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Plan of the talk

Background: topological field theory

Hidden algebraic structure on cohomology of simplicial complexes
coming from TFT

One-dimensional simplicial Chern-Simons theory

Topological field theory on manifolds with boundary
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Atiyah’s axioms

Axioms of an n-dimensional topological quantum field theory.
(Atiyah’88)
Data:

1 To a closed (n− 1)-dimensional manifold B a TFT associates a
vector space HB (the “space of states”).

2 To a n-dimensional cobordism Σ : B1 → B2 a TFT associates a
linear map ZΣ : HB1 → HB2 (the “partition function”).

3 Representation of Diff(B) on HB .
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Atiyah’s axioms

Axioms:

(a) Multiplicativity “t → ⊗ ”:

HB1tB2 = HB1 ⊗HB2 , ZΣ1tΣ2 = ZΣ1 ⊗ ZΣ2

(b) Gluing axiom: for cobordisms Σ1 : B1 → B2, Σ2 : B2 → B3,

ZΣ1∪B2Σ2 = ZΣ2 ◦ ZΣ1

(c) Normalization: H∅ = C.

(d) Diffeomorphisms of Σ constant on ∂Σ do not change ZΣ. Under
general diffeomorphisms, ZΣ transforms equivariantly.

Remarks:

A closed n-manifold Σ can be viewed as a cobordism ∅ Σ−→ ∅, so
ZΣ : C→ C is a multiplication by a complex number – a
diffeomorphism invariant of Σ.

An n-TFT (H, Z) is a functor of symmetric monoidal categories
Cobn → VectC, with diffeomorphisms acting by natural
transformations.

Reference: M. Atiyah, Topological quantum field theories, Publications
Mathématiques de l’IHÉS, 68 (1988) 175–186.
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Background: Lagrangian TFTs

A. S. Schwarz’78: path integral of the form

ZΣ =
∫
FΣ

DX e
i
~S(X)

with S a local functional on FΣ (a space of sections of a sheaf over Σ),
invariant under Diff(Σ), can produce a topological invariant of Σ (when
it can be defined, e.g. through formal stationary phase expression at
~→ 0).
Example: Let Σ be odd-dimensional, closed, oriented; let E be an
acyclic local system, FΣ = Ωr(Σ, E)⊕ Ωdim Σ−r−1(Σ, E∗) with
0 ≤ r ≤ dim Σ− 1, and with the action

S =
∫

Σ

〈b ∧, da〉

The corresponding path integral can be defined and yields the
Ray-Singer torsion of Σ with coefficients in E.

Reference: A. S. Schwarz, The partition function of degenerate
quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2, 3
(1978) 247–252.
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Background: Lagrangian TFTs

Witten’89: Let Σ be a compact, oriented, framed 3-manifold, G – a
compact Lie group, P = Σ×G the trivial G-bundle over Σ. Set
FΣ = Conn(P ) ' g⊗ Ω1(Σ) – the space of connections in P ;
g = Lie(G). For A a connection, set

SCS(A) = trg

∫
Σ

1
2
A ∧ dA+

1
3
A ∧A ∧A

– the integral of the Chern-Simons 3-form. Consider

ZΣ(k) =
∫

Conn(P )

DA e
ik
2πSCS(A)

for k = 1, 2, 3, . . . (i.e. ~ = 2π
k ). For closed manifolds, Z(Σ, k) is an

interesting invariant, calculable explicitly through surgery. E.g. for
G = SU(2), Σ = S3, the result is

ZS3(k) =

√
2

k + 2
sin
(

π

k + 2

)
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Background: Lagrangian TFTs

The space of states HB corresponding to a surface B is the geometric
quantization of the moduli space of local systems Hom(π1(B), G)/G
with Atiyah-Bott symplectic structure.
For a knot γ : S1 ↪→ Σ, Witten considers the expectation value

W (Σ, γ, k) = ZΣ(k)−1

∫
Conn(P )

DA e
ik
2πSCS(A) trR hol(γ∗A)

where R is a representation of G. In case G = SU(2), Σ = S3, this
expectation value yields the value of Jones’ polynomial of the knot at the

point q = e
iπ
k+2 .

