BV pushforwards and exact discretizations in topological field theory

Pavel Mnev

Max Planck Institute for Mathematics, Bonn

Antrittsvorlesung, University of Zurich, February 29, 2016

Manifold \longrightarrow Invariants of the manifold

Manifold $M \quad$ Algebra associated to M

Field theory on M \longrightarrow

Invariants of M

Manifold $M \quad$ Algebra associated to M

Field theory on M \qquad Invariants of M Upper right way: algebraic topology (Poincaré, de Rham,...) Lower left way: mathematical physics/topological field theory (Schwarz, Witten, Kontsevich,...)

Manifold $M \quad$ Algebra associated to M

Field theory on M \qquad Invariants of M Lower left way: mathematical physics/topological field theory (Schwarz, Witten, Kontsevich,...) What happens when we replace M with its combinatorial description? (E.g. a triangulation)

Pushforward in probability theory:

$y=F(x)$
x has probability distribution μ implies y has probability distribution $F_{*} \mu$.

Examples:

(1) Throw two dice. What is the distribution for the sum?
(2) Benford's law.

Pushforward in geometry: fiber integral.

Plan.

- From discrete forms on the interval to Batalin-Vilkovisky formalism
- Effective action (BV pushforward)
- Application to topological field theory

Appetizer/warm-up problem: discretize the algebra of differential forms on the interval $I=[0,1]$. De Rham algebra $\Omega^{\bullet}(I) \ni f(t)+g(t) \cdot d t$ with operations d, \wedge satisfying

- $d^{2}=0$
- Leibniz rule $d(\alpha \wedge \beta)=d \alpha \wedge \beta \pm \alpha \wedge d \beta$
- Associativity $(\alpha \wedge \beta) \wedge \gamma=\alpha \wedge(\beta \wedge \gamma)$

Also: super-commutativity $\alpha \wedge \beta= \pm \beta \wedge \alpha$.

The problem: construct the algebra structure on "discrete forms" (cellular cochains) $C^{\bullet}(I)=\operatorname{Span}\left(e_{0}, e_{1}, e_{01}\right) \ni a \cdot e_{0}+b \cdot e_{1}+c \cdot e_{01}$ with same properties.
Represent generators by forms

$$
i: \quad e_{0} \mapsto 1-t, \quad e_{1} \mapsto t, \quad e_{01} \mapsto d t
$$

And define a projection

$$
p: \quad f(t)+g(t) \cdot d t \quad \mapsto \quad f(0) \cdot e_{0}+f(1) \cdot e_{1}+\left(\int_{0}^{1} g(\tau) d \tau\right) \cdot e_{01}
$$

Construct d and \wedge on C^{\bullet} :

- $d=p \circ d \circ i$, i.e.

$$
d\left(e_{0}\right)=-e_{01}, \quad d\left(e_{1}\right)=e_{01}, \quad d\left(e_{01}\right)=0
$$

- $\alpha \wedge \beta=p(i(\alpha) \wedge i(\beta))$, i.e.

$$
e_{0} \wedge e_{0}=e_{0}, e_{1} \wedge e_{1}=e_{1}, e_{0} \wedge e_{01}=\frac{1}{2} e_{01}, e_{1} \wedge e_{01}=\frac{1}{2} e_{01}, e_{01} \wedge e_{01}=0
$$

d, \wedge satisfy $d^{2}=0$, Leibniz, but associativity fails:

$$
e_{0} \wedge\left(e_{0} \wedge e_{01}\right) \neq\left(e_{0} \wedge e_{0}\right) \wedge e_{01}
$$

However, one can introduce a trilinear operation m_{3} such that

$$
\begin{aligned}
& \alpha \wedge(\beta \wedge \gamma)-(\alpha \wedge \beta) \wedge \gamma= \\
& \quad=d m_{3}(\alpha, \beta, \gamma) \pm m_{3}(d \alpha, \beta, \gamma) \pm m_{3}(\alpha, d \beta, \gamma) \pm m_{3}(\alpha, \beta, d \gamma)
\end{aligned}
$$

- "associativity up to homotopy".
m_{3} itself satisfies

$$
\left[\wedge, m_{3}\right]=-\left[d, m_{4}\right]
$$

for some 4-linear operation m_{4} etc.

- a sequence of operations $\left(m_{1}=d, m_{2}=\wedge, m_{3}, m_{4}, \ldots\right)$ satisfying a sequence of homotopy associativity relations - an A_{∞} algebra structure on $C^{\bullet}(I)$.

