LAST TIME
Orthogonal projection: $\quad \operatorname{proj}_{\vec{u}} \vec{V}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} \quad$ orthog projection of


$$
\vec{v}=\underbrace{\operatorname{proj}_{\vec{u}} \vec{v}}_{\| \vec{u}}+\underbrace{\operatorname{perp}_{\vec{u}} \vec{v}}_{\perp \vec{u}}
$$

Rem $\operatorname{proj} \vec{u} \vec{v}=\operatorname{proj}_{c \vec{u}} \vec{v}$ for any $c \neq 0$. So, it is actually a projection onto the line $L=\operatorname{span}(\vec{u})$.
Ex: $\vec{v}=\left[\begin{array}{l}7 \\ 6\end{array}\right], \vec{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right] \quad$ Qi fud $p_{\text {oj }}^{\vec{u}} \vec{v}$, pep $\vec{v} \vec{v}$
Sol: $\operatorname{prog}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{40}{20}\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{l}8 \\ 4\end{array}\right] ; \operatorname{perpru}_{\vec{u}} \vec{v}=\vec{v}$-prog $\overrightarrow{\vec{v}}=\left[\begin{array}{l}7 \\ 6\end{array}\right]-\left[\begin{array}{l}8 \\ 4\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
Q: And the distance from $\vec{v}$ to $L=\operatorname{span}(\vec{u})$.
Sol: $\quad \operatorname{dist}(\vec{v}, L)=\operatorname{dist}(\vec{v}, \underbrace{\operatorname{pog}_{L}^{\top} \vec{v}}_{\text {crest point to }})=\|$ o. $L$


Orthogonal decomposition theorem
Let $W \subset \mathbb{R}^{n}$ be a subspace and $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ an orthogonal basis for $W$. Then for any $\vec{v} \in \mathbb{R}^{n}$ there are unique vectors $\hat{\vec{v}} \in W, \vec{z} \in W^{\perp}$ such that $\vec{v}=\hat{v}+\vec{z}$. Explicitly: $\quad \hat{\vec{v}}=\frac{\vec{v} \cdot \vec{u}_{1}}{\vec{u}_{i} \vec{u}_{1}} \vec{u}_{1}+\ldots+\frac{\vec{v} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}} \vec{u}_{p}=:$ projw $_{w} \vec{v}$ - the orthog. $\vec{v}$ onto $\omega$,


- the component of

$\underline{R_{e m}} \cdot \operatorname{proj}_{w} \vec{v}=\operatorname{proj}_{\vec{u}} \vec{v}+\ldots+\operatorname{proj}_{\vec{u}} \vec{v}$
- if $\vec{v} \in W$, then $\operatorname{prog}_{\omega} \vec{v}=\vec{v}$.
- case $W=\mathbb{R}^{n}: \quad \vec{v}=\underbrace{\frac{\vec{v} \cdot \overrightarrow{u_{1}}}{\overrightarrow{u_{i}} \vec{u}_{1}}}_{\text {coordnates of } \vec{v} \text { w.r.t. }} \vec{u}_{1}+\cdots+\frac{\vec{v} \cdot \vec{u}_{n}}{\vec{u}_{n} \cdot \vec{u}_{n}} \vec{u}_{n}$

Ex: $W=\mathbb{R}^{2}, \underbrace{\mathbb{R}^{2}}_{\text {orthog. bais } B \text { for }_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]}, \vec{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$


Ex: $\vec{u}_{1}=\left[\begin{array}{l}2 \\ 5 \\ -1\end{array}\right] \quad \vec{u}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right]$
, $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
Q: find projw $\vec{v}$, perp $\vec{w}$
orthog. basis for $W=\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}\right)$


$$
\begin{aligned}
& \text { perp } w_{\omega} \vec{v}=\vec{v}-\operatorname{proj}_{\omega} \vec{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]=\left[\begin{array}{c}
7 / 5 \\
0 \\
0 \\
14 / 5
\end{array}\right] \Rightarrow \vec{v}=\underbrace{\left[\begin{array}{c}
-2 / 5 \\
2 \\
1 / 5
\end{array}\right]}_{\in \omega}+\underbrace{\left[\begin{array}{c}
7 / 5 \\
12 / 5
\end{array}\right]}_{\in \omega^{\perp}} \\
& \text { Thm ('Best arroximaction thm") }
\end{aligned}
$$

Let $\omega \subset \mathbb{R}^{n}$ subrrace, $\vec{v} \in \mathbb{R}^{n}, \hat{\vec{v}}=\operatorname{proj}_{\omega} \vec{v}$.
Then $\vec{v}$ is the clorest point on $W$ to $\vec{v}$. I.e., for all $\vec{\omega} \in W, \vec{w} \neq \vec{v}$, orehes $\|\vec{v}-\vec{u}\| \gg \vec{v} \vec{v} \| l$.