Reference: E. Witten, Quantum field theory and the Jones polynomial,
Comm. Math. Phys. 121 (1989), 351–399.
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Background: Lagrangian TFTs

Axelrod-Singer’94: Perturbation theory (formal stationary phase
expansion at ~→ 0) for Chern-Simons theory on a closed, oriented,
framed 3-manifold rigorously constructed.
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Background: Lagrangian TFTs

Zpert
Σ (A0, ~) = e

i
~SCS(A0) τ(Σ, A0) e

iπ
2 η(Σ,A0,g) eic(~)Sgrav(g)·

· exp

 i

~
∑

connected 3−valent graphs Γ

(i~)l(Γ)

|Aut(Γ)|

∫
ConfV (Γ)(Σ)

∏
edges

π∗e1e2η


where

A0 is a fixed acyclic flat connection, g is an arbitrary Riemannian
metric,
τ(Σ, A0) is the Ray-Singer torsion, η(Σ, A0, g) is the Atiyah’s
eta-invariant,
V (Γ) and l(Γ) are the number of vertices and the number of loops
of a graph,
Confn(Σ) is the Fulton-Macpherson-Axelrod-Singer compactification
of the configuration space of n-tuple distinct points on Σ,
η ∈ Ω2(Conf2(Σ)) is the propagator, a parametrics for the
Hodge-theoretic inverse of de Rham operator, d/(dd∗ + d∗d),
πij : Confn(Σ)→ Conf2(Σ) – forgetting all points except i-th and
j-th.
Sgrav(g) is the Chern-Simons action evaluated on the Levi-Civita
connection, c(~) ∈ C[[~]].
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Background: Lagrangian TFTs

Remarks:

Expression for logZ is finite in each order in ~: given as a finite
sum of integrals of smooth forms over compact manifolds.

Propagator depends on the choice of metric g, but the whole
expression does not depend on g.

Reference: S. Axelrod, I. M. Singer, Chern-Simons perturbation theory.
I. Perspectives in mathematical physics, 17–49, Conf. Proc. Lecture
Notes Math. Phys., III, Int. Press, Cambridge, MA (1994);
Chern-Simons perturbation theory. II. J. Differential Geom. 39, 1 (1994)
173–213.
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Comments & Problems

Comments:

Explicit examples of Atiyah’s 3-TFTs were constructed by
Reshetikhin-Turaev’91 and Turaev-Viro’92 from representation
theory of quantum groups at roots of unity.

Main motivation to study TFTs is that they produce invariants of
manifolds and knots.

Example of a different application: use of the 2-dimensional Poisson
sigma model on a disc in Kontsevich’s deformation quantization of
Poisson manifolds (Kontsevich’97, Cattaneo-Felder’00).
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Comments & Problems

Problems:

1 Witten’s treatment of Chern-Simons theory is not completely
mathematically transparent (use of path integral as a “black box”
which is assumed to have certain properties); Axelrod-Singer’s
treatment is transparent, but restricted to closed manifolds:
perturbative Chern-Simons theory as Atiyah’s TFT is not yet
constructed.

2 Reshetikhin-Turaev invariants are conjectured to coincide
asymptotically with the Chern-Simons partition function.

3 Construct a combinatorial model of Chern-Simons theory on
triangulated manifolds, retaining the properties of a perturbative
gauge theory and yielding the same manifold invariants.
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Program

Program/logic of the exposition:

Simplicial BF theory (P.M.)

(→ hidden algebraic structure on cohomology of simplicial complexes)y
One-dimensional simplicial Chern-Simons theory

(with A. Alekseev)y
Perturbative TFT on manifolds with boundary

(→ Euler-Lagrange moduli spaces: supergeometric structures, gluing,

cohomological quantization. Gluing formulae for quantum invariants.)

(partially complete, with A. Cattaneo and N. Reshetikhin)y
Perturbative TFT on manifolds with corners (in progress)
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Background: simplicial complexes, cohomological operations

Simplicial complex T

y
Simplicial cochains C0(T )→ · · · → Ctop(T ),

Ck(T ) = Span{k − simplices},

dk : Ck(T )→ Ck+1(T ), eσ︸︷︷︸
basis cochain

7→
∑

σ′∈T : σ∈faces(σ′)

±eσ′y
Cohomology H•(T ), Hk(T ) = ker dk / im dk−1

— a homotopy invariant of T
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Background: simplicial complexes, cohomological operations
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Background: simplicial complexes, cohomological operations
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Background: simplicial complexes, cohomological operations

Cohomology carries a commutative ring structure, coming from
(non-commutative) Alexander’s product for cochains.

Massey operations on cohomology are a complete invariant of rational
homotopy type in simply connected case (Quillen-Sullivan), i.e.
rationalized homotopy groups Q⊗ πk(T ) can be recovered from them.