Aside: A_{∞} algebras

Definition (Stasheff)

An A_{∞} algebra is:
(1) a \mathbb{Z}-graded vector space V^{\bullet},
(2) a set of multilinear operations $m_{n}: V^{\otimes n} \rightarrow V, n \geq 1$,
satisfying the set of quadratic relations

$$
\sum_{q+r+s=n} m_{q+s+1}(\underbrace{\bullet, \cdots, \bullet}_{q}, m_{r}(\underbrace{\bullet, \cdots, \bullet}_{r}), \underbrace{\bullet, \cdots, \bullet}_{s})=0
$$

Aside: A_{∞} algebras

Definition (Stasheff)

An A_{∞} algebra is:
(1) a \mathbb{Z}-graded vector space V^{\bullet},
(2) a set of multilinear operations $m_{n}: V^{\otimes n} \rightarrow V, n \geq 1$,
satisfying the set of quadratic relations

$$
\sum_{q+r+s=n} m_{q+s+1}(\underbrace{\bullet, \cdots, \bullet}_{q}, m_{r}(\underbrace{\bullet, \cdots, \bullet}_{r}), \underbrace{\bullet, \cdots, \bullet}_{s})=0
$$

Remark:

- Case $m_{\neq 2}=0$ - associative algebra.
- Case $m_{\neq 1,2}=0$ - differential graded associative algebra (DGA).

Aside: A_{∞} algebras

Definition (Stasheff)

An A_{∞} algebra is:
(1) a \mathbb{Z}-graded vector space V^{\bullet},
(2) a set of multilinear operations $m_{n}: V^{\otimes n} \rightarrow V, n \geq 1$,
satisfying the set of quadratic relations

$$
\sum_{q+r+s=n} m_{q+s+1}(\underbrace{\bullet, \cdots, \bullet}_{q}, m_{r}(\underbrace{\bullet, \cdots, \bullet}_{r}), \underbrace{\bullet, \cdots, \bullet}_{s})=0
$$

Remark:

- Case $m_{\neq 2}=0$ - associative algebra.
- Case $m_{\neq 1,2}=0$ - differential graded associative algebra (DGA). Examples:
(1) Singular cochains of a topological space $C_{\text {sing }}^{\bullet}(X)-$ non-commutative DGA.
(2) De Rham algebra of a manifold $\Omega^{\bullet}(M)$ - super-commutative DGA.

Motivating example: Cohomology of a top. space $H^{\bullet}(X)$ carries a natural A_{∞} algebra structure, with

- $m_{1}=0$,
- m_{2} the cup product,
- m_{3}, m_{4}, \cdots the (higher) Massey products on $H^{\bullet}(X)$.

Motivating example: Cohomology of a top. space $H^{\bullet}(X)$ carries a natural A_{∞} algebra structure, with

- $m_{1}=0$,
- m_{2} the cup product,
- m_{3}, m_{4}, \cdots the (higher) Massey products on $H^{\bullet}(X)$.

Quillen, Sullivan: this A_{∞} structure encodes the data of rational homotopy type of X, i.e. rational homotopy groups $\mathbb{Q} \otimes \pi_{k}(X)$ can be recovered from $\left\{m_{n}\right\}$.

Homotopy transfer theorem for A_{∞} algebras (Kadeishvili, Kontsevich-Soibleman)

If $\left(V^{\bullet},\left\{m_{n}\right\}\right)$ is an A_{∞} algebra and $V^{\prime} \hookrightarrow V$ a deformation retract of (V, m_{1}), then V^{\prime} carries an A_{∞} structure with
$m_{n}^{\prime}=\sum_{T}$

$$
:\left(V^{\prime}\right)^{\otimes n} \rightarrow V^{\prime}
$$

where T runs over rooted trees with n leaves.

Homotopy transfer theorem for A_{∞} algebras (Kadeishvili, Kontsevich-Soibleman)

If $\left(V^{\bullet},\left\{m_{n}\right\}\right)$ is an A_{∞} algebra and $V^{\prime} \hookrightarrow V$ a deformation retract of (V, m_{1}), then V^{\prime} carries an A_{∞} structure with
$m_{n}^{\prime}=\sum_{T}$

$$
:\left(V^{\prime}\right)^{\otimes n} \rightarrow V^{\prime}
$$

where T runs over rooted trees with n leaves.
Decorations:

leaf	$i: V^{\prime} \hookrightarrow V$	root	$p: V \rightarrow V^{\prime}$
edge	$-s: V^{\bullet} \rightarrow V^{\bullet-1}$	$(k+1)$-valent vertex	m_{k}

where s is a chain homotopy, $m_{1} s+s m_{1}=\mathrm{id}-i p$.
Example: $V=\Omega^{\bullet}(M), d, \wedge$ the de Rham algebra of a Riemannian manifold (M, g),
$V^{\prime}=H^{\bullet}(M)$ de Rham cohomology realized by harmonic forms. Induced (transferred) A_{∞} algebra gives Massey products.

