Dot product, length, orthogonality
def for $\vec{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right], \vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$, the $\frac{\operatorname{dot} \text { product }}{\text { Calico, "ier product") }}$

$$
\begin{aligned}
\overrightarrow{\vec{u} \cdot \vec{v}} & =u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{1} v_{n} \\
& =\vec{u}^{\top} \vec{v}
\end{aligned}
$$

Ex: $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right] \quad \vec{u} \cdot \vec{v}=1 \cdot 2+2 \cdot 0+3(-1)=-1$
Properties: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$

$$
\left.\begin{array}{l}
(c \vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v}) \\
\left(\vec{u}_{1}+\vec{u}_{2}\right) \cdot \vec{v}=\vec{u}_{1} \cdot \vec{v}+\vec{u}_{2} \cdot \vec{v}
\end{array}\right\} \Rightarrow\left(c_{1} \vec{u}_{1}+\ldots+c_{p} \vec{u}_{p}\right) \cdot \vec{v}=c_{1} \vec{u}_{1} \cdot \vec{v}+\ldots+c_{p} \vec{u}_{p} \cdot \vec{v}
$$

def Length (or "norm") of $\vec{v} \in \mathbb{R}^{n}$ is $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}} \geqslant 0$

- $\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}$

Ex: $\vec{v}=\left[\begin{array}{l}a \\ b\end{array}\right] \quad\|\vec{v}\|=\sqrt{a^{2}+b^{2}}=$ length of a line segment from $(0,0)$ to (a, b)

- $\|c \vec{v}\|=|c|\|\vec{v}\|$
- a vector of length 1 - "unit vector"
for $\vec{v} \neq \overrightarrow{0}, \quad \vec{v} \longrightarrow \vec{u}=\frac{1}{\|\vec{u}\|} \vec{v} \quad$ unit vector : the direction of \vec{v} "normalizing" \vec{v}
Ex: $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad Q:$ find a unit vector \vec{u} in the direction of \vec{v}
Sol: $\|\vec{v}\|=\sqrt{14} \quad \Rightarrow \quad \vec{u}=\frac{1}{\sqrt{14}}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
def for $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the distance between \vec{u} and \vec{v} is

$$
\operatorname{dist}(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|
$$

Ex: $\vec{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \vec{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$

$$
\leadsto \vec{u}-\vec{v}=\left[\begin{array}{l}
-2 \\
-3
\end{array}\right], \quad \operatorname{dist}(\vec{u}, \vec{v})=11\left[\begin{array}{l}
-2 \\
-3
\end{array}\right] \|=\sqrt{13}
$$

Orthogonal vectors
def vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ are orthogonal if $\vec{u} \cdot \vec{v}=0$
Notation: $\vec{u} \perp \vec{v}$
Rem: $\overrightarrow{0} \perp \vec{v}$ for any \vec{v}.
def A set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal set if $\vec{u}_{i} \cdot \vec{u}_{j}=0$ foreach parr
Ex: $\vec{u}_{1}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right], \vec{u}_{3}=\left[\begin{array}{c}-1 / 2 \\ -2 \\ 7 / 2\end{array}\right]$ $i \neq j$.

$$
\text { Sol: } \begin{aligned}
& \vec{u}_{1} \cdot \vec{u}_{2}=3(-1)+1 \cdot 2+1 \cdot 1=0 \\
& \vec{u}_{1} \cdot \vec{u}_{3}=9 \cdot\left(-\frac{1}{2}\right)+1 \cdot(-2)+1 \cdot \frac{7}{2}=0 \\
& \vec{u}_{2} \cdot \vec{u}_{3}=(-1)\left(-\frac{1}{2}\right)+2 \cdot(-2)+1 \cdot \frac{7}{2}=0
\end{aligned}
$$

Q: check that $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$-orthogonal set

The If $S=\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then S is a in. indep. set. Hence, S is a basis for $\operatorname{span}(S)$.

- An orthog. basil for a subspace $W \subset \mathbb{R}^{n}$ is a ball which is an ort hog. set.