Example of use: linking of Borromean rings
is detected by a non-vanishing Massey operation
on cohomology of the complement.
m3([α], [β], [γ]) = [u ∧ γ + α ∧ v] ∈ H2

where [α], [β], [γ] ∈ H1, du = α ∧ β, dv = β ∧ γ.
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Background: simplicial complexes, cohomological operations

Another example: nilmanifold

M = H3(R)/H3(Z)

=


 1 x z

0 1 y
0 0 1

 | x, y, z ∈ R

 /


 1 a c

0 1 b
0 0 1

 | a, b, c ∈ Z


Denote

α = dx, β = dy, u = dz − y dx ∈ Ω1(M)

Important point: α ∧ β = du. The cohomology is spanned by classes

[1]︸︷︷︸
degree 0

, [α], [β]︸ ︷︷ ︸
degree 1

, [α ∧ u], [β ∧ u]︸ ︷︷ ︸
degree 2

, [α ∧ β ∧ u]︸ ︷︷ ︸
degree 3

and
m3([α], [β], [β]) = [u ∧ β] ∈ H2(M)

is a non-trivial Massey operation.
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Result

Fix g a unimodular Lie algebra (i.e. with tr[x, •] = 0 for any x ∈ g).

Main construction (P.M.)

Simplicial complex Tylocal formula

Unimodular L∞ algebra structure on g⊗ C•(T )yhomotopy transfer

Unimodular L∞ algebra structure on g⊗H•(T )

Main theorem (P.M.)

Unimodular L∞ algebra structure on g⊗H•(T ) (up to isomorphisms) is
an invariant of T under simple homotopy equivalence.

horn filling collapse to a horn
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Result

Main construction (P.M.)

Simplicial complex Tylocal formula

Unimodular L∞ algebra structure on g⊗ C•(T )yhomotopy transfer

Unimodular L∞ algebra structure on g⊗H•(T )

Thom’s problem: lifting ring structure on H•(T ) to a commutative
product on cochains. Removing g, we get a homotopy commutative
algebra on C•(T ). This is an improvement of Sullivan’s result with
cDGA structure on cochains = Ωpoly(T ).

Local formulae for Massey operations.

Our invariant is strictly stronger than rational homotopy type.
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Result

References:

P. Mnev, Discrete BF theory, arXiv:0809.1160

P. Mnev, Notes on simplicial BF theory, Moscow Mathematical
Journal 9, 2 (2009), 371–410
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Unimodular L∞ algebras

Definition

A unimodular L∞ algebra is the following collection of data:

(a) a Z-graded vector space V •,

(b) “classical operations” ln : ∧nV → V , n ≥ 1,

(c) “quantum operations” qn : ∧nV → R, n ≥ 1,

subject to two sequences of quadratic relations:

1
∑
r+s=n

1
r!s! lr+1(•, · · · , •, ls(•, · · · , •)) = 0, n ≥ 1

(anti-symmetrization over inputs implied),

2 1
n!Str ln+1(•, · · · , •,−)+
+
∑
r+s=n

1
r!s!qr+1(•, · · · , •, ls(•, · · · , •)) = 0

Note:

First classical operation satisfies (l1)2 = 0, so (V •, l1) is a complex.

A unimodular L∞ algebra is in particular an L∞ algebra (as
introduced by Lada-Stasheff), by ignoring qn.

Unimodular Lie algebra is the same as unimodular L∞ algebra with
l6=2 = q• = 0.
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Unimodular L∞ algebras

An alternative definition

A unimodular L∞ algebra is a graded vector space V endowed with

a vector field Q on V [1] of degree 1,

a function ρ on V [1] of degree 0,

satisfying the following identities:

[Q,Q] = 0, div Q = Q(ρ)
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Homotopy transfer

Homotopy transfer theorem (P.M.)

If (V, {ln}, {qn}) is a unimodular L∞ algebra and V ′ ↪→ V is a
deformation retract of (V, l1), then

1 V ′ carries a unimodular L∞ structure given by

l′n =
∑

Γ0

1
|Aut(Γ0)| : ∧nV ′ → V ′

q′n =
∑

Γ1

1
|Aut(Γ1)| +

∑
Γ0

1
|Aut(Γ0)| : ∧nV ′ → R

where Γ0 runs over rooted trees with n leaves and Γ1 runs over
1-loop graphs with n leaves.

Decorations:
leaf i : V ′ ↪→ V root p : V � V ′

edge −s : V • → V •−1 (m+ 1)-valent vertex lm
cycle super-trace over V m-valent ◦-vertex qm

where s is a chain homotopy, l1 s+ s l1 = id− i p.

2 Algebra (V ′, {l′n}, {q′n}) changes by isomorphisms under changes of
induction data (i, p, s).
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Algebraic structure on simplicial cochains

Locality of the algebraic structure on simplicial cochains

lTn (Xσ1eσ1 , · · · , Xσneσn) =
∑

σ∈T : σ1,...,σn∈faces(σ)

l̄σn(Xσ1eσ1 , · · · , Xσneσn)eσ

qTn (Xσ1eσ1 , · · · , Xσneσn) =
∑

σ∈T : σ1,...,σn∈faces(σ)

q̄σn(Xσ1eσ1 , · · · , Xσneσn)

Notations: eσ – basis cochain for a simplex σ, X• ∈ g, Xeσ := X ⊗ eσ.

