LAST TIME
IVP for $n^{- \text {th }}$ order linear ODE:
(z.ll 4.1.1)

$$
\left\{\begin{array}{l}
a_{n}(x) \frac{d^{n} y}{d x^{+}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \\
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{array}\right.
$$

Thy (Existence and uniqueness for linear ODE s)
Let $a_{n}(x), \ldots, a_{0}(x), g(x)$ be conthuows on an interval I and let $a_{n}(x) \neq 0$ for every $x \in I$. If $x_{0} \in I$, then a solution $y(x)$ of the IVP
exists on I aid is unique.

Ex: $\left\{\begin{array}{l}\sin (x) y^{\prime \prime}+\frac{1}{x-2} y=1 \\ y(1)=0, y^{\prime}(1)=1\end{array}\right.$

So, sal. exists and is unique for $x \in(0,2)$.
linear ODES
possible points of discontinuity of the solution can be identited by fading points of divcontivity of coefficients $a_{1} \cdots a_{1}, g$ (and zees of a_{0}),
-can fund the interval of existence without soling the eq. explicitly.
non-linear ODEs
\leftarrow canon be! (ad (can depend on the initicondition)

$$
E_{x}:\left\{\begin{array}{l}
y^{\prime}=y^{2} \rightarrow \frac{d y}{y^{2}}=d x \Rightarrow-y^{-1}=x+c \Rightarrow y=\frac{-1}{x+c} \\
y(0)=1 \\
y 1=\frac{-1}{0+c} \Rightarrow c=-1 \Rightarrow y=\frac{1}{1-x} \text { solutes }
\end{array}\right.
$$

interval of existence $I=(-\infty, 1)$
pout $x=1$ is not remadkablein any way fin the en!
in fact: $\left\{\begin{array}{l}y^{\prime}=y^{2} \\ y(0)=y_{0}\end{array} \Rightarrow y=\frac{y_{0}}{1-y_{0} x}\right.$
interval of existence: $I=\left(-\infty, \frac{1}{y_{0}}\right)$ if $y_{0}>0$,

$$
I=\left(\frac{1}{y_{0}}, \infty\right) \text { if } y_{0}<0 \text {. }
$$

Second order linear homogeneous ODEs (z.ll 4.1.2)
$n^{\text {-th }}$ order ODE of the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

is said to be "homogeneous."
The (superposition principle)
Let y_{1}, \ldots, y_{k} be solutions of a homog ODE on an interval I.
Then the linear combination $y=c_{1} y_{1}(x)+\ldots+c_{k} y_{k}(x)$, where c_{1}, \ldots, c_{k} are arbitrary constants, is also a solution on I.

Corollary a) if $y_{1}(x)$ is a sol. of $(*)$, a constant multiple $c y_{1}(x)$ is also a solution.
Ex: $\quad y^{\prime \prime}-y=0$ has solutions $y_{1}=e^{x}, y_{2}=e^{-x}$
Thus $y=c_{1} e^{x}+c_{2} e^{-x}$ is a sol. for any c_{1}, c_{2}

- we are interested in a linearly independent set of solutions $\left\{y_{,}, \ldots, y_{n}\right\}$ of $(*)$
def Let $f_{1}(x), \ldots, f_{n}(x)$ be functor s povessing at least $n-1$ derivatives each. The determinant $W\left(f_{1}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}f_{1}^{\prime} & f_{2} & \cdots & f_{n} \\ f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\ \vdots & \vdots & & \vdots \\ f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}\end{array}\right|$
is called the Wronskian of the functions.
Them (criterion for (near independence of solutions)
Let y_{1}, \ldots, y_{n} be n solutions of $n^{- \text {th }}$ order linear ODE on an interval I.
Then the set of sol. is lin. independent on I ff $W\left(y_{1}, \ldots, y_{n}\right) \neq 0$ for ever $x \in I$.
In fact $W\left(y_{1}, \ldots, y_{n}\right)$:s either zero everywhere on I or nonzero evegublere on I.

Abel's theorem: if y_{1}, \ldots, y_{n}-solutions of $a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{0}(x)=0$, then $W\left(y_{\left.1, \ldots, y_{n}\right)}=C e^{-\int \frac{a_{n-1}(x)}{a_{n}(x)} d x} \quad\right.$ for some constant C.

