The An man matrix U has olin columns of $U^{\top} U=I$
The Let U be an $m \times n$ matrix with on columns; let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. Then:
a) $\|u \vec{x}\|=\|\vec{x}\|$
b) $\left(u_{\vec{x}}\right) \cdot(u \vec{y})=\vec{x} \cdot \vec{y}$
c) $u \vec{x} \perp u \vec{y}$ iff $\vec{x} \perp \vec{y}$
ie. mapping $\begin{aligned} & \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \\ & \vec{x}\end{aligned}$ preserves lengths ad orthogonality

$$
\vec{x} \mapsto u_{\vec{x}}
$$

If $m=n$, sperace mat. U with $0 / n$ columns is called an onthegenal matrix. U is orthogonal iff $U^{-1}=U^{\top}$.

Ex: matrix of rotation by angle $\varphi: \quad U=\left[\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right]$

$$
U^{-1}=\frac{1 /}{\cos ^{2} \varphi \tan ^{2} \varphi}\left[\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right]=U^{\top} \Rightarrow U \text { is an orthogonal matrix. }
$$

The If $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an $0 / n$ barns for $W \subset \mathbb{R}^{n}$, then
(1) proju $\vec{v}=\left(\vec{v} \cdot \vec{u}_{1}\right) \vec{u}_{1}+\ldots+\left(\vec{v} \cdot \vec{u}_{p}\right) \vec{u}_{p}$.
(u) If $U=\left[\vec{u}_{1}, \cdots \vec{u}_{p}\right]$ then $\underbrace{\text { for all } \vec{v} \in \mathbb{R}^{n}}_{\text {matrix }{ }^{\text {prof }} \vec{w} \vec{v}=U U^{\top} \vec{v} \mid}$

Gram-Schmidt process
Problem: $W \subset \mathbb{R}^{n} \quad$ find an orthogonal basis for W.
$\operatorname{span}(\underbrace{\prime \prime}, \ldots, \vec{x}_{p})$
basis but not orthogonal
Ex: $\quad \vec{x}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \vec{x}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] \quad W=\operatorname{spar}\left(\vec{x}_{1}, \vec{x}_{2}\right) \subset \mathbb{R}^{3}$
Q: find an orthogonal basis
Sol: Set $\vec{v}_{1}=\vec{x}_{1} ; \vec{v}_{2}$ in W, lin.indep. from \vec{v}_{1} and \perp to \vec{v}_{1}

$$
\vec{x}_{2}=\operatorname{proj}_{\vec{v}_{1}} \vec{x}_{2}+\frac{\operatorname{perp}_{\vec{v}_{1}} \vec{x}_{2}}{\perp \vec{v}_{1}} \vec{v}_{2}
$$

Explicitly: prog $\vec{v}_{1} \vec{x}_{2}=\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}} \cdot \vec{v}_{1} \quad=\frac{-1}{5}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 / 5 \\ -2 / 5 \\ 0\end{array}\right]$

$$
\operatorname{perp}_{\vec{v}_{1}}^{\vec{v}_{2}}=\vec{x}_{2}-\operatorname{proj}_{\vec{v}_{1}} \vec{x}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{c}
-1 / 5 \\
-2 / 5 \\
0
\end{array}\right]=\left[\begin{array}{c}
-4 / 5 \\
2 / 5 \\
1
\end{array}\right]
$$

so: $\left\{\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-4 / 5 \\ 2 / 5 \\ 1\end{array}\right]\right\}$-orthog. basis for W.
$\{$ rescale

$$
\left\{\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \vec{v}_{2}^{\prime}=\left[\begin{array}{c}
-4 \\
2 \\
5
\end{array}\right]\right\} \quad \begin{aligned}
& - \text { more convenient } \\
& \text { also orthogonal }
\end{aligned}
$$

Generally Let $W=\operatorname{span}(\underbrace{\vec{x}_{1}, \ldots, \vec{x}_{p}}_{\text {basis }})$
want to construct an orthog. basis for $W,\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$
Step 1: Set $\vec{v}_{1}=\vec{x}_{1}, \quad W_{1}=\operatorname{span}\left(\vec{x}_{1}\right)=\operatorname{span}\left(\vec{v}_{1}\right)$
Step 2: $W_{2}=\operatorname{span}\left(\vec{x}_{1}, \vec{x}_{2}\right)$ orthog.basis:

$$
\begin{aligned}
\vec{v}_{1} & =\vec{x}_{1} \\
\vec{v}_{2} & =\operatorname{perp} \vec{w}_{w_{2}} \\
& =\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}
\end{aligned}
$$

Step 3: $W_{3}=\operatorname{span}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right)$ orthog basis: \vec{v}_{1}, \vec{v}_{2}-already constructed

$$
\begin{aligned}
\vec{v}_{3} & =\operatorname{perp} w_{2} \vec{x}_{3} \quad\left\{\vec{v}_{1}, \vec{v}_{2}\right\}-\text { orthog, basis } \\
& =\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}-\frac{\vec{v}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}
\end{aligned}
$$