σ1

σ2 σ
T

Here l̄σn : ∧n(g⊗ C•(σ))→ g, q̄σn : ∧n(g⊗ C•(σ))→ R are universal
local building blocks, depending on dimension of σ only, not on
combinatorics of T .
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Building blocks

Zero-dimensional simplex σ = [A]:
l̄2(XeA, Y eA) = [X,Y ], all other operations vanish.

One-dimensional simplex σ = [AB]:

l̄n+1(X1eAB , · · · , XneAB , Y eB) =
Bn
n!

∑
θ∈Sn

[Xθ1 , · · · , [Xθn , Y ] · · · ]

l̄n+1(X1eAB , · · · , XneAB , Y eA) = (−1)n+1Bn
n!

∑
θ∈Sn

[Xθ1 , · · · , [Xθn , Y ] · · · ]

q̄n(X1eAB , · · · , XneAB) =
Bn
n · n!

∑
θ∈Sn

trg [Xθ1 , · · · , [Xθn , •] · · · ]

where B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, . . . are
Bernoulli numbers.
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Building blocks

Higher-dimensional simplices, σ = ∆N , N ≥ 2: l̄n, q̄n are given by a
regularized homotopy transfer formula for transfer
g⊗ Ω•(∆N )→ g⊗ C•(∆N )

, with

i= representation of cochains by Whitney elementary forms,

p= integration over faces,

s = Dupont’s chain homotopy operator.

l̄σn
q̄σn

}
(Xσ1eσ1 , · · · , Xσneσn) =

∑
Γ

C(Γ)σσ1···σnJacobig(Γ;Xσ1 , · · · , Xσn)

where Γ runs over binary rooted trees with n leaves for l̄σn and
over trivalent 1-loop graphs with n leaves for q̄σn;
C(Γ)σσ1···σn ∈ R are structure constants.
There are explicit formulae for structure constants for small n.
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Building blocks

Higher-dimensional simplices, σ = ∆N , N ≥ 2: l̄n, q̄n are given by a
regularized homotopy transfer formula for transfer
g⊗ Ω•(∆N )→ g⊗ C•(∆N ), with

i= representation of cochains by Whitney elementary forms,

p= integration over faces,

s = Dupont’s chain homotopy operator.

l̄σn
q̄σn

}
(Xσ1eσ1 , · · · , Xσneσn) =
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Γ

C(Γ)σσ1···σnJacobig(Γ;Xσ1 , · · · , Xσn)

where Γ runs over binary rooted trees with n leaves for l̄σn and
over trivalent 1-loop graphs with n leaves for q̄σn;
C(Γ)σσ1···σn ∈ R are structure constants.
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Summary & comments

Summary: logic of the construction

building blocks l̄n, q̄n on ∆Nycombinatorics of T

algebraic structure on cochainsyhomotopy transfer

algebraic structure on cohomology

Operations ln on g⊗H•(T ) are Massey brackets on cohomology
and are a complete invariant of rational homotopy type in
simply-connected case.

Operations qn on g⊗H•(T ) give a version of Reidemeister
torsion of T .

Construction above yields new local combinatorial formulae for
Massey brackets (in other words: Massey brackets lift to a local
algebraic structure on simplicial cochains).
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Example: quantum operations

Example: for a circle and a Klein bottle, H•(S1) ' H•(KB) as rings,
but g⊗H•(S1) 6' g⊗H•(KB) as unimodular L∞ algebras
(distinguished by quantum operations).

e
∑
n

1
n! qn(X⊗ε,···X⊗ε) =

detg

(
sinh

adX
2

adX
2

)
detg

(
adX

2 · coth adX
2

)−1

for S1 for Klein bottle

where ε ∈ H1 – generator, X ∈ g – variable.