Back to the A_{∞} algebra on cochains of the interval.
Explicit answer for algebra operations:

$$
m_{n+1}(\underbrace{e_{01}, \ldots, e_{01}}_{k}, e_{1}, \underbrace{e_{01}, \ldots, e_{01}}_{n-k})= \pm\binom{ n}{k} \cdot B_{n} \cdot e_{01}
$$

(and similarly for $e_{1} \leftrightarrow e_{0}$), where $B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \ldots$ are Bernoulli numbers, i.e. coefficients of $\frac{x}{e^{x}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!} x^{n}$.

Back to the A_{∞} algebra on cochains of the interval.

Explicit answer for algebra operations:

$$
m_{n+1}(\underbrace{e_{01}, \ldots, e_{01}}_{k}, e_{1}, \underbrace{e_{01}, \ldots, e_{01}}_{n-k})= \pm\binom{ n}{k} \cdot B_{n} \cdot e_{01}
$$

(and similarly for $e_{1} \leftrightarrow e_{0}$), where
$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \ldots$ are Bernoulli numbers,
i.e. coefficients of $\frac{x}{e^{x}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!} x^{n}$.

References: X. Z. Cheng, E. Getzler, Transferring homotopy commutative algebraic structures. Journal of Pure and Applied Algebra 212.11 (2008) 2535-2542.
R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, arXiv:math/0610949.
P. Mnev, Notes on simplicial BF theory, Moscow Math. J 9.2 (2009) 371-410.

Back to the A_{∞} algebra on cochains of the interval.

Explicit answer for algebra operations:

$$
m_{n+1}(\underbrace{e_{01}, \ldots, e_{01}}_{k}, e_{1}, \underbrace{e_{01}, \ldots, e_{01}}_{n-k})= \pm\binom{ n}{k} \cdot B_{n} \cdot e_{01}
$$

(and similarly for $e_{1} \leftrightarrow e_{0}$), where
$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \ldots$ are Bernoulli numbers,
i.e. coefficients of $\frac{x}{e^{x}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!} x^{n}$.

References: X. Z. Cheng, E. Getzler, Transferring homotopy commutative algebraic structures. Journal of Pure and Applied Algebra 212.11 (2008) 2535-2542.
R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, arXiv:math/0610949.
P. Mnev, Notes on simplicial BF theory, Moscow Math. J 9.2 (2009) 371-410.
This is a special case of homotopy transfer of algebraic structures (Kontsevich-Soibelman,...), $\left(\Omega^{\bullet}(I), d, \wedge\right) \rightarrow\left(C^{\bullet}(I), m_{1}, m_{2}, m_{3}, \cdots\right)$.

Back to the A_{∞} algebra on cochains of the interval.

Explicit answer for algebra operations:

$$
m_{n+1}(\underbrace{e_{01}, \ldots, e_{01}}_{k}, e_{1}, \underbrace{e_{01}, \ldots, e_{01}}_{n-k})= \pm\binom{ n}{k} \cdot B_{n} \cdot e_{01}
$$

(and similarly for $e_{1} \leftrightarrow e_{0}$), where
$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, \ldots$ are Bernoulli numbers,
i.e. coefficients of $\frac{x}{e^{x}-1}=\sum_{n \geq 0} \frac{B_{n}}{n!} x^{n}$.

References: X. Z. Cheng, E. Getzler, Transferring homotopy commutative algebraic structures. Journal of Pure and Applied Algebra 212.11 (2008) 2535-2542.
R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, arXiv:math/0610949.
P. Mnev, Notes on simplicial BF theory, Moscow Math. J 9.2 (2009) 371-410.
This is a special case of homotopy transfer of algebraic structures (Kontsevich-Soibelman,...), $\left(\Omega^{\bullet}(I), d, \wedge\right) \rightarrow\left(C^{\bullet}(I), m_{1}, m_{2}, m_{3}, \cdots\right)$. Another point of view (Losev-P.M.): this result comes from a calculation of a particular path integral, and Bernoulli numbers arise as values of certain Feynman diagrams!

Allow coefficients of cochains to be matrices $N \times N$, or elements of a more general Lie algebra \mathfrak{g}. Then we get an L_{∞} algebra structure on $C^{\bullet}(I, \mathfrak{g})$, with skew-symmetric multilinear operations $\left(l_{1}=d, l_{2}=[],, l_{3}, l_{4}, \ldots\right)$ satisfying a sequence of homotopy Jacobi identities.

$$
\Omega^{\bullet}(I) \otimes \mathfrak{g}, d, \quad[\hat{,}] \quad \longrightarrow \quad C^{\bullet}(I) \otimes \mathfrak{g},\left\{l_{n}\right\}_{n \geq 1}
$$

