Ex: $A=\left[\begin{array}{cc}0.5 & -0.6 \\ 0.75 & 1.1\end{array}\right] \quad \frac{\text { Complex eigenvalues }}{Q: f_{2 n d} \text { eigenvalues } \& \text { eigenvectors }}$
Sol: char eq. $0=\left|\begin{array}{cc}0.5-\lambda & -0.6 \\ 0.75 & 1.1-\lambda\end{array}\right|=\lambda^{2}-1.6 \lambda+1 \quad$ solutov: $\lambda=\frac{1.6 \pm \sqrt{(-1.6)^{2}-4}}{2}$

$$
=0.8 \pm 0.6 i
$$

for $\lambda=0.8-0.6 i$,

$$
A-\lambda I=\left[\begin{array}{cc}
-0.3+0.6 i & -0.6 \\
0.75 & 0.3+0.6 i
\end{array}\right]
$$

(1) $(-0.3+0.6 i) x_{1}-0.6 x_{2}=0$
(2) $0.75 x_{1}+(0.3+0.6 i) x_{2}=0$
nontriv. sol. exists \Rightarrow both eggs determine the same relation between x_{1} and $x_{1},(1) \Leftrightarrow(2)$
$\Leftrightarrow x_{1}=-(0.4+0.8 i) x_{2} \quad$ choose $x_{2}=5 \Rightarrow$ basis for the eigenspace: $\vec{v}_{1}=\left[\begin{array}{c}-2-4 i \\ 5\end{array}\right]$
s:nitarly, for $\lambda=0.8+0.6 ;$, eigenvector $\vec{v}_{2}=\left[\begin{array}{c}-2+4 i \\ 5\end{array}\right]$

- for A a matrix with real entries,

$$
A \vec{x}=\lambda \vec{x} \quad \Rightarrow \quad A \overline{\vec{x}} \mid=\bar{\lambda} \overline{\vec{x}}
$$

complex conjugation $(\overline{a+i b}=a-1 b)$
So: complex eigenvalues $\lambda=a+i b$ occur in conjugate pars.

In ε_{x}^{*} :

$$
\begin{array}{lll}
\lambda=0.8-0.6 i & \vec{\lambda}=0.8+0.6 i & \text {-conjugate } \\
\vec{v}_{1}=\left[\begin{array}{c}
-2-4 i \\
5
\end{array}\right] & \vec{v}_{2}=\left[\begin{array}{c}
-2+4 i \\
5
\end{array}\right] & \text {-bijugate }
\end{array}
$$

Ex: $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ with a, b real, nonzero. Eigenvalues: $\lambda=a \pm i b$ aid

$$
\begin{gathered}
C=\underbrace{\begin{array}{r}
\text { rotation } b y \\
\text { of argument } a t i b
\end{array}}_{\left.\begin{array}{r}
\text { scaling by } \\
r=|\lambda|=\sqrt{a^{2}+b^{2}}
\end{array} \begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]}
\end{gathered}
$$

Back to $\sum x^{*} \quad A=\left[\begin{array}{cc}0.5 & -0.6 \\ 0.75 & 1.1\end{array}\right] \quad \lambda=0.8-0.6: \quad \vec{v}_{1}=\left[\begin{array}{c}-2-4 i \\ 5\end{array}\right]$
Let $P=\left[\begin{array}{ll}\operatorname{Re} \vec{v}_{1} & \operatorname{Im} \vec{v}_{1}\end{array}\right]=\left[\begin{array}{cc}-2 & -4 \\ 5 & 0\end{array}\right]$
Let $C=P^{-1} A P=\cdots=\left[\begin{array}{cc}0.8 & -0.6 \\ 0.6 & 0.8\end{array}\right]$

- pure notation by $\varphi=\arctan \frac{0.6}{0.8}$ since $|\lambda|=\sqrt{0.8^{2}+0.6^{2}}=1$
Thus: $A=P C P^{-1}$

The Let A be a real 2×2 matrix with complex eigenvalue $\lambda=a-i b$ and \vec{V} the gores. eigenvector in \mathbb{C}^{2}. Then

$$
A=P \subset P^{-1} \text { with } P=[\operatorname{Re} \vec{v} \operatorname{Im} \vec{v}], C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