Introduction uL∞ structure on simplicial cohomology TFT perspective BV formalism 1D Chern-Simons TFT with boundary

Example: Massey bracket on the nilmanifold, combinatorial calculation

Triangulation of the nilmanifold:

A A’

B B’

C C’

D D’

one 0-simplex: A=B=C=D=A’=B’=C’=D’
seven 1-simplices: AD=BC=A’D’=B’C’,
AA’=BB’=CC’=DD’, AB=DC=D’B’,
AC=A’B’=D’C’, AB’=DC’, AD’=BC’, AC’
twelve 2-simplices: AA’B’=DD’C’, AB’B=DC’C,
AA’D’=BB’C’, AD’D=BC’C, ACD=AB’D’,
ABC=D’B’C’, AB’D’, AC’D’, ACC’, ABC’
six 3-simplices: AA’B’D’, AB’C’D’,
ADC’D’, ABB’C’, ABCC’, ACDC’

Massey bracket on H1:

l3(X ⊗ [α], Y ⊗ [β], Z ⊗ [β]) =

=
1
2

lT2
lT2

X ⊗ α

Y ⊗ β
Z ⊗ β
−sT +

1
6

lT3

X ⊗ α

Y ⊗ β

Z ⊗ β

+ permutations of inputs

= ([[X,Y ], Z] + [[X,Z], Y ])⊗ [η] ∈ g⊗H2(T )

where sT = d∨/(dd∨ + d∨d);
α = eAC + eAD + eAC′ + eAD′ , β = eAA′ + eAB′ + eAC′ + eAD′

– representatives of cohomology classes [α], [β] in simplicial cochains.
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Simplicial program

Simplicial program for TFTs: Given a TFT on a manifold M with
space of fields FM and action SM ∈ C∞(FM )[[~]], construct an exact
discretization associating to a triangulation T of M a fin.dim. space FT
and a local action ST ∈ C∞(FT )[[~]], such that partition function ZM
and correlation functions can be obtained from (FT , ST ) by fin.dim.
integrals. Also, if T ′ is a subdivision of T , ST is an effective action for
ST ′ .

M

TFT

partition function

M M
T’ T

(invariant of M)
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BF theory

Example of a TFT for which the exact discretization exists:
BF theory:

fields: FM = g⊗ Ω1(M)︸ ︷︷ ︸
A

⊕ g∗ ⊗ ΩdimM−2(M)︸ ︷︷ ︸
B

,

action: SM =
∫
M
〈B ∧, dA+A ∧A〉,

equations of motion: dA+A ∧A = 0, dAB = 0.
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Algebra – TFT dictionary

Algebra – TFT dictionary

de Rham algebra g⊗ Ω•(M) BF theory
(as a dg Lie algebra)
unimodular L∞ algebra BF∞ theory, F = V [1]⊕ V ∗[−2],
(V, {ln}, {qn}) S =

∑
n

1
n! 〈B, ln(A, · · · , A)〉+

+~
∑
n

1
n!qn(A, · · · , A)

quadratic relations on operations Batalin-Vilkoviski master equation
∆︸︷︷︸
∂
∂A

∂
∂B

eS/~ = 0

homotopy transfer effective action eS
′/~ =

∫
L⊂F ′′ e

S/~,
V → V ′ F = F ′ ⊕ F ′′
choice of chain homotopy s gauge-fixing

(choice of Lagrangian L ⊂ F ′′)
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BV algebras

Batalin-Vilkovisky formalism

References: I. A. Batalin, G. A. Vilkovisky, Gauge algebra and
quantization, Phys. Lett. B 102, 1 (1981) 27–31;
A. S. Schwarz, Geometry of Batalin-Vilkovisky quantization, Comm.
Math. Phys. 155 2 (1993) 249–260.

Motivation: resolution of the problem of degenerate critical loci in
perturbation theory (“gauge-fixing”).

Definition

A BV algebra (A, ·, {, },∆) is a unital Z-graded commutative algebra
(A•, ·, 1) endowed with:

a degree 1 Poisson bracket {, } : A⊗A→ A — a bi-derivation of ·,
satisfying Jacobi identity (i.e. (A, ·, {, }) is a Gerstenhaber algebra),

a degree 1 operator (“BV Laplacian”) ∆ : A• → A•+1 satisfying

∆2 = 0, ∆(1) = 0, ∆(a·b) = (∆a)·b+(−1)|a|a·(∆b)+(−1)|a|{a, b}
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BV algebras

Examples:

1 For F a Z-graded manifold endowed with a degree −1 symplectic
form ω and a “consistent” volume element µ (the data (F , ω, µ) is
called an “SP -manifold”), the ring of functions A = C∞(F) carries
a BV algebra structure, with pointwise multiplication ·, and with

{f, g} = f̌g, ∆f =
1
2

divµf̌

where f̌ is the Hamiltonian vector field for f defined by ιf̌ω = df .

Consistency condition on µ: ∆2 = 0.

2 Special case of the above when (F , ω) is a degree −1 symplectic
graded vector space and µ is the translation-invariant volume
element.