Allow coefficients of cochains to be matrices $N \times N$, or elements of a more general Lie algebra \mathfrak{g}. Then we get an L_{∞} algebra structure on $C^{\bullet}(I, \mathfrak{g})$, with skew-symmetric multilinear operations
($\left.l_{1}=d, l_{2}=[],, l_{3}, l_{4}, \ldots\right)$ satisfying a sequence of homotopy Jacobi identities.

$$
\Omega^{\bullet}(I) \otimes \mathfrak{g}, d, \quad[\hat{,}] \quad \longrightarrow \quad C^{\bullet}(I) \otimes \mathfrak{g}, \quad\left\{l_{n}\right\}_{n \geq 1}
$$

Definition (Lada-Stasheff)

An L_{∞} algebra is:
(1) a \mathbb{Z}-graded vector space V^{\bullet},
(2) a set of skew-symmetric multilinear operations $l_{n}: \wedge^{n} V \rightarrow V$, $n \geq 1$,
satisfying the set of quadratic relations

$$
\sum_{r+s=n} \frac{1}{r!s!} l_{r+1}(\underbrace{\bullet, \cdots, \bullet}_{r}, l_{s}(\underbrace{\bullet, \cdots, \bullet}_{s}))=0
$$

with skew-symmetrization over all inputs implied.

An L_{∞} algebra structure on a graded vector space V^{\bullet} can be packaged into a generating function (the master action)

$$
S(A, B)=\sum_{n \geq 1} \frac{1}{n!}\langle B, l_{n}(\underbrace{A, \ldots, A}_{n})\rangle
$$

where $A, B \in V[1] \oplus V^{*}[-2]$ are the variables - fields. Quadratic relations on operations l_{n} are packaged into the Batalin-Vilkoviski (classical) master equation

$$
\{S, S\}=0
$$

where $\{f, g\}=\sum_{i} \frac{\partial f}{\partial A^{i}} \frac{\partial g}{\partial B_{i}}-\frac{\partial f}{\partial B_{i}} \frac{\partial g}{\partial A^{i}}$ is the odd Poisson bracket.

Several classes of algebraic/geometric structures can be packaged into solutions of the master equation (allowing for different parities of $\{$,$\} ,$ S):

- Lie and L_{∞} algebras
- quadratic Lie and cyclic L_{∞} algebras
- representation of a Lie algebra, "representation up to homotopy"
- Lie algebroids
- Courant algebroids
- Poisson manifolds
- differential graded manifolds
- coisotropic submanifold of a symplectic manifold

Classical master equation (CME) $\{S, S\}=0$ is the leading term of the Quantum master equation (QME)

$$
\left\{S_{\hbar}, S_{\hbar}\right\}-2 i \hbar \Delta S_{\hbar} \quad \Leftrightarrow \quad \Delta e^{\frac{i}{\hbar} S_{\hbar}}=0
$$

on $S_{\hbar}=S+S^{(1)} \hbar+S^{(2)} \hbar^{2}+\cdots \in C^{\infty}($ Fields $)[[\hbar]]$, where

$$
\Delta=\sum_{i} \frac{\partial}{\partial A^{i}} \frac{\partial}{\partial B_{i}}
$$

is the BV odd Laplacian.

Classical master equation (CME) $\{S, S\}=0$ is the leading term of the Quantum master equation (QME)

$$
\left\{S_{\hbar}, S_{\hbar}\right\}-2 i \hbar \Delta S_{\hbar} \quad \Leftrightarrow \quad \Delta e^{\frac{i}{\hbar} S_{\hbar}}=0
$$

on $S_{\hbar}=S+S^{(1)} \hbar+S^{(2)} \hbar^{2}+\cdots \in C^{\infty}($ Fields $)[[\hbar]]$, where

$$
\Delta=\sum_{i} \frac{\partial}{\partial A^{i}} \frac{\partial}{\partial B_{i}}
$$

is the BV odd Laplacian.
Example. (P.M.) Solution of CME corresponding to the discrete forms on the interval extends (uniquely!) to a solution of QME:

$$
\begin{aligned}
& S_{\hbar}=\left\langle B_{0}, \frac{1}{2}\left[A_{0}, A_{0}\right]\right\rangle+\left\langle B_{1}, \frac{1}{2}\left[A_{1}, A_{1}\right]\right\rangle+ \\
+ & \left\langle B_{01},\left[A_{01}, \frac{A_{0}+A_{1}}{2}\right]+\mathrm{F}\left(\left[A_{01}, \bullet\right]\right) \circ\left(A_{1}-A_{0}\right)\right\rangle \underbrace{-i \hbar \log \operatorname{det}_{\mathfrak{g}} \mathrm{G}\left(\left[A_{01}, \bullet\right]\right)}_{\hbar-\text { correction }}
\end{aligned}
$$

where

$$
\mathrm{F}(x)=\frac{x}{2} \operatorname{coth} \frac{x}{2}, \quad \mathrm{G}(x)=\frac{2}{x} \sinh \frac{x}{2}
$$