Orthogonal complements
def If $W \subset \mathbb{R}^{n}$ is a subspace and $\vec{z} \in \mathbb{R}^{n}$ is orthog. to each vector in W, then \vec{z} is said to be orthogonal to W.
The set of all vectors in \mathbb{R}^{n} orthogonal to ω-"orthogonal complement of ω ", notation: W^{\perp}
$\underline{\mathcal{E}_{x}}$

$$
L=W^{\perp} \text { and } L^{\perp}=W
$$

For any $W \subset \mathbb{R}^{n}, W^{\perp} \subset \mathbb{R}^{n}$ is a a rubspracee $. \quad \operatorname{dim} W+\operatorname{dim} W^{\perp}=n$

For A man matrix, \quad| $(\text { null } A)^{\perp}=\operatorname{row} A$ | \mathbb{R}^{n} |
| :--- | :--- |
| $(\operatorname{col} A)^{1}=$ null $A^{T} \subset \mathbb{R}^{m}$ | |

Ex: Let $W=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right) \subset \mathbb{R}^{3}$. Q: fud a basis for W^{\perp}.
都 \vec{u}_{2}
Sol:

$$
\vec{x}=S \underbrace{\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]}_{\vec{v}} \Rightarrow\{\vec{v}\}-\text { baris for } W^{\perp} \text {. }
$$

Orthogonal projection onto a line
For $\vec{v}, \vec{u} \in \mathbb{R}^{n}, \vec{u} \neq \overrightarrow{0}$, we can decompose $\vec{v}=\hat{\vec{v}}+\vec{z}$

$$
\begin{aligned}
& \hat{\vec{v}}=\alpha \vec{u} \\
& \text { some belt } \rightarrow \vec{v}=\alpha \vec{u}+\vec{z} \\
& \rightarrow \vec{v} \cdot \vec{u}=\alpha \vec{u} \cdot \vec{u}+0 \rightarrow \alpha=\vec{v} \vec{u} \cdot \vec{u} \cdot \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\operatorname{pog}_{\vec{u}} \vec{v}
\end{aligned}
$$

Also, denote $\vec{z}=\vec{v}-$ pros $_{\vec{u}} \vec{v}=:$ peep \vec{v} $\underbrace{p e c p a v}_{\operatorname{pos}_{a v}} \vec{u}$

Thus: $\vec{v}=\underbrace{\operatorname{proj}_{\vec{u}} \vec{v}}_{\| \vec{u}}+\underbrace{\operatorname{perp}_{\vec{u}} \vec{v}}_{\perp \vec{u}}$

$$
\begin{aligned}
& W=\operatorname{col}(\underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]}_{A}) \Rightarrow W^{\perp}=\text { hull } A^{\top}=\operatorname{RRE} F(\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]}_{B}) \\
& \text { ang.mat. of } B \vec{x}=\overrightarrow{0}:\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & \left.\right|^{\rho} \\
0 & 1 & 1 & 0
\end{array}\right]^{B} \quad \begin{array}{ll}
x_{1}=0 \\
x_{2}=-s
\end{array} \\
& x_{1} x_{2} x_{3} \quad x_{3}=5
\end{aligned}
$$

Rem $\operatorname{proj}_{\vec{u}} \vec{v}=\operatorname{proj}_{\mathrm{C}} \overrightarrow{\vec{v}}$ for any $c \neq 0$. So, it is actually a projection onto the line $L=s_{1} \operatorname{lan}^{(\vec{u})}$.
Ex: $\vec{v}=\left[\begin{array}{l}7 \\ 6\end{array}\right], \vec{u}=\left[\begin{array}{l}4 \\ 2\end{array}\right] \quad$ Qi fud $\operatorname{proj}_{\vec{u}} \vec{v}, \operatorname{perp}_{\vec{u}} \vec{v}$
Sol: $\operatorname{prog}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u}=\frac{40}{20}\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{l}8 \\ 4\end{array}\right] ; \operatorname{perp}_{\vec{u}} \overrightarrow{\vec{v}}=\vec{v}-\operatorname{prog}_{\vec{u}} \vec{v}=\left[\begin{array}{l}7 \\ 6\end{array}\right]-\left[\begin{array}{l}8 \\ 4\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
Q: And the distance from \vec{v} to $L=\operatorname{span}(\vec{u})$.
Sol: $\quad \operatorname{dist}(\vec{v}, L)=\operatorname{dist}(\vec{v}, \underbrace{\operatorname{prog}_{L} \vec{v}}_{\text {corot pout to }})=\|\quad\| \quad$ peep $\vec{v}\|=\|\left[\begin{array}{c}-1 \\ 2\end{array}\right] \|=\sqrt{5}$

