LAST TIME: LS solutions of $A \vec{x}=\vec{b}$ (aninonondent system) are solutions \vec{x} of $A^{\top} A \hat{\vec{x}}=A^{\top} \vec{b}$ - "normal equations"

$$
A \hat{\vec{x}}-L S \text { approximation }
$$

$$
\|5-A \hat{\vec{x}}\|-L S_{\text {error }}
$$

Application of LS solutions: LS approximation.
Ex: given data points $(1,2),(2,2),(3,4)$ find the line $y=a+b x$ which is the "best fit" for the points.

Last to have the "LSernor"

$$
\Delta=\sqrt{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}+\varepsilon_{3}^{2}}
$$

as small as possible

$$
\left.\begin{array}{l}
\varepsilon_{1}=2-(a+b \cdot 1) \\
\varepsilon_{2}=2-(a+b \cdot 2) \\
\varepsilon_{3}=4-(a+b \cdot 3)
\end{array}\right\} \text { errors }
$$

So: We want a LS solution of $\underbrace{\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}a \\ b\end{array}\right]}_{\overrightarrow{\vec{x}}}=\underbrace{\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]}_{\vec{b}}, \begin{aligned} & {\left[\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3}\end{array}\right]}\end{aligned}=\vec{b}-A \vec{x}$
normal eq: $\underbrace{A^{\top} A \hat{\vec{x}}}=\underbrace{A^{\top} \vec{b}}$

$$
\begin{array}{cc}
{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]} & {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]} \\
{\left[\begin{array}{ll}
3^{\prime \prime} & 6 \\
6 & 14
\end{array}\right]} & {\left[\begin{array}{c}
8 \\
18
\end{array}\right]}
\end{array}
$$

Aug. mat.: $\left[\begin{array}{ll|l}3 & 6 & 8 \\ 6 & 14 & 18\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 2 & 8 / 3 \\ 0 & 2 & 2\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 0 & 2 / 3 \\ 0 & 1 & 1\end{array}\right] \Rightarrow \hat{x}=\left[\begin{array}{c}2 / 3 \\ 1\end{array}\right]_{b}^{b^{9}}$
\Rightarrow best filtingline: $y=\frac{2}{3}+x$
("least squares approximating line")
LS error:

$$
\begin{gathered}
\Delta=\|\vec{b}-\Delta \hat{\vec{x}}\|=\left\|\left[\begin{array}{l}
2 \\
2 \\
4
\end{array}\right]-\left[\begin{array}{c}
5 / 3 \\
8 / 3 \\
3 / 3
\end{array}\right]\right\|=\left\|\left[\begin{array}{c}
1 / 3 \\
-1 / 3 \\
1 / 3
\end{array}\right]\right\|=\frac{\sqrt{6}}{3}=\sqrt{\frac{2}{3}} \\
A \hat{\vec{x}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{c}
2 / 3 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 / 3 \\
8 / 3 \\
1 / 3
\end{array}\right]
\end{gathered}
$$

Ex: Find the parabola that gives the best LS approximation to the points $(-1,1),(0,-1),(1,0),(2,2)$

1. Sol: $y=a+b x+c x^{2}$-approximating parabola substituting the given points, we get:

$$
\{\begin{array}{l}
a-b+c=1 \\
a \\
a+b+c=-1 \\
a+2 b+c=2
\end{array} \quad \text { or: }: \underbrace{\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]}_{\vec{x}}=\underbrace{\left[\begin{array}{c}
1 \\
-1 \\
0 \\
2
\end{array}\right]}_{\vec{b}}
$$

