Dimension
Bars theorem: If a vector space V has a basis of n vectors, then every basis far V has exactly n vectors.

- A v.sr. V is called finite-dimensional if it has a basis consisting of finitely many vectors. Dimension of $V(\operatorname{din} V)$ is the number of vectors in a basis for V.
- $\operatorname{dim}\{\overrightarrow{0}\}=0 \quad$ (convention)
- A u.sp. Hat has no finite basis is called infinite-dinensional.

Ex: \mathbb{R}^{n} has a basis $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\} \Rightarrow \operatorname{dim} \mathbb{R}^{n}=n$
Ex: P_{n} has a basis $\left\{1, x, \ldots, x^{n}\right\} \Rightarrow \operatorname{dim} P_{n}=n+1$
\{x: $M_{m n}$ has a basis $\left\{E_{i j}\right\}_{1 \leq i \leq m} \Rightarrow \operatorname{dim} M_{m n}=m n$ $1 \leq j \leq n$
Ex: P and F are os-dinensioal (each contains an infante finder. set $1, x, x^{2}, \ldots$)

The Let V be a v.space with $\operatorname{dim} V=n$. Then:
a) any lin.indep. set in V catains at most n vectors
b) any spanning set Lo, V contains at least n vectors
c) a linindep. set of exactly n vectors: V is a basis for V
d) a spanning set of exactly n vectors in V is a basis for V.
e) any lin.indep.set in V can be extended to a basis for V
$f)$ any spanning set in V can be reduced to a basis for V.
$\underline{E_{x}}$ is $S=\left\{\begin{array}{lll}P_{1} & P_{2} & P_{2},\end{array} P_{4}, 1+x, 1+x+x^{2}, x^{2}\right\}$ a basis for P_{2} ?
Sol: - No: Since $\underbrace{\# S}_{4}>\underbrace{\text { din } P_{2}}_{3}$, S cannot be linindep.-by (a)

Infact: S spans $P_{2} \underset{(f)}{\Rightarrow}$ can be reduced to a basis:
$P_{4}=P_{3}-P_{2} \Rightarrow$ can exclude P_{4} and $S^{\prime}=\left\{p_{1}, p_{2}, p_{3}\right\}$ is still spanning $\Rightarrow S^{\prime}$ is a basis for P_{2}
(d)

Ex: a) is $S=\{1-x, 1+x\}$ a bars for P_{2} ?

- it is lin.indep. but cannot be spanning, since $\# \underbrace{\# S}_{2}<\underbrace{d_{i n} P_{2}}_{3}$
b) extend S to a basis for P_{2}
idea: adjoin to S the stand bar's $S^{\prime}=\underbrace{\left\{1-x, 1+x, \notin, x^{2}\right\}}_{\text {spanning but lin. dep. (by (a)) }}$
\leadsto exclucle lin. der. vectors among the adjoined ones, one-by-one:

$$
\begin{aligned}
& 1=\frac{1}{2}(1+x)+\frac{1}{2}(1-x) \\
& x=\frac{1}{2}(1+x)-\frac{1}{2}(1-x) \quad \text { - In. con biatiod } \\
& \text { can be excluded }
\end{aligned}
$$

$$
\Rightarrow\left\{1-x, 1+x, x^{2}\right\}-\text { basil } \operatorname{Rr} P_{2} \text {. }
$$

The Let W be a rubspace of a fur dim, vispace V. Then:
(a) W is frite-dimensional and $\operatorname{dim} W \leq \operatorname{din} V$
(b) $\operatorname{dim} L)=\operatorname{din} V$ of $W=V$.

Ex: $W=\left\{A \in M_{22} \mid A^{\top}=A\right\}$ symmetric 2×2 matinees

$$
\begin{aligned}
= & \{\underbrace{\left.\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]\right\}} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
E_{11}
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
E_{12} & 1
\end{array}\right] \\
E_{21} & E_{22}
\end{aligned}
$$

$$
\pi B=\left\{E_{11}, E_{22}, E_{12}+E_{21}\right\}
$$

$$
- \text { basis } \operatorname{dor} W \Rightarrow \operatorname{dim} W=3 \text {. }
$$

Linear transformations
def A linear transformation T from a v sp. V to a usp. W is a mapping $T: V \rightarrow W$ rit. for all $\vec{u}, \vec{v} \in V$ and all scalars C,
(1) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$
(2) $T(c \vec{u})=c T(\vec{u})$

- $T: V \rightarrow W$ is a lin. transf. if
$T\left(c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}\right)=c_{1} T\left(v_{1}\right)+\ldots c_{k} T\left(v_{k}\right) \quad$ for all $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V, c_{1, \ldots, c_{k}}^{\text {scalars }}$
Ex: $D: \mathcal{D}_{\uparrow} \rightarrow F$

$$
D(f)=f^{\prime}=\frac{d f}{d x} \quad-\text { derivative of } f
$$

functions on $\mathbb{R}\left\{\begin{array}{c}\text { all functions }\end{array}\right.$ with canthuous derivative)
D is a ln. transf:

$$
\begin{aligned}
& D(f+g)=(f+g)^{\prime}=f^{\prime}+g^{\prime}=D(f)+D(g) \\
& D(c f)=(c f)^{\prime}=c f^{\prime}=c D(f)
\end{aligned}
$$

Ex: $T: M_{n n} \rightarrow M_{n n}, T(A)=A^{\top}$

$$
\begin{aligned}
& T(A+B)=(A+B)^{\top}=A^{\top}+A^{\top}=T(A)+T(B) \\
& T(c A)=(c A)^{\top}=c A^{\top}=c T(A)
\end{aligned}
$$

