Ex: $W=\left\{\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\right\} \subset M_{22} \quad$ is a subspace

$$
a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad \Rightarrow W=\operatorname{span}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right)
$$

- Le also interested in sets that span the entire V.

Ex: polynomials $1, x_{1} x^{2}$ span P_{2}, since each $p(x) \in P_{2}$

$$
\begin{aligned}
& =a_{0}+a_{1} x+a_{2} x^{2} \\
& \text { is a la. comb. of } 1, x, x^{2} .
\end{aligned}
$$

Likewise, $1, x, \ldots, x^{n}$ span P_{n}

$$
\text { in } P_{n}
$$

$\underline{\varepsilon_{x^{2}}} \quad M_{22}=\operatorname{span}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$

$$
\begin{array}{llll}
E_{11} & E_{12} & E_{21} & E_{22}
\end{array}
$$

since $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} E_{11}+a_{12} E_{12}+a_{21} E_{21}+a_{22} E_{22}$

$$
M_{m n}=\operatorname{sr} r^{a n}\left\{E_{i j}\right\}_{\substack{i=1 \ldots m \\ j=1 \ldots n}}
$$

$E_{i j}=$ matrix where (i, j)-entry is 1 all other entries are 0 .
Ex: $V=\mathbb{R}^{2}$ with operations $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \oplus\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}+y_{1}+1 \\ x_{2}+y_{2}\end{array}\right]$,

$$
c \odot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
c x_{1}+c-1 \\
c x_{2}
\end{array}\right]
$$

zero-vector: $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
negative: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \rightarrow\left[\begin{array}{l}-x_{1}-1 \\ -x_{2}\end{array}\right]$

- a vector space!
- Does a vector belong to a given span?

Ex: In P_{2}, is $r(x)=1-4 x+6 x^{2}$ in $\operatorname{span}(\underbrace{1-x+x^{2}}_{p(x)}, \underbrace{2+x-3 x^{2}}_{q(x)})$?
Sol: We went scalars c, d st.

$$
\begin{aligned}
& \text { Sol: We want scalars } c, d \text { sit. } \\
& (p(x)+d q(x)=r(x) \\
& \text { ie. }(c+2 d)+(-c+d) x+(c-3 d) x^{2}=1-4 x+6 x^{2} \\
& \text { ie. } \quad c+2 d=1 \\
& -c+d=-4 \quad \Rightarrow \quad c=3 \\
& c-3 d=6
\end{aligned} \quad \Rightarrow \quad r(x)=3 p(x)-q(x) \text { } \quad \begin{aligned}
& \quad d=-1
\end{aligned}
$$

Ex: Does the set $\{p(x), q(x)\}$ span P_{2} ?
Sd: it spans P_{2} iff eq. $c p(x)+d q(x)=f(x)$ is consistent for any

$$
\left.\begin{array}{rl}
c+2 d & =s \\
-c+d=t \\
c-3 d & =u
\end{array} \quad\left[\begin{array}{cc|c}
1 & 2 & s \\
-1 & 1 & t \\
1 & -3 & u
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 2 & s \\
0 & 3 & s+t \\
0 & 0 & 2 s+s t+3 u
\end{array}\right] \quad \begin{array}{c}
\\
R E F
\end{array}\right]=\text { only consistent }
$$

$$
\Rightarrow\{p(x), q(x)\} \text { does not } \operatorname{span} P_{2} \text {. }
$$

<another way: coff. mat. is 3×2, so cannot have a pivot in every row,
So $A \vec{x}=\vec{b}$ cannot be consistent for every $\vec{b}>$
Ex: In $\bar{F}=\{$ functions on $\mathbb{R}\}$, determine whether $\sin 2 x$ is in $W=\operatorname{span}(\sin x, \cos x)$ Sol: assume $\sin 2 x=c \sin x+d \cos x$ - then it should be true bor all valuer of x.

$$
\begin{aligned}
& x=0 \Rightarrow 0=0 \cdot c+1 \cdot d \Rightarrow d=0 \quad \Rightarrow \sin 2 x=0 \cdot \sin x+0 \cdot \cos x \text { which is wrong } \\
& x=\frac{\pi}{2} \Rightarrow 0=1 \cdot c+0 \cdot d \Rightarrow c=0 \quad \Rightarrow \text { contradiction } \\
& \Rightarrow \sin 2 x \notin \operatorname{span}(\sin x, \cos x)
\end{aligned}
$$

Linear independence, basis, dimension (Pose 6.2)
def A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in a vector space V is linearly dependent if there exist realars $C_{\ldots}, \ldots, c_{k}$ (not all zero) sit.

$$
c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0} .
$$

Otherwise, $\left\{\vec{u}_{1}, \ldots, \vec{v}_{4}\right\}$ is lin. independent

- A set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{L}\right\}$ ff some \vec{v}_{j} can be expressed as al ir. comb. of the others.

