QR factorization
The (QR factorization)
If A is an $m \times n$ matrix with lin.indep. columns, then A can be factored as $-A=Q R$ where Q is an $m \times n$ matrix whose columns form an $\% / n$ baris for $\operatorname{col}(A)$ and R is an nan upper-triangular invertible matrix with positive diagonal entries.

Idea: $A=\left[\vec{x}_{1} \ldots \vec{x}_{n}\right] \quad W=\operatorname{col}(A)=\operatorname{span}\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right) \subset \mathbb{R}^{m}$
\{Gram-Scdmidt + normalization

$$
\left\{\vec{u}_{1}, \ldots \vec{u}_{n}\right\}-\% / n \text { basis for } W
$$

Ex: $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ fid $Q R$ factorization
$\begin{array}{ccc}\hat{x_{1}} & \hat{\vec{x}}_{2} & \stackrel{\rightharpoonup}{x}_{3}\end{array} \quad$ - vectors from δx^{*}
Sol:

$$
Q=\underbrace{\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right]}_{\substack{\text { normalized }}}=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{6} & 1 / \sqrt{12} \\
1 / \sqrt{2} & 1 / \sqrt{6} & -1 / \sqrt{12} \\
0 & 2 / \sqrt{6} & 1 / \sqrt{12} \\
0 & 0 & 3 / \sqrt{12}
\end{array}\right]]
$$

$$
\begin{aligned}
& \vec{x}_{k}=\left(\operatorname{rroj}_{W_{k-1}} x_{k}+\left(\vec{V}_{k}\right) \leftarrow \text { from } \quad G_{r a m}-\right.\text { Schmidt } \\
& =r_{k} \vec{u}_{1}+\ldots+r_{k-1} \vec{u}_{k-1}+r_{k k} \vec{u}_{k}+0 \cdot \vec{u}_{k+1}+\ldots+0 \cdot \vec{u}_{n} \\
& \Rightarrow A=\underbrace{\left[\begin{array}{ll}
\vec{u}_{1} & \ldots \\
u_{n}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \ddots & r_{2 n} \\
\vdots & 0 & \ddots & r_{2 n} \\
0 & \vdots & \ddots & r_{n n}
\end{array}\right]}_{R}
\end{aligned}
$$

a shortcut + get $R: \quad A=Q R \Rightarrow Q^{\top} A=\underbrace{Q^{\top} Q R}_{I}=R$
So, $R=Q^{\top} A=\ldots=\left[\begin{array}{ccc}2 & 1 / \sqrt{2} & \sqrt{2} \\ 0 & 3 / \sqrt{6} & 2 / \sqrt{6} \\ 0 & 0 & 4 / \sqrt{12}\end{array}\right]$

Least squares solutions (Poole 7.3)
Let $A \vec{x}=\vec{b}$ be an inconsistent system. Want to find $\hat{\vec{x}}$ such that $(\hat{\vec{x}})$ is as close as possible to \vec{b}.
approximation to \vec{b}
def For A an $m \times n$ matrix, $\vec{b} \in \mathbb{R}^{m}$, a least squares solution of $A \vec{x}=\vec{b}$ is $\hat{\vec{x}} \in \mathbb{R}^{n}$ s.t. $\|\vec{b}-A \hat{\vec{x}}\| \leq\|\vec{b}-A \vec{x}\|$ for all $\vec{x} \in \mathbb{R}^{n}$

Rem text book west the notation \bar{x}, not \vec{x}

Solution of the general LS problem
$\hat{b}=\operatorname{proj}_{\text {col }(A)} \vec{b}$-closest point to \vec{b} on $\operatorname{col}(A)$
So, $A \overrightarrow{\vec{x}}=\hat{\vec{b}} \Rightarrow \vec{b}-A \hat{\vec{x}}$ is orthogonal to $\operatorname{col}(A)$

$$
\begin{aligned}
& \Leftrightarrow \vec{b}-A \hat{\vec{x}} \in(\operatorname{col} A)^{\perp}=\operatorname{null}\left(A^{\top}\right) \Leftrightarrow A^{\top}(\vec{b}-A \hat{\vec{x}})=\overrightarrow{0} \\
& \Leftrightarrow A^{\top} A \vec{x}=A^{\top} \vec{b}-\text { "normal equations" for } A \vec{x}=\vec{b}
\end{aligned}
$$

The The set of least squares solutions of $A \vec{x}=\vec{b}$ coincides with the (ron-empty) set of solutions of the normal equations $A^{\top} A \vec{x}=A^{\top} \vec{b}$

Ex: $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad Q:$ find $L S$ solution of $A \vec{x}=\vec{b}$
Sol: $A^{\top} A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right] \rightarrow\left(A^{\top} A\right)^{-1}=\frac{1}{2}\left[\begin{array}{cc}2 & -2 \\ -2 & 3\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ -1 & \frac{1}{2}\end{array}\right]$

$$
\begin{aligned}
& A^{\top} \vec{b}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
5
\end{array}\right] \\
& \hat{\vec{x}}=\left(A^{\top} A\right)^{-1}\left(A^{\top} \vec{b}\right)=\left[\begin{array}{cc}
1 & -1 \\
-1 & 3 / 2
\end{array}\right]\left[\begin{array}{l}
6 \\
5
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 / 2
\end{array}\right]
\end{aligned}
$$