Ex: for each V, W one has zero transformation $T_{0}: V \rightarrow W$ $\vec{v} \longmapsto \overrightarrow{0}$
Ex: for each V, one has identity transf. $\quad \begin{aligned} I: & V V \\ \vec{u} & \mapsto \vec{u}\end{aligned}$
Ex: Suppose $T: \mathbb{R}^{2} \rightarrow \mathcal{P}_{2}, T(\underbrace{\left[\begin{array}{l}1 \\ 1\end{array}\right]}_{-v_{1}})=1+x^{2}, T(\underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{\vec{v}_{2}})=1+x$
(i) find $T\left(\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)$
(ii) find $T\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)$

Sol: $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$-bars bor $\mathbb{R}^{2}, \quad c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right] \Rightarrow \begin{aligned} & c_{1}=a \\ & c_{2}=b-a\end{aligned}$
(ii) $T\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)=T\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=c_{1} \underbrace{\left(1+x^{2}\right)}_{T\left(v_{1}\right)}+c_{2} \underbrace{(1+x)}_{T\left(\vec{v}_{2}\right)}=a\left(1+x^{2}\right)+(b-a)(1+x)$

$$
\text { (i) } T_{b}\left(\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]^{a}\right)=-1-2 x+x^{2}
$$

Kernel and rage (Poole 6.5)
For a lin transf. $T: V \rightarrow W$,

$$
\begin{aligned}
& \operatorname{range}(T)=\{T(\vec{v}) \mid \vec{v} \in V\} \quad \underset{\text { subspace }}{\subset} \\
& \operatorname{ker}(T)=\{\vec{v} \in V \mid T(\vec{v})=\overrightarrow{0}\} \quad \underset{\text { subspace }}{\subset}
\end{aligned}
$$

Ex: for A m xn matrix, $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $\vec{v} \longmapsto A \vec{v}$
$\operatorname{range}(T)=\operatorname{col}(A)$
$\operatorname{ker}(T)=\operatorname{null}(A)$
def For $T: V \rightarrow W$ lin.transf.,

$$
\begin{aligned}
& \operatorname{rank}(T):=\operatorname{dim} \operatorname{range}(T) \\
& \text { nullity }(T):=\operatorname{dim} \text { null }(T)
\end{aligned}
$$

Rank-nullity The: For $T: V \rightarrow W$, $\operatorname{rark}(T)+\operatorname{nullity}(T)=\operatorname{dim} V$
$\begin{aligned} \varepsilon_{x:} D: P_{3} & \longrightarrow P_{2} \quad \text { find ker, range, rank, nullity } \\ p(x) & \longmapsto p^{\prime}(x)\end{aligned}$
Sol: $\operatorname{ker}(D)=\left\{p(x) \in P_{3} \mid D(p)=0\right\}=\{a\} \quad \Rightarrow$ nullity $=$ dinker $=1$

$$
\begin{aligned}
& a+b x+c x^{2}+d x^{3} \quad \text { contact polymonicls } \\
& \text { range }(D)=\left\{p(x) \in P_{2} \mid p(x)=q^{\prime}(x) \text { for some } q(x) \in P_{3}\right\}=\text { entire } \\
& \begin{array}{l}
a+b x+c x^{2}=\frac{d}{d x} \underbrace{\left(a x+\frac{b}{2} x^{2}+\frac{c}{3} x^{2}\right)}_{g(x)} \\
g^{\prime \prime}
\end{array} \\
& \Rightarrow \text { rank }=\text { dim range }=3 \text {. }
\end{aligned}
$$

def $T: V \rightarrow W$ is "one-t-vone" if T man, dutinct vectors :n V to dutuct vectors in W T is "onto" if range $(T)=W$.
The. $T: V \rightarrow \omega$ is one-to-one iff $\operatorname{ker}(T)=\{\overrightarrow{0}\}$
if $V=\omega$, $T: V \rightarrow \omega$ is $1-1$ if t it is onto.

- if $T: V \rightarrow \omega$ is $1-1$, image st a linindep. set in V is a linindep. set in W.
def A in trans. $T: V \rightarrow \omega$ that is $1-1$ and onto is called an :somomptism.

If $T: U \rightarrow V, S: V \rightarrow W$ lin.tranf,
can form the composition $S \circ T: U \rightarrow W$,

$$
\vec{u} \longmapsto S(T(\vec{u}))
$$

- $T: V \rightarrow W$ is invertible if there exists $S: W \rightarrow V$ sit. $\left\{\begin{array}{l}S \circ T=I_{V} \\ T \circ S=I_{\omega}\end{array}\right.$ Then $S=: T^{-1}$ is the inverse transformation of T.

- This invertible ff it is an isomorphism.

$$
\begin{aligned}
& \mathcal{E x}_{x}: T: \quad P_{n} \rightarrow \mathbb{R}^{n+1} \\
& a_{0}+a_{1} x+\ldots+a_{n} x^{n} \mapsto\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] \\
& \mathcal{E}_{x}: \quad T: M_{22} \rightarrow P_{3} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \mapsto a+b x+c x^{2}+d x^{3} }
\end{aligned}
$$

- Two vector spaces (over R) V,W ace

$$
\begin{aligned}
& \text { tsomorthis ifs } \operatorname{dim} V=\operatorname{dim} W \\
& \text { (an :10morphish } \\
& T: u \rightarrow \omega \text { exists) }
\end{aligned}
$$