Ex: $y_{1}=\sin x, y_{2}=\cos x$-twos solutions of $y^{\prime \prime}+y=0$

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\sin x & \cos x \\
(\sin x)^{\prime} & \cos x)^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|=-1 \quad \text { fo } \quad \text { fo any } x .
$$

So, y_{1} and y_{2} are lin. independent.
def Any set y_{1}, \ldots, y_{n} of n lin.indep. solution of $n^{-{ }^{\text {th }} \text { order lin homog. ODE (*) }}$ on an interval I is said to be a fundamental set of solutions (FSS) on I.
The A fund. set of sol of $(*)$ exists on an interval I (where a_{i}^{\prime} s are cont., $a_{n} \neq 0$)
The Let y_{1}, \ldots, y_{n} be a FSS of $(*)$ on I.
Then the general solution of $(*)$ on I is
$y=c_{1} y_{1}(x)+\ldots+c_{n} y_{1}(x) \quad$ where c_{1}, \ldots, c_{n} are arbitrary constants.
Ex: $y_{1}=x^{1 / 2}, y_{2}=x^{-1}$ too sol. of $2 x^{2} y^{\prime \prime}+3 x y^{\prime}-y=0$ on $I=(0, \infty)$

$$
\begin{aligned}
& W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x^{1 / 2} & x^{-1} \\
\frac{1}{2} x^{-1 / 2} & -x^{-2}
\end{array}\right|=-x^{-3 / 2}-\frac{1}{2} x^{-3 / 2}=-\frac{3}{2} x^{-3 / 2} \hat{} \neq 0 \\
& \Rightarrow y_{1}, y_{2}-a \text { RS } x>0
\end{aligned}
$$

Thus, $y=c_{1} x^{1 / 2}+c_{2} x^{-1}$-general sol of on $(0,+\infty) ~_{\text {on }}$ or

Aside: consider the lin. transformation cont. functions on I
(comectiontolin.aly.) functions on I with n cont.dervatives
$L: C^{n}(I) \longrightarrow C^{0}(I)$

- "differential operator"
with $L(y(x))=a_{n}(x) \frac{d^{n} y}{d x^{n}}+\ldots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y$
Then $\{$ solutions of $(*)\}=\operatorname{ker}(L)-$ subspace of $C^{n}(I)$ of dimension n
$F S S=$ basis for $\operatorname{ker}(L)$.

Reduction of order (Bill 4.2)
$2^{\text {nd }}$ order lin. homog. ODE $\quad a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0$
Suppere we know one solution y_{1}. We want to look hor a second, lin. indep from y_{1}, solution y_{2} as $y_{2}=u(x) y_{1}$. Subsituting $y_{2}=u y_{1}$, (\#), we find u.

Ex: $y^{\prime \prime}-y=0, y_{1}=e^{x}$ is a sol. on $(-\infty, \infty)$. Use reduction of oder to find a second sol. y_{2}.
Sol: $y=u(x) y_{1}=u(x) e^{x} \rightarrow y^{\prime}=u^{\prime} e^{x}+u e^{x}$

$$
\begin{aligned}
\rightarrow y^{\prime \prime} & =u^{\prime \prime} e^{x}+u^{\prime} e^{x}+u^{\prime} e^{x}+u e^{x} \\
& =u^{\prime \prime} e^{x}+2 u^{\prime} e^{x}+u e^{x}
\end{aligned}
$$

$$
\Rightarrow y^{\prime \prime}-y=e^{x}\left(u^{\prime \prime}+2 u^{\prime}\right)=0
$$

$\rightarrow \omega=C_{1} e^{-2 x} \quad$ or $\quad u^{\prime}=C_{1} e^{-2 x}$
$\underset{\text { int. }: x}{\longrightarrow} u=-\frac{1}{2} c_{1} e^{-2 x}+c_{2} \rightarrow y=u y_{1}=-\frac{1}{2} c_{1} e^{-x}+c_{2} e^{x}(* *)$ choose $c_{1}=-2, c_{2}=0: y_{2}=e^{-x}$

$$
W\left(e^{x}, e^{-x}\right)=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2 \neq 0 \Rightarrow\left\{y, y_{2}\right\} \text {.ES } \Rightarrow(x *) \text { :s }
$$

the general sol of $y^{\prime \prime}-y^{\circ}$ on