Classical master equation (CME) $\{S, S\}=0$ is the leading term of the Quantum master equation (QME)

$$
\left\{S_{\hbar}, S_{\hbar}\right\}-2 i \hbar \Delta S_{\hbar} \quad \Leftrightarrow \quad \Delta e^{\frac{i}{\hbar} S_{\hbar}}=0
$$

on $S_{\hbar}=S+S^{(1)} \hbar+S^{(2)} \hbar^{2}+\cdots \in C^{\infty}($ Fields $)[[\hbar]]$, where

$$
\Delta=\sum_{i} \frac{\partial}{\partial A^{i}} \frac{\partial}{\partial B_{i}}
$$

is the BV odd Laplacian.
Example. (P.M.) Solution of CME corresponding to the discrete forms on the interval extends (uniquely!) to a solution of QME:

$$
\begin{aligned}
& S_{\hbar}=\left\langle B_{0}, \frac{1}{2}\left[A_{0}, A_{0}\right]\right\rangle+\left\langle B_{1}, \frac{1}{2}\left[A_{1}, A_{1}\right]\right\rangle+ \\
+ & \left\langle B_{01},\left[A_{01}, \frac{A_{0}+A_{1}}{2}\right]+\mathrm{F}\left(\left[A_{01}, \bullet\right]\right) \circ\left(A_{1}-A_{0}\right)\right\rangle \underbrace{-i \hbar \log \operatorname{det}_{\mathfrak{g}} \mathrm{G}\left(\left[A_{01}, \bullet\right]\right)}_{\hbar-\text { correction }}
\end{aligned}
$$

where

$$
\mathrm{F}(x)=\frac{x}{2} \operatorname{coth} \frac{x}{2}, \quad \mathrm{G}(x)=\frac{2}{x} \sinh \frac{x}{2}
$$

S_{\hbar} generates the unimodular (or quantum) L_{∞} structure on $C^{\bullet}\left(I_{,} \mathfrak{g}\right)$.

Definition (Granåker, P.M.)

A unimodular L_{∞} algebra is:

- an L_{∞} algebra $V,\left\{l_{n}\right\}_{n \geq 1}$, endowed additionally with
- "quantum operations" $q_{n}: \wedge^{n} V \rightarrow \mathbb{R}, n \geq 1$,
satisfying, in addition to L_{∞} relations,
$\frac{1}{n!} \operatorname{Str}^{l_{n+1}}(\bullet, \cdots, \bullet,-)+$
$+\sum_{r+s=n} \frac{1}{r!s!} q_{r+1}\left(\bullet, \cdots, \bullet, l_{s}(\bullet, \cdots, \bullet)\right)=0$
(with inputs skew-symmetrized).

Summary of BV structure:

- \mathbb{Z}-graded vector space of fields \mathcal{F},
- symplectic structure (BV 2-form) ω on \mathcal{F} of degree $\operatorname{gh} \omega=-1$ induces $\{$,$\} and \Delta$ on $C^{\infty}(\mathcal{F})$,
- action $S \in C^{\infty}(\mathcal{F})[[\hbar]]$ - a solution of QME

$$
\Delta e^{\frac{i}{\hbar} S}=0
$$

Construction (Costello, Losev, P.M.): pushforward of solutions of QME - BV pushforward/effective BV action/fiber BV integral. Let

- $\mathcal{F}=\mathcal{F}^{\prime} \oplus \mathcal{F}^{\prime \prime}$ - splitting compatible with $\omega=\omega^{\prime} \oplus \omega^{\prime \prime}$,
- $\mathcal{L} \subset \mathcal{F}^{\prime \prime}$ a Lagrangian subspace

Construction (Costello, Losev, P.M.): pushforward of solutions of QME - BV pushforward/effective BV action/fiber BV integral. Let

- $\mathcal{F}=\mathcal{F}^{\prime} \oplus \mathcal{F}^{\prime \prime}$ - splitting compatible with $\omega=\omega^{\prime} \oplus \omega^{\prime \prime}$,
- $\mathcal{L} \subset \mathcal{F}^{\prime \prime}$ a Lagrangian subspace

Define $S^{\prime} \in C^{\infty}\left(\mathcal{F}^{\prime}\right)[[\hbar]]$ by

$$
e^{\frac{i}{\hbar} S^{\prime}\left(x^{\prime} ; \hbar\right)}=\int_{\mathcal{L} \ni x^{\prime \prime}} e^{\frac{i}{\hbar} S\left(x^{\prime}+x^{\prime \prime} ; \hbar\right)}
$$

