Thy (existence and uniqueness of solutions)
Consider the IVP $\left\{\begin{array}{l}\frac{d y}{d x}=f(x, y) \\ y\left(x_{0}\right)=y_{0}\end{array}\right.$ If there exists a rectangular region
$R: a<x<b, c<y<d$ on the $x y$ plane s.t.

- $\left(x_{0}, y_{0}\right) \in R$
- $f(x, y)$ and $\frac{\partial f}{\partial y}$ are continuous on $R$, then there exists some interval
$I_{0}=\left(x_{0}-h, x_{0}+h\right)$, with $h>0$, ondeined: $(a, b)$ and a unique function $y(x)$ on Io that is a solution of the IVP.


Remark If only $f$ is continuous on $R$ but $\frac{\partial f}{\partial y}$ is not, then we have existence of a solution, but no uniqueness

Direction fields (a qualitative method for sketching solutions)

$$
\begin{aligned}
& \frac{d y}{d x}=f(x, y) \\
& \Rightarrow \text { solution curve through }(x, y) \\
& \text { must have slope } f(x, y) \\
& \frac{\varepsilon_{x}:}{} \frac{d y}{d x}=1-y
\end{aligned}
$$

- if we want to impose nit. ind. $y(0)=2$, we should look for a curve along the direction field, passing through $(0,2)$

Autonomous equations
Autonomous $1^{\text {st }}$ order $O D E: \frac{d y}{d x}=f(y)$
no dependence on $x$ !
$\varepsilon_{x}: \frac{d y}{d x}=1-y^{2}$ autonomous, $\frac{d y}{d x}=x y$ non-autonomous

- if $c$ is a eco of $f(y)$, it $u$ a "critical point" of $(*)$.

Then $y(x)=c$ is a constant (equilibrium) solution.
if $f(y)>0$, solution through $(x, y)$ is increashg
if $f(y)<0$, $\quad \|$ decreasing
Ex: $\frac{d y}{d x}=\underbrace{y(a-b y)}_{y \text {-axis }} \quad$-autonomous eq. $\quad$ Crit. points: $\begin{aligned} & y=0 \\ & a, b>0 \text { constants }\end{aligned} \quad \begin{aligned} & y=\frac{a}{b}\end{aligned}$

-crit. point $y=\frac{a}{b}$ is "asymptotically stable" (a sol. starting with yo near $\frac{a}{b}$ converges to $\frac{a}{b}$ )

- crit. point $y=0$ is "a symptotically unstable" (repels solutions)

Rem one can also have a "semi-stable" crit point in an autonomour ODE solutions are attracted to $y=c$ for $y_{0}>c$ and repelled for $y_{0}<c$ (or vice versa)
$\varepsilon_{x}$ :

$$
\frac{d y}{d x}=y^{2}
$$



Separable equations (Fill 2.2)
$1^{\text {st }}$ order ODE $\frac{d y}{d x}=g(x) h(y)$ is said to be separable
Ex: $\frac{d y}{d x}=e^{x} y^{2} \rightarrow \frac{d y}{y^{2}}=e^{x} d x \xrightarrow[\text { integrate }]{ } \int \frac{d y}{y^{2}}=\int e^{x} d x$ I.h.s. and nh.s.

$$
\longrightarrow-y^{-1}+c_{1}=e^{x}+c_{2}
$$

or: $-y^{-1}=e^{x}+C$ (*)
arbitrary content
Rem: when dividing by $y^{2}$, we:-plicitly assumed $y \neq 0$. actually, $y=0$ is also a (constant) solution, not a part of the family (\#).
Ex: IVP $\left\{\begin{array}{l}\frac{d y}{d x}=e^{x} y^{2} \Rightarrow-y^{-1}=e^{x}+C \\ g(0)=\frac{1}{2} \Rightarrow-2=e^{0}+C \Rightarrow C=-3\end{array}\right.$

$$
-2=e^{0}+C \Rightarrow C=-3
$$

$\Rightarrow$ implicit sol. of IVP: $-y^{-1}=e^{x}-3$
Solving for $y$ : $y=-\frac{1}{e^{x}-3} \quad$-explicit sol. of IVP

interval of existence: $(-\infty, \ln 3)$

$$
\text { Generally: } \begin{aligned}
\frac{d y}{d x}=g(x) h(y) \Leftrightarrow \frac{d y}{h(y)}=g(x) d x \Leftrightarrow & \frac{H(y)=G(x)+C}{\uparrow} \\
& \int \frac{d y}{h(y)} \int g(x) d x
\end{aligned}
$$