Ex: $\left\{1, x+x^{2}, 2+x+x^{2}\right\}$ is lin. dep. $: P_{2} \quad(r=2 p+q)$
Ex: $\begin{gathered}\left\{\sin ^{2} x, \cos ^{2} x, \cos ^{2} 2 x\right\} \\ f\end{gathered}$ is lin. dep. in $F \quad(h=g-f)$
Ex: Is the set $S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$ lin. indef. in P_{2} ?
Sol: $\quad c_{1}(1+x)+c_{2}\left(x+x^{2}\right)+c_{1}\left(1+x^{2}\right)=0$

$$
\Leftrightarrow \begin{aligned}
c_{1}+c_{3} & =0 \\
c_{1}+c_{2} & =0 \\
c_{2}+c_{3} & =0
\end{aligned} \Rightarrow \begin{aligned}
& c_{1}=0 \\
& c_{2}
\end{aligned}=0 \quad c_{3}=0 .
$$

Ex: $\left\{1, x, \ldots, x^{n}\right\}$ is a lin. indef. set in P_{n}.
Basis def A subset $B \subset V$ is a basis for V if
(1) B spars V
(2) B is linindep.

Ex: $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$-bad. ${ }^{\text {stasis }}$ for \mathbb{R}^{n}
Ex: $\left\{1, x, \ldots, x^{n}\right\}$-stand. basis Res P_{n}
Ex: $\left\{E_{11}, \ldots, E_{1 n}, E_{21},-E_{2 n}, \ldots, E_{m 1}, \ldots, E_{m n}\right\}$-stand. basis fo. $M_{m n}$

Ex: $B=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$ is a basis for P_{2}

$$
\begin{array}{lll}
p_{1}(x) & p_{2}(x) & p_{3}(x)
\end{array}
$$

-we already kroc that it is lin.indep. Does : t span P_{2} ?

$$
\begin{aligned}
& c_{1} p_{1}(x)+c_{2} p_{2}(x)+c_{3} p_{3}(x)=\underbrace{a+b x+c x^{2}}_{\text {arbitrary element }} \\
& \Leftrightarrow c_{1}+c_{3}=a \\
& c_{1}+c_{2}=b \\
& c_{2}+c_{3}
\end{aligned} \quad=c \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

has rank $3 \Rightarrow$ invertible

$$
\Rightarrow \text { sys. is consistent for an } a, b, c
$$

$\Rightarrow B$ spans $P_{2} \Rightarrow B$ is a basis for P_{2}.
Ex: $W=\left\{\left.\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \subset M_{22}$ has a basis

$$
a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

$$
B=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\}
$$

Dimension
Basis theorem: If a vector space V has a basis of n vectors, then every basis far V has exactly n vectors.

- A v.sr. V is called finite-dimensional if it has a basis consisting of finitely many vectors. Dimension of $V(\operatorname{din} V)$ is the number of vectors in a basis for V.
- $\operatorname{dim}\{\overrightarrow{0}\}=0$ (convention)
- A usp. Hat has no finite basis is called infinite-dinensional.
$\underline{E_{x}} \mathbb{R}^{n}$ has a basis $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\} \Rightarrow \operatorname{dim} \mathbb{R}^{n}=n$
Ex: P_{n} has a basis $\left\{1, x, \ldots, x^{n}\right\} \Rightarrow \operatorname{dim} P_{n}=n+1$
Ex: $M_{m n}$ has a basis $\left\{E_{i j}\right\}_{1 \leq i \leq m} \Rightarrow \operatorname{dim} M_{m n}=m n$ $1 \leq j \leq n$
Ex: P and F are os-dinenriaal (each contains an infuite lin. dep. set $1, x, x^{2}, \ldots$)