Distance from \vec{b} to $A \hat{\vec{x}}$ (approximation) is the "least squares error" of the approximation
$\frac{I_{n} \sum_{x} \text { above }}{(A \hat{x}}, L S$ error $=\left\|\vec{b}-\frac{A \hat{\vec{x}} \|}{1}\right\|=\left\|\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-\left[\begin{array}{c}1 \\ 5 / 2 \\ 5 / 2\end{array}\right]\right\|=\left\|\left[\begin{array}{c}0 \\ -1 / 2 \\ 1 / 2\end{array}\right]\right\|$

$$
\left(A \hat{\vec{x}}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 / 2
\end{array}\right]=\left[\begin{array}{c}
1 \\
5 / 2 \\
5 / 2
\end{array}\right]-\sqrt{ }\right)=\sqrt{0^{2}+\left(-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{1}{\sqrt{2}}
$$

- LS solution can be non-unique.

The Let A be an $m \times n$ matrix. The following are equivalent:
(a) eq. $A \vec{x}=\vec{b}$ has a unique LS solution for each $\vec{b} \in \mathbb{R}^{m}$
(b) columns of A are lin, independent
(c) $A^{\top} A$ is invertible

$$
\underbrace{n \times m m \times n}_{n \times n}
$$

When there hold, $L S$ sol. is $\hat{\vec{x}}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}$
Ex: $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right], \vec{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
LS sol: $A^{\top} A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 4 & 8\end{array}\right]$-non-invertible!

$$
\begin{aligned}
& A^{\top} \vec{b}=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { aug. mat: }\left[\begin{array}{lll}
2 & 4 & 1 \\
4 & 8 & 2
\end{array}\right] \rightarrow
\end{array} \begin{array}{cc|c}
-1 & 2 & 1 / 2 \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=\frac{1}{2}-2 S \\
& x_{1} \\
& x_{2}
\end{aligned} \quad \begin{aligned}
& x_{2}=5
\end{aligned}
$$

Application of LS solutions: LS approximation.
Ex: given data points $(1,2),(2,2),(3,4)$ find the line $y=a+b x$ which is the "best fit" for the points.

Last to have the
"LS error"

$$
\varepsilon_{1}=2-(a+b \cdot 1)
$$

$$
\Delta=\sqrt{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\varepsilon_{3}^{2}}
$$

as small as possible

$$
\left.\begin{array}{l}
\varepsilon_{2}=2-(a+b \cdot 2) \\
\varepsilon_{3}=4-(a+b \cdot 3)
\end{array}\right\} \text { errors }
$$

So: we wart a LS solution of $\underbrace{\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]}_{\vec{A}} \underbrace{\left[\begin{array}{l}a \\ b\end{array}\right]}_{\overrightarrow{\vec{x}}}=\underbrace{\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]}_{\overrightarrow{\vec{b}}}, \begin{aligned} & 2 \\ & \begin{array}{c}\text { error vector" } \\ \text { - } \\ \text {-ringo minimize } \\ \text { its norm }\end{array}\end{aligned}$
normal eq: $\underbrace{A^{\top} A \hat{\vec{x}}}=\underbrace{A^{\top} \vec{b}}$

$$
\begin{array}{cc}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]} \\
{\left[\begin{array}{ll}
3^{\prime \prime} & 6 \\
6 & 14
\end{array}\right]} & {\left[\begin{array}{c}
8 \\
18
\end{array}\right]}
\end{array}
$$

Aug. mat: $\left[\begin{array}{ll|l}3 & 14\end{array}\right]\left[\begin{array}{ll|l}3 & 8 & 8 \\ 6 & 14 & 18\end{array}\right] \rightarrow\left[\left.\begin{array}{ll}1 & 2 \\ 0 & 2\end{array} \right\rvert\, 2\right]\left[\begin{array}{ll|l}1 & 0 & 2 / 3 \\ 0 & 1 & 1\end{array}\right] \Rightarrow \hat{\vec{x}}=\left[\begin{array}{c}2 / 3 \\ 1\end{array}\right]_{b}^{a}$
\Rightarrow best fitting line: $y=\frac{2}{3}+x$
("least squares approximating line")
LS error:

$$
\begin{gathered}
\Delta=\|\vec{b}-A \hat{\vec{x}}\|=\left\|\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]-\left[\begin{array}{c}
5 / 3 \\
8 / 3 \\
113
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
1 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right]\right\|=\frac{\sqrt{6}}{3}=\sqrt{\frac{2}{3}} \\
A \hat{\vec{x}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{c}
2 / 3 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 / 3 / 3 \\
8 / 3 \\
11 / 3
\end{array}\right]
\end{gathered}
$$