3 Polyvector fields on a manifold M carrying a volume element ρ, with
opposite grading:

A• = V−•(M), · = ∧, {, } = [, ]NS , ∆ = divρ

— this correspond to setting F = T ∗[−1]M in (1).
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QME

Definition

Element S ∈ A0[[~]] is said to satisfy Batalin-Vilkovisky quantum master
equation (QME), if

∆e
i
~S = 0

or equivalently in Maurer-Cartan form:

1
2
{S, S} − i~∆S = 0

Two solutions of QME, S and S′ are said to be equivalent (related by a
canonical transformation) if

e
i
~S
′

= e
i
~S + ∆

(
e
i
~SR

)
for some generator R ∈ A−1[[~]]. For infinitesimal transformations:

S′ = S + {S,R} − i~∆R
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BV integrals

Fix an SP -manifold (F , ω, µ). Given a solution of QME S ∈ C∞(F)[[~]]
and a Lagrangian submanifold L ⊂ F , one constructs the BV integral:

ZS,L =
∫
L
e
i
~S

BV-Stokes theorem (Batalin-Vilkovisky-Schwarz)

1 If L,L′ ⊂ F are two Lagrangian submanifolds that can be connected
by a smooth family of Lagrangian submanifolds, then

ZS,L = ZS,L′

2 If S and S′ are equivalent, then

ZS,L = ZS′,L
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Effective BV actions

Let (F = F ′ ×F ′′, ω = ω′ + ω′′, µ = µ′ × µ′′) be a product of two
SP -manifolds and S a solution of QME on F . Define the effective BV
action S′ on F ′ by the fiberwise BV integral

e
i
~S
′

=
∫
L′′⊂F ′′

e
i
~S

where L′′ is a Lagrangian submanifold of F ′′.

Theorem (P.M.)

1 Effective BV action S′ satisfies QME on F ′.
2 If L′′, L̃′′ are two Lagrangian submanifolds of F ′′ that can be

connected by a smooth family of Lagrangian submanifolds, then
corresponding effective actions are equivalent.

3 If S, S̃ are two equivalent solutions of QME on F , then the
corresponding effective actions on F ′ are equivalent.
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Effective BV actions

Thus the effective BV action construction defines the push-forward

(solutions of QME on F)/equivalenceyfiberwise BV integral

(solutions of QME on F ′)/equivalence
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One-dimensional Chern-Simons theory on circle

One-dimensional simplicial Chern-Simons theory

Reference: A. Alekseev, P. Mnev, One-dimensional Chern-Simons
theory, Comm. in Math. Phys. 307 1 (2011) 185–227

Continuum theory on a circle. Fix (g, 〈, 〉) be a quadratic
even-dimensional Lie algebra.

Space of fields: F = Πg⊗ Ω0(S1)︸ ︷︷ ︸
ψ

⊕ g⊗ Ω1(S1)︸ ︷︷ ︸
A

– a Z2-graded

manifold with an odd symplectic structure coming from Poincaré
duality on S1: ω =

∫
S1〈δψ ∧, δA〉

Action: S(ψ,A) =
∫
S1〈ψ ∧, dψ + [A,ψ]〉

Effective BV action on cochains of triangulated circle.
Denote TN the triangulation of S1 with N vertices. Discrete space of
fields:

FTN = Πg⊗ C0(TN )⊕ g⊗ C1(TN )
with coordinates {ψk ∈ Πg, Ak ∈ g}Nk=1 and odd symplectic form

ωTN =
N∑
k=1

〈
δ

(
ψk + ψk+1

2

)
︸ ︷︷ ︸

ψ̃k

, δAk

〉



Introduction uL∞ structure on simplicial cohomology TFT perspective BV formalism 1D Chern-Simons TFT with boundary

One-dimensional Chern-Simons theory on circle

Explicit simplicial Chern-Simons action on cochains of triangulated
circle:

STN =

= −
1

2

N∑
k=1

(
(ψk, ψk+1) +

1

3
(ψk, adAkψk) +

1

3
(ψk+1, adAkψk+1) +

1

3
(ψk, adAkψk+1)

)
+

+
1

2

N∑
k=1

(ψk+1 − ψk,
(

1− R(adAk )

2

(
1

1 + µk(A′)
−

1

1 + R(adAk )

)
1− R(adAk )

2R(adAk )
+

+(adAk )
−1

+
1

12
adAk −

1

2
coth

adAk
2

)
◦ (ψk+1 − ψk))+

+
1

2

N∑
k′=1

k′+N−1∑
k=k′+1

(−1)
k−k′

(ψk+1 − ψk,
1− R(adAk )

2
R(adAk−1 ) · · ·R(adA

k′
)·

·
1

1 + µk′ (A
′)
·

1− R(adA
k′

)

2R(adA
k′

)
◦ (ψk′+1 − ψk′ ))+

+ ~
1

2
trg log

(1 + µ•(A
′
))

n∏
k=1

 1

1 + R(adAk )
·

sinh
adAk

2
adAk

2


where

R(A) = −
A−1 + 1

2 −
1
2 coth A2

A−1 − 1
2 −

1
2 coth A2

, µk(A
′
) = R(adAk−1 )R(adAk−2 ) · · ·R(adAk+1 )R(adAk )
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One-dimensional Chern-Simons theory on circle

Questions:

Why such a long formula?