Construction (Costello, Losev, P.M.): pushforward of solutions of QME - BV pushforward/effective BV action/fiber BV integral.
Let

- $\mathcal{F}=\mathcal{F}^{\prime} \oplus \mathcal{F}^{\prime \prime}$ - splitting compatible with $\omega=\omega^{\prime} \oplus \omega^{\prime \prime}$,
- $\mathcal{L} \subset \mathcal{F}^{\prime \prime}$ a Lagrangian subspace

Define $S^{\prime} \in C^{\infty}\left(\mathcal{F}^{\prime}\right)[[\hbar]]$ by

$$
e^{\frac{i}{\hbar} S^{\prime}\left(x^{\prime} ; \hbar\right)}=\int_{\mathcal{L} \ni x^{\prime \prime}} e^{\frac{i}{\hbar} S\left(x^{\prime}+x^{\prime \prime} ; \hbar\right)}
$$

Remark: to make sense of this, we need reference half-densities $\mu, \mu^{\prime}, \mu^{\prime \prime}$ on $\mathcal{F}, \mathcal{F}^{\prime}, \mathcal{F}^{\prime \prime}$ with $\mu=\mu^{\prime} \cdot \mu^{\prime \prime}$. Correct formula:

$$
e^{\frac{i}{\hbar} S^{\prime}\left(x^{\prime} ; \hbar\right)} \mu^{\prime}=\int_{\mathcal{L} \ni x^{\prime \prime}} e^{\frac{i}{\hbar} S\left(x^{\prime}+x^{\prime \prime} ; \hbar\right)} \underbrace{\left.\mu\right|_{\mathcal{L}}}_{\left.\mu^{\prime} \cdot \mu^{\prime \prime}\right|_{\mathcal{L}}}
$$

Properties:

- If S satisfies QME on \mathcal{F} then S^{\prime} satisfies QME on on \mathcal{F}^{\prime},
- if \widetilde{S} is equivalent (homotopic) to S, i.e. $e^{\frac{i}{\hbar} \widetilde{S}}-e^{\frac{i}{\hbar} S}=\Delta(\cdots)$, then the corresponding BV pushforwards \widetilde{S}^{\prime} and S^{\prime} are equivalent.
- If $\widetilde{\mathcal{L}}$ is a Lagrangian homotopic to \mathcal{L} in $\mathcal{F}^{\prime \prime}$, then the corresponding BV pushforward \widetilde{S}^{\prime} is equivalent to S^{\prime} (obtained with \mathcal{L}).

Properties:

- If S satisfies QME on \mathcal{F} then S^{\prime} satisfies QME on on \mathcal{F}^{\prime},
- if \widetilde{S} is equivalent (homotopic) to S, i.e. $e^{\frac{i}{\hbar} \widetilde{S}}-e^{\frac{i}{\hbar} S}=\Delta(\cdots)$, then the corresponding BV pushforwards \widetilde{S}^{\prime} and S^{\prime} are equivalent.
- If $\widetilde{\mathcal{L}}$ is a Lagrangian homotopic to \mathcal{L} in $\mathcal{F}^{\prime \prime}$, then the corresponding BV pushforward \widetilde{S}^{\prime} is equivalent to S^{\prime} (obtained with \mathcal{L}).
Notation: $e^{\frac{i}{\hbar} S^{\prime}}=P_{*}^{(\mathcal{L})}\left(e^{\frac{i}{\hbar} S}\right)$.
(Here $P: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$.)

Example: Reidemeister torsion as BV pushforward.
Reference: P. Mnev, "Lecture notes on torsions," arXiv:1406.3705 [math.AT],
A. S. Cattaneo, P. Mnev, N. Reshetikhin, "Cellular BV-BFV-BF theory," in preparation.
Input: X - cellular complex, $\rho: \pi_{1}(X) \rightarrow O(m)$ local system.

Example: Reidemeister torsion as BV pushforward.
Reference: P. Mnev, "Lecture notes on torsions," arXiv:1406.3705 [math.AT],
A. S. Cattaneo, P. Mnev, N. Reshetikhin, "Cellular BV-BFV-BF theory," in preparation.
Input: X - cellular complex, $\rho: \pi_{1}(X) \rightarrow O(m)$ local system. Set $V^{\bullet}=C_{\rho}^{\bullet}(X)$ - cellular cochains with differential twisted by ρ.