LS sol: normal eq. $\underbrace{\left[\begin{array}{ccc}4 & 2 & 6 \\ 2 & 6 & 8 \\ 6 & 8 & 18\end{array}\right]}_{A^{\top} A} \hat{\vec{x}}=\underbrace{\left[\begin{array}{l}2 \\ 3 \\ 9\end{array}\right]}_{A^{\top} \vec{b}} \leadsto \hat{\vec{x}}=\left[\begin{array}{c}-7 / 10 \\ -3 / 5 \\ 1\end{array}\right]$
So, the Least squares approximating parabola: $y=-\frac{7}{10}-\frac{3}{5} x+x^{2}$
$L S$ error: $\Delta=\|\vec{b}-\underbrace{\hat{\vec{x}} \|}_{\left[\begin{array}{c}1 / 10 \\ -7 / 10 \\ -3 / 10 \\ 21 / 10\end{array}\right]}=\|\left[\begin{array}{c}1 / 10 \\ -3 / 10 \\ 3 / 10 \\ -1 / 10\end{array}\right] \|=\frac{\sqrt{20}}{10}=\frac{1}{\sqrt{5}}$

Anther way to construct LS solutions
The If A is $m \times n$ matrix with lin. indep. columns and $A=Q R-Q R$ then for each $\vec{b} \in \mathbb{R}^{m}$ the $L S$ sol. of $\vec{A} \vec{x}=\vec{b}$ is: $\overrightarrow{\vec{x}}=R^{-1} Q^{\top} \vec{b}$.
I dea: normaleq. $\underbrace{A^{\top} A} \hat{\vec{x}}=\underbrace{A^{\top} \vec{b}} \Leftrightarrow R^{\top} R \vec{x}=R^{\top} Q^{\top} \vec{b}$ factorization,

$$
\begin{aligned}
& A^{A^{\top} A} \hat{x}=\underbrace{A^{\top} \vec{b}} \Leftrightarrow R^{\top} R \vec{x}=R^{\top} Q^{\top} \vec{b} \\
& \underbrace{R^{\top} Q^{\top} Q R}_{I} \quad R^{\top} Q^{\top} \vec{b} \quad \underset{(R)^{-1}!}{\Rightarrow} \vec{x}=Q^{\top} \vec{b} \\
& \underset{R^{-1} \cdot}{\left(R^{-1} \cdot\right.} \vec{x}=R^{-1} Q^{\top} \vec{b}
\end{aligned}
$$

- for A an $m \times n$ matrix with In.indep. columns, the unique $L S$ sol. of $A \vec{x}=\vec{b}$ is $\hat{\vec{x}}=\underbrace{}_{\substack{A^{\top} \\\left(A^{\top} A\right)^{-1} A^{\top}} \vec{b}}$
def For A an $m \times n$ matrix with lin indep. columns, the nom matrix $A^{+}:=\left(A^{\top} A\right)^{-1} A^{\top}$ is called the pseudoinverse of A.

Ex: for $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$, find the pseudo: verse
Sol: $A^{\top} A=\left[\begin{array}{cc}3 & 6 \\ 6 & 14\end{array}\right] \rightarrow\left(A^{\top} A\right)^{-1}=\frac{1}{6}\left[\begin{array}{cc}14 & -6 \\ -6 & 3\end{array}\right] \rightarrow$

$$
\rightarrow A^{+}=\frac{1}{6}\left[\begin{array}{cc}
14 & -6 \\
-6 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}
8 & 2 & -4 \\
-3 & 0 & 3
\end{array}\right]
$$

Properties: 1) for A non (with Iin.indep. columns), $A^{+}=A^{-1}$
2) $A^{+} A=I$
3) $A A^{+}$is the matrix of projection onto $W=\operatorname{col}(A) \subset \mathbb{R}^{n}$,
i.e. $\operatorname{proj}_{\boldsymbol{\omega}}(\vec{v})=A A^{+} \vec{v} \quad$ for any $\vec{v} \in \mathbb{R}^{m}$
4) if $A=Q R-Q R$-factorization,
then $A^{+}=R^{-1} Q^{\top}$ and $A A^{+}=Q Q^{\top}$-matrix of projection this is a symatetre matrix
Ex: find the matrix of proj$\omega: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad, W=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$