It is not simplicially local (there are monomials involving distant
simplices). How to disassemble the result into contributions of
individual simplices?

How to check quantum master equation for STN explicitly?

Simplicial aggregations should be given by finite-dimensional BV
integrals; how to check that?
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1D simplicial Chern-Simons as Atiyah’s TFT

1D simplicial Chern-Simons as Atiyah’s TFT

Set

ζ( ψ̃︸︷︷︸
∈Πg

, A︸︷︷︸
∈g

) = (i~)−
dim g

2

∫
Πg

Dλ exp

(
−

1

2~
〈ψ̂, [A, ψ̂]〉+ 〈λ, ψ̂ − ψ̃〉

)
∈ Cl(g)

where {ψ̂a} are generators of the Clifford algebra Cl(g),

ψ̂aψ̂b + ψ̂bψ̂a = ~δab
Element ζ can be used as a building block (partition function for an
interval with standard triangulation) for 1D Chern-Simons as Atiyah’s
TFT on triangulated 1-cobordisms Θ, with

Partition functions
ZΘ ∈ C∞(Πg⊗ C1(Θ)⊕ g⊗ C1(Θ)︸ ︷︷ ︸

FΘ

)⊗ Cl(g)⊗ #{intervals},

For a disjoint union, ZΘ1tΘ2 = ZΘ1 ⊗ ZΘ2 ,

For a concatenation of two triangulated intervals,
ZΘ1∪Θ2 = ZΘ1 ∗ ZΘ2 – Clifford product,

For the closure of a triangulated interval Θ into a triangulated circle
Θ′, ZΘ′ = StrCl(g)ZΘ – Clifford supertrace.
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1D simplicial Chern-Simons as Atiyah’s TFT

Theorem (A.Alekseev, P.M.)

1 For a triangulated circle,

ZTN = StrCl(g)

(
ζ(ψ̃N , AN ) ∗ · · · ∗ ζ(ψ̃1, A1)

)
= e

i
~STN

2 For a triangulated interval, the partition function satisfies the
modified quantum master equation

~∆ΘZΘ +
1
~

[
1
6
〈ψ̂, [ψ̂, ψ̂]〉, ZΘ

]
Cl(g)

= 0

where ∆Θ =
∑
k

∂
∂ψ̃k

∂
∂Ak

.

3 Simplicial action on triangulated circle STN satisfies the usual BV

quantum master equation, ∆TN e
i
~STN = 0.

The space of states for a point. Fix a complex polarization
g⊗ C = h⊕ h̄. Then one has an isomorphism
ρ : Cl(g)→ C∞(Πh)⊗ C∞(Πh̄) Thus we set

Hpt+ = C∞(Πh), Hpt− = C∞(Πh̄) ' (Hpt+)∗
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1D simplicial Chern-Simons as Atiyah’s TFT

The building block ζ can be written as a path integral with boundary
conditions:

ρ(ζ)(ηout︸︷︷︸
∈Πh

, η̄in︸︷︷︸
∈Πh̄

; ψ̃, A) =
∫
πψ(1) = ηout,
π̄ψ(0) = η̄in,∫ 1

0 dt ψ = ψ̃

Dψ e
i
~
∫ 1
0 〈ψ

∧, dψ+[Adt,ψ]〉

where π : gC → h, π̄ : gC → h̄ are the projections to the two terms in
gC ' h⊕ h̄.
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BV-BFV formalism

Classical BV structure for gauge theory on a closed manifold:
A graded manifold F (space of fields) endowed with

a cohomological vector field Q of degree 1, Q2 = 0,

a degree −1 symplectic form ω,

a degree 0 Hamiltonian function S generating the cohomological
vector field: δS = ιQω

Extension to manifolds with boundary (“BV-BFV formalism”).
To a manifold Σ with boundary ∂Σ a gauge theory associates:

Boundary BFV data: a graded manifold F∂ endowed with

a degree 1 cohomological vector field Q∂ ,
a degree 0 exact symplectic form ω∂ = δα∂ ,
a degree 1 Hamiltonian S∂ generating Q∂ , i.e. Q∂ = {S∂ , •}ω∂ .