Example: Reidemeister torsion as BV pushforward.
Reference: P. Mnev, "Lecture notes on torsions," arXiv:1406.3705 [math.AT],
A. S. Cattaneo, P. Mnev, N. Reshetikhin, "Cellular BV-BFV-BF theory," in preparation.
Input: X - cellular complex, $\rho: \pi_{1}(X) \rightarrow O(m)$ local system. Set $V^{\bullet}=C_{\rho}^{\bullet}(X)$ - cellular cochains with differential twisted by ρ. Define a BV system $\mathcal{F}=V[1] \oplus V^{*}[-2] \ni(A, B), S=\left\langle B, d_{\rho} A\right\rangle$. Induce onto cohomology $\mathcal{F}^{\prime}=H^{\bullet}[1] \oplus\left(H^{\bullet}\right)^{*}[-2]$.

Example: Reidemeister torsion as BV pushforward.

Result of BV pushforward:
$P_{*}\left(e^{\frac{i}{\hbar} S}\right)=\zeta \cdot \tau(X, \rho) \quad \in \operatorname{Dens}^{\frac{1}{2}} \mathcal{F}^{\prime} \cong \operatorname{Det} H^{\bullet} /\{ \pm 1\}$.

Example: Reidemeister torsion as BV pushforward.

Result of BV pushforward:
$P_{*}\left(e^{\frac{i}{\hbar} S}\right)=\zeta \cdot \tau(X, \rho) \quad \in \operatorname{Dens}^{\frac{1}{2}} \mathcal{F}^{\prime} \cong \operatorname{Det} H^{\bullet} /\{ \pm 1\}$.

- $\tau(X, \rho) \in \operatorname{Det} H^{\bullet} /\{ \pm 1\}$ - the Reidemeister torsion (an invariant of simple homotopy type of X, in particular invariant under subdivisions of X).
- $\zeta=(2 \pi \hbar)^{\frac{\text { dim } \mathcal{L}^{\text {even }}}{2}} \cdot\left(\frac{i}{\hbar}\right)^{\frac{\text { dim } \mathcal{L}^{\text {odd }}}{2}}=\frac{\xi^{H^{\bullet}}}{\xi^{\bullet}} \quad \in \mathbb{C}$. Here $\xi^{H^{\bullet}}=(2 \pi \hbar)^{\sum_{k}\left(-\frac{1}{4}-\frac{1}{2} k(-1)^{k}\right) \cdot \operatorname{dim} H^{k}} \cdot\left(e^{-\frac{\pi i}{2}} \hbar\right)^{\sum_{k}\left(\frac{1}{4}-\frac{1}{2} k(-1)^{k}\right) \cdot \operatorname{dim} H^{k}}$
- a topological invariant, $\xi^{C^{\bullet}}$ - "extensive" (multiplicative in numbers of cells).

Example: Reidemeister torsion as BV pushforward.

Result of BV pushforward:
$P_{*}\left(e^{\frac{i}{\hbar} S}\right)=\zeta \cdot \tau(X, \rho) \quad \in \operatorname{Dens}^{\frac{1}{2}} \mathcal{F}^{\prime} \cong \operatorname{Det} H^{\bullet} /\{ \pm 1\}$.

- $\tau(X, \rho) \in \operatorname{Det} H^{\bullet} /\{ \pm 1\}$ - the Reidemeister torsion (an invariant of simple homotopy type of X, in particular invariant under subdivisions of X).
- $\zeta=(2 \pi \hbar)^{\frac{\text { dim } \mathcal{L}^{\text {even }}}{2}} \cdot\left(\frac{i}{\hbar}\right)^{\frac{\text { dim } \mathcal{L}^{\text {odd }}}{2}}=\frac{\xi^{H^{\bullet}}}{\xi^{\bullet}} \quad \in \mathbb{C}$. Here $\xi^{H^{\bullet}}=(2 \pi \hbar)^{\sum_{k}\left(-\frac{1}{4}-\frac{1}{2} k(-1)^{k}\right) \cdot \operatorname{dim} H^{k}} \cdot\left(e^{-\frac{\pi i}{2}} \hbar\right)^{\sum_{k}\left(\frac{1}{4}-\frac{1}{2} k(-1)^{k}\right) \cdot \operatorname{dim} H^{k}}$
- a topological invariant, $\xi^{C^{\bullet}}$ - "extensive" (multiplicative in numbers of cells).
Thus

$$
P_{*}(e^{\frac{i}{\hbar} S} \cdot \underbrace{\xi^{C^{\bullet}}}_{\text {correction to } \mu})=\xi^{H^{\bullet}} \cdot \tau(X, \rho)
$$

— a topological invariant, contains a mod 16 phase.

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y)=B_{i j} x^{i} x^{j}$ non-degenerate bilinear form on $W, p(x)=\sum_{k} \frac{\left(p_{k}\right)_{i_{1} \cdots i_{k}}}{k!} x^{i_{1}} \cdots x^{i_{k}}$ a polynomial.