Step p: $W=W_{p}=\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{p}\right)$
orthog. basis: $\vec{v}_{1}, \ldots, \vec{v}_{p-1}, \vec{v}_{p}=\operatorname{perp}_{\omega_{p}-1} \vec{x}_{p}=\vec{x}_{p}-\frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\ldots-\frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}$

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{p-1}\right\}
$$

-orthog. basis
Ex $\vec{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \vec{x}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \begin{gathered}\text {-basis } \text { for } W=\operatorname{span}\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right) \subset \mathbb{R}^{4} \\ Q: \text { find }\end{gathered}$
Sol: $\vec{v}_{1}=\vec{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
\vec{v}_{3} & =\underset{\text { pep }}{\text { span }\left(\vec{v}_{1}, \vec{v}_{2}^{\prime}\right)} \underset{\vec{x}_{3}}{ }-\frac{\vec{x}_{3} \cdot \overrightarrow{v_{1}}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}^{\prime}}{\vec{v}_{2}^{\prime} \cdot \vec{v}_{2}^{\prime}} \vec{v}_{2}^{\prime} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]-\underset{\frac{1}{3}}{\left(\frac{2}{6}\right.}\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
-1 / 3 \\
1 / 3 \\
1
\end{array}\right] \underset{\text { rescale }}{\longrightarrow} \vec{v}_{3}^{\prime}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

Thus, $\left\{\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}^{\prime}=\left[\begin{array}{c}-1 \\ 1 \\ 2 \\ 0\end{array}\right], \vec{v}_{3}^{\prime}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 3\end{array}\right]\right\} \quad$-orthogonal basis for W
Q: find an orthonormal basis for W
Sol, normalize $\vec{v}_{1}, \vec{v}_{2}^{\prime}, \vec{v}_{j}^{\prime}$ to unit length:

$$
\left\{\vec{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \vec{u}_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
-1 \\
1 \\
2 \\
0
\end{array}\right], \vec{u}_{3}=\frac{1}{\sqrt{12}}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
3
\end{array}\right]\right\} \quad-\frac{0}{n} \text { basis for } W \text {. }
$$

QR factorization
The (QR factorization)
If A is an $m \times n$ matrix with lin.indep. columns, then A can be factored as $A=Q R$ where Q is an $m \times n$ matrix whose columns form an $0 / n$ baris for $\operatorname{col}(A)$ and R is an $n \times n$ upper-triangular invertible matrix with positive diagonal entries.
Idea: $A=\left[\vec{x}_{1} \ldots \vec{x}_{n}\right] \quad W=\operatorname{col}(A)=\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right) \subset \mathbb{R}^{m}$
§Gram-Schmidt + normalization
$\left\{\vec{u}_{1}, \ldots \vec{u}_{n}\right\}-\frac{1}{n}$ basis for W

$$
\begin{aligned}
& \vec{x}_{k}=\widetilde{\left(p_{0} j_{W_{k-1}} x_{k}\right.}+\left(\vec{v}_{k}\right) \leftarrow \text { from Gram-Scimidt } \\
& =r_{1 k} \vec{u}_{1}+\ldots+r_{k-1} \vec{u}_{k-1}+r_{k k} \vec{u}_{k}+0 \cdot \vec{u}_{k+1}+\ldots+0 \cdot \vec{u}_{n} \\
& \Rightarrow A=\underbrace{\left[\vec{u}_{1}\right.}_{Q} \ldots \vec{u}_{n}][\underbrace{\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \ddots & r_{2 n} \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right]}_{R}
\end{aligned}
$$

$\underline{E_{x}}:$
$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] \quad$ fid $Q R$ factorization
$\begin{array}{lll}\hat{x}_{1} & \hat{1} & \stackrel{\imath}{x}_{2} \\ \vec{x}_{3}\end{array} \quad$ - vectors from $\mathcal{E x} x^{*}$
Sol:

$$
\left.Q=\underset{\substack{\text { normalized } \\
G-S \text { basis }}\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right]}{ }=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{\sqrt{2}} \\
1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{\sqrt{2}} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{12} \\
0 & 0 & 3 / \sqrt{12}
\end{array}\right]\right]
$$

a short cut + get $R: \quad A=Q R \Rightarrow Q^{\top} A=\underbrace{Q^{\top} Q R}_{I}=R$
So, $R=Q^{\top} A=\ldots=\left[\begin{array}{ccc}2 & 1 / \sqrt{2} & \sqrt{2} \\ 0 & 3 / \sqrt{6} & 2 / \sqrt{6} \\ 0 & 0 & 4 / \sqrt{12}\end{array}\right]$