Bulk BV data: a graded manifold F endowed with

a degree 1 cohomological vector field Q,
a projection π : F → F∂ which is a Q-morphism, i.e. dπ(Q) = Q∂ ,
a degree −1 symplectic form ω,
a degree 0 function S satisfying δS = ιQω + π∗α∂ .

Reference: A. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories
on manifolds with boundary, arXiv:1201.0290
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BV-BFV formalism

Euler-Lagrange spaces.
One can define coisotropic submanifolds EL ⊂ F , EL∂ ⊂ F∂ as zero loci
of Q and Q∂ respectively. For “nice” theories, the “evolution relation”
L = π(EL) ⊂ EL∂ ⊂ F∂ is Lagrangian.
Reduction: EL moduli spaces.
One can quotient Euler-Lagrange spaces by the distribution induced from
the cohomological vector field to produce EL moduli spaces M = EL/Q,
M∂ = EL/Q∂ . They carry the following structure induced from BV-BFV
structure on fields:

map π∗ :M→M∂ ,

M∂ is degree 0 symplectic, M is degree 1 Poisson,

image of π∗ is Lagrangian, fibers of π∗ comprise the symplectic
foliation of M,

a line bundle L over M∂ with connection ∇ of curvature being the
symplectic form on M∂ ,

a horizontal section of the pull-back bundle (π∗)∗L.
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BV-BFV formalism

A simple example: abelian Chern-Simons theory on a 3-manifold Σ
with boundary.

F = Ω•(Σ), S =
1
2

∫
Σ

A ∧ dA, ω =
1
2

∫
Σ

δA ∧ δA,

F∂ = Ω•(∂Σ), S∂ =
1
2

∫
∂Σ

A∂ ∧ dA∂ , α∂ =
1
2

∫
∂Σ

A∂ ∧ δA∂

Euler-Lagrange spaces: EL = Ω•closed(Σ), EL∂ = Ω•closed(∂Σ).
EL moduli spaces: M = H•(Σ), M∂ = H•(∂Σ).
Non-abelian Chern-Simons theory. EL moduli spaces are (derived
versions of) the moduli spaces of flat G-bundles over Σ and ∂Σ.
Remarks:

One can introduce the third EL moduli space Mrel, so that the
triple (Mrel,M,M∂) supports long exact sequence for tangent
spaces, Lefschetz duality, Meyer-Vietoris type gluing.
EL moduli spaces come with a cohomological description,
M = SpecHQ(C∞(F)) which is particularly useful for quantization.
(E.g. we get a simple cohomological description of Verlinde space,
arising as the geometric quantization of the moduli space of local
systems).
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BV-BFV formalism

Idea of quantization.
Take a foliation of F∂ by Lagrangian submanifolds. Each leaf of the
foliation is a valid boundary condition for bulk fields in the path integral.
Space of states is constructed as

H∂Σ = Fun{space of leaves of the foliation}

with a differential Ŝ∂ . Partition function, constructed by the path
integral, is a function of the leaf and of the bulk zero-modes (i.e.
function on fiber of π∗ :M→M∂), and is expected to satisfy a version
of quantum master equation:

(∆bulk z.m. + Ŝ∂)ZΣ = 0
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BV-BFV formalism

Developments

Axelrod-Singer’s perturbative treatment of Chern-Simons on closed
manifolds extended to non-acyclic background flat connections. Algebraic
model of Chern-Simons based on dg Frobenius algebras studied.
Reference: A. Cattaneo, P. Mnev, Remarks on Chern-Simons invariants,
Comm. in Math. Phys. 293 3 (2010) 803-836

Global perturbation theory for Poisson sigma model studied from the
standpoint of formal geometry of the target. Genus 1 partition function
with Kähler target is shown yield Euler characteristic of the target.
Reference: F. Bonechi, A. Cattaneo, P. Mnev, The Poisson sigma model
on closed surfaces, JHEP 99 1 (2012) 1-27

A class of generalized Wilson loop observables constructed via BV
push-forward of the transgression of a Hamiltonian Q-bundle over the
target to the mapping space.
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BV-BFV formalism

Program

Construct perturbative quantization of TFTs in the BV-BFV
formalism as a (far-reaching) extension of Axelrod-Singer’s
construction. Possible application: link between Reshetikhin-Turaev
invariant and Chern-Simons theory.

Study applications to invariants of manifolds and knots consistent
with surgery. (In particular, study the extension of gluing formulae
for cohomology and Ray-Singer torsion to higher perturbative
invariants, e.g. Axelrod-Singer and Bott-Cattaneo invariants of
3-manifolds.)

Further study of EL moduli spaces (and their geometric
quantization) from the point of view of derived symplectic geometry.

Extend the construction to allow manifolds with corners; compare
the results with Baez-Dolan-Lurie axioms for extended TFTs.
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