subspace of V

$$
\therefore\left\{c_{1} \vec{v}_{1}+\ldots+c_{p} \vec{v}_{p}\right\}
$$

(b) Span $\left(\vec{v}_{1}, \ldots, \vec{v}_{p}\right)$ is the smallest subspace of V containing $\vec{v}_{1}, \ldots, \vec{v}_{p}$.

Terminology: W is the subspace spared by $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\} \text {-spanning set for } W \text {. }
$$

Ex: $W=\left\{\right.$ vectors of form $\left.\left.\left[\begin{array}{c}a-3 b \\ b-a \\ a \\ b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$ show that $W \subset \mathbb{R}^{4}$
Sol: $\left[\begin{array}{c}a-s b \\ b-a \\ a \\ b\end{array}\right]=\underbrace{a}_{\overrightarrow{v_{1}}} \begin{array}{c}1 \\ -1 \\ 0\end{array}]+\underbrace{b}_{\overrightarrow{v_{2}}}\left[\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right]$. So, $W=\operatorname{rpan}\left(\vec{v}_{1}, \vec{v}_{2}\right)$-subspace of \mathbb{R}^{4}.
Exi Show that $W=\underbrace{\left\{a+b x-b x^{2}+a x^{3}\right.}_{a\left(1+x^{3}\right)+b\left(x-x^{2}\right)} \mid a, b \in \mathbb{R}\} \subset P_{3}$ is a subspace.
Sol: $W=\operatorname{span}\left(1+x^{3}, x-x^{2}\right)-$ subspace

Ex: $W=\left\{\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\right\} \subset M_{22} \quad$ is a subspace

$$
a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \Rightarrow W=\operatorname{span}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right)
$$

- We also interested in sets that span the entire V.

Ex: polynomials $1, x_{1} x^{2}$ span P_{2}, since each $p(x) \in P_{2}$

$$
\begin{aligned}
& =a_{2}+a_{1} x+a_{2} x^{2} \\
& \text { is } \& \text { lin. a mb. of } 1, x_{1} x^{2} .
\end{aligned}
$$

Likewise, $1, x, \ldots, x^{n}$ span P_{n}

$$
\text { in } P_{n}
$$

$\underline{\varepsilon_{x^{2}}} \quad M_{22}=\operatorname{span}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$

$$
\begin{array}{llll}
E_{11} & E_{12} & E_{21} & E_{22}
\end{array}
$$

since $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} E_{11}+a_{12} E_{12}+a_{21} E_{21}+a_{22} E_{22}$

$$
M_{m n}=\operatorname{sr} r^{a n}\left\{E_{i j}\right\}_{\substack{i=1 \ldots m \\ j=1 \ldots n}}
$$

$E_{i j}=$ mathrix where (i, j)-entry is 1 all other entries are 0 .
Ex: $V=\mathbb{R}^{2}$ with operations $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \oplus\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}+y_{1}+1 \\ x_{2}+y_{2}\end{array}\right]$,

$$
c \odot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
c x_{1}+c-1 \\
c x_{2}
\end{array}\right]
$$

zero-vector: $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
negative: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left[\begin{array}{l}-x_{1}-1 \\ -x_{2}\end{array}\right]$

- a vector space!