Linear $1^{\text {st }}$ order ODEs (method of integrating factors)

$$
\begin{aligned}
& \mathcal{E}_{x} \cdot \frac{d y}{d x}=\sin x \underset{\substack{\text { integrate }} \underset{\sim}{\rightarrow}}{ } y=-\cos x+C^{\text {carbitices }} \text { |) } \\
& \text { - } \underset{\substack{\frac{d}{d x}\left(x^{2} y\right)}}{\frac{x^{2} d y}{d x}+2 x y}=x^{5} \rightarrow x^{2} \rightarrow \frac{x^{6}}{6}+C \rightarrow y=\frac{x^{4}}{6}+\frac{C}{x^{2}} \\
& \text { - } \frac{d y}{d x}+\frac{2}{x} y=x^{3} \text { - equivalent to (by multiplying by } \mu(x)=x^{2} \text { ). }
\end{aligned}
$$

General $1^{\text {st }}$ order lizcas ODE

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \underset{-\frac{1}{a_{1}(x)}}{\longrightarrow} \frac{d y}{d x}+P(x) y=f(x)^{(x *)} \text {-"standard } \text { form" }^{\longrightarrow}
$$

Idea; multiply $(* *)$ by some $\mu(x)$ - "integrating factor":

$$
\begin{array}{ll}
\begin{array}{ll}
\mu(x) \frac{d y}{d x}+\mu(x) P(x) y=\mu(x) f(x) & \\
\begin{array}{ll}
\text { want it to be } \frac{d}{d x}(\mu(x) y)=\mu(x) y^{\prime}+\mu^{\prime}(x) y & \text {-thy is true if } \\
\mu^{\prime}(x)=\mu(x) P(x)
\end{array} \\
\rightarrow \ln \text {. } \frac{d \mu}{\mu}=P(x) d x
\end{array} \\
& \\
& \ln |\mu(x)|=\int P(x) d x+C_{1} \Rightarrow \mu(x)=C_{2} e
\end{array}
$$

- we don't need the most general integrating factor and can just take $C_{2}=1$ :

$$
\mu(x)=e^{\int P(x) d x}
$$

: integrating
factor

So, $(* *)$ becomes $\frac{d}{d x}(\mu(x) y)=\mu(x) f(x) \underset{\text { integrate }}{\rightarrow} \mu(x) y=\int \mu(x) f(x) d x+C$
Thus: $y=\frac{1}{\mu(x)}\left(\int \mu^{(x)} f(x) d x+C\right)$

- general solution of $(*)$.
arbitrary constant

$\xrightarrow{\text { Ex: }} x \frac{d y}{d x}+3 y=x^{-2} e^{x} \underset{-\frac{1}{x}}{\longrightarrow} \frac{d y}{d x}+\underbrace{\frac{3}{x}}_{P} y=\underbrace{x^{-3} e^{x}}_{f}$ - standard form
$\mu=e^{\int \frac{3}{x} d x}=e^{3|\ln | x \mid}=|x|^{3} \quad$ consider $x>0 \Rightarrow \mu=x^{3}$

$$
y=\frac{1}{x^{3}}(\underbrace{\int x^{3} x^{3} e^{x} d x}_{e^{x}}+C)=\frac{e^{x}}{x^{3}}+\frac{C}{x^{3}}
$$

Ex: IVP $\left\{\begin{array}{l}x \frac{d y}{d x}+3 y=x^{-2} e^{x} \rightarrow y=x^{-3}\left(e^{x}+C\right) \\ y(1)=0 \rightarrow 1^{-3}\left(e^{1}+C\right)=0 \rightarrow C=-e \rightarrow y=x^{-3}\left(e^{x}-e\right)\end{array}\right.$