$\hat{\vec{v}}$ is the best arproxmation of $\vec{v}$ by an element of $W$
$\|\vec{v}-\vec{V}\|$ is the "error of approxination"

Back to Ex $: ~ \hat{\vec{v}}=\left[\begin{array}{c}-2 / 5 \\ 2 \\ 1 / 5\end{array}\right]$-closest point to $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ on $W$.

$$
\operatorname{dist}(\vec{v}, W)=\operatorname{dist}(\vec{v}, \hat{\vec{v}})=\underbrace{\|\vec{v}-\hat{\vec{v}}\|}_{\operatorname{perrw}^{\vec{v}}}=\left\|\left[\begin{array}{c}
7 / 5 \\
0 \\
14 / 5
\end{array}\right]\right\|=\frac{7}{5}\left\|\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]\right\|=\frac{7}{5} \sqrt{5}=\frac{7}{\sqrt{5}}
$$

( $0 / n$ )
def $A$ set of vectors in $\mathbb{R}^{n}$ is an orthonormal set if it is an orthogonal set of unit vectors. An orthonormal basis for $W \subset \mathbb{R}^{n}$ is a basis for $W$ which is an orthonormal set.
(I.e. $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is o/n if $\vec{v}_{i} \cdot \vec{v}_{j}=\left\{\begin{array}{ll}1 & \text { if }:=j \\ 0 & \text { if } i \neq j\end{array}\right)$
$E_{x}: \quad\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}-0 / n$ basis for $\mathbb{R}^{n}$
$\varepsilon_{x}: \vec{v}_{1}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right] \quad 0 / 2$ basis for $\mathbb{R}^{2}$
-normalization of the orthog. set $\left\{\vec{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
Exi $\vec{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}-1 / 2 \\ -2 \\ 7 / 2\end{array}\right] \quad \begin{aligned} & \text { is an orthogonal (not o/n) basis for } \mathbb{R}^{3} \text {. } \\ & \text { Construct an } \% / n \text { basis out of it. }\end{aligned}$
Sol: $\left\|\vec{u}_{1}\right\|=\sqrt{11},\left\|\vec{u}_{2}\right\|=\sqrt{6},\left\|\vec{u}_{3}\right\|=\frac{\sqrt{54}}{2}=\frac{3}{2} \sqrt{6}$
thus: $\vec{v}_{1}=\frac{1}{\sqrt{11}}\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \vec{v}_{3}=\frac{1}{3 \sqrt{6}}\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]$ is an $\begin{aligned} & 0 / n \\ & \text { basis } \mathbb{R}^{3}\end{aligned}$

The An man matrix $U$ has olin columns :ff $U^{\top} U=I$
The Let $U$ be an $m \times n$ matrix with $0 / n$ columns; let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. Then:
a) $\|u \vec{x}\|=\|\vec{x}\|$
b) $(u \vec{x}) \cdot\left(u_{\vec{y}}\right)=\vec{x} \cdot \vec{y}$
c) $u \vec{x} \perp u \vec{y}$ if $\vec{x} \perp \vec{y}$
ie. mapping $\begin{aligned} \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m} \\ \vec{x} & \longrightarrow U \vec{x}\end{aligned}$ preserves lengths add orthogonality

$$
\vec{x} \mapsto u_{\vec{x}}
$$

If $m=n$, square mat. $U$ with $o / n$ columns is called an onthagoxal matrix. $U$ is orthogonal iff $U^{-1}=U^{\top}$.

Ex: matrix of rotation by angle $\varphi$ : $U=\left[\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right]$

$$
U^{-1}=\frac{1 /}{\cos ^{2} \varphi \tan ^{2} \varphi}\left[\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right]=U^{\top} \Rightarrow U \text { is an orthogonal matrix. }
$$

The If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an $0 / n$ baris for $W \subset \mathbb{R}^{n}$, then
(1) $\operatorname{proj}_{w} \vec{v}=\left(\vec{v} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\ldots+\left(\vec{v} \cdot \vec{u}_{p}\right) \vec{u}_{p}$.
(u) If $U=\left[\vec{u}, \cdots \vec{u}_{p}\right]$ then $\underbrace{\text { projw } \vec{v}=\underbrace{\top} \vec{v} \text {. }}_{\text {matrix of projection onto } W \text {. }}$ for all $\vec{v} \in \mathbb{R}^{n}$