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y)=B_{i j} x^{i} x^{j}$ non-degenerate bilinear form on $W, p(x)=\sum_{k} \frac{\left(p_{k}\right)_{i_{1} \cdots i_{k}}}{k!} x^{i_{1}} \cdots x^{i_{k}}$ a polynomial. One has the following asymptotic equivalence as $\hbar \rightarrow 0$:

$$
\begin{aligned}
& \int_{W} d x \cdot e^{\frac{i}{\hbar}\left(\frac{1}{2} B(x, x)+p(x)\right)} \underset{\hbar \rightarrow 0}{\sim} \\
& \sim(2 \pi \hbar)^{\frac{1}{2} \operatorname{dim} W} e^{\frac{\pi i}{4} \operatorname{sgn}(B)} \cdot(\operatorname{det} B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i \hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}
\end{aligned}
$$

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y)=B_{i j} x^{i} x^{j}$ non-degenerate bilinear form on $W, p(x)=\sum_{k} \frac{\left(p_{k}\right)_{i_{1} \cdots i_{k}}}{k!} x^{i_{1}} \cdots x^{i_{k}}$ a polynomial. One has the following asymptotic equivalence as $\hbar \rightarrow 0$:

$$
\begin{aligned}
& \int_{W} d x \cdot e^{\frac{i}{\hbar}\left(\frac{1}{2} B(x, x)+p(x)\right)} \underset{\hbar \rightarrow 0}{\sim} \\
& \sim(2 \pi \hbar)^{\frac{1}{2} \operatorname{dim} W} e^{\frac{\pi i}{4} \operatorname{sgn}(B)} \cdot(\operatorname{det} B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i \hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}
\end{aligned}
$$

where Γ runs over connected graphs, Φ_{Γ} is the tensor contraction of

- $\left(B^{-1}\right)^{i j}$ assigned to edges
- $\left(p_{k}\right)_{i_{1} \cdots i_{k}}$ assigned to vertices of valence k (i_{1}, \ldots, i_{k} are labels on the incident half-edges).

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y)=B_{i j} x^{i} x^{j}$ non-degenerate bilinear form on $W, p(x)=\sum_{k} \frac{\left(p_{k}\right)_{i_{1} \cdots i_{k}}}{k!} x^{i_{1}} \cdots x^{i_{k}}$ a polynomial.
One has the following asymptotic equivalence as $\hbar \rightarrow 0$:

$$
\begin{aligned}
& \int_{W} d x \cdot e^{\frac{i}{\hbar}\left(\frac{1}{2} B(x, x)+p(x)\right)} \underset{\hbar \rightarrow 0}{\sim} \\
& \sim(2 \pi \hbar)^{\frac{1}{2} \operatorname{dim} W} e^{\frac{\pi i}{4} \operatorname{sgn}(B)} \cdot(\operatorname{det} B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i \hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}
\end{aligned}
$$

where Γ runs over connected graphs, Φ_{Γ} is the tensor contraction of

- $\left(B^{-1}\right)^{i j}$ assigned to edges
- $\left(p_{k}\right)_{i_{1} \cdots i_{k}}$ assigned to vertices of valence k (i_{1}, \ldots, i_{k} are labels on the incident half-edges).
This formula converts a measure theoretic object to an algebraic one!

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y)=B_{i j} x^{i} x^{j}$ non-degenerate bilinear form on $W, p(x)=\sum_{k} \frac{\left(p_{k}\right)_{i_{1} \cdots i_{k}}}{k!} x^{i_{1}} \cdots x^{i_{k}}$ a polynomial.
One has the following asymptotic equivalence as $\hbar \rightarrow 0$:

$$
\begin{aligned}
& \int_{W} d x \cdot e^{\frac{i}{\hbar}\left(\frac{1}{2} B(x, x)+p(x)\right)} \underset{\hbar \rightarrow 0}{\sim} \\
& \sim(2 \pi \hbar)^{\frac{1}{2} \operatorname{dim} W} e^{\frac{\pi i}{4} \operatorname{sgn}(B)} \cdot(\operatorname{det} B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i \hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}
\end{aligned}
$$

where Γ runs over connected graphs, Φ_{Γ} is the tensor contraction of

- $\left(B^{-1}\right)^{i j}$ assigned to edges
- $\left(p_{k}\right)_{i_{1} \cdots i_{k}}$ assigned to vertices of valence k (i_{1}, \ldots, i_{k} are labels on the incident half-edges).
This formula converts a measure theoretic object to an algebraic one! This gives a way to define (special) infinite-dimensional integrals in terms of "Feynman diagrams" Γ.

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra

associated BV package

unimodular DGLA
$V^{\bullet}, d,[$,

Homotopy transfer as BV pushforward (Losev, P.M.)
algebra
unimodular DGLA
$V^{\bullet}, d,[$,
associated BV package
"abstract BF theory"
$\xrightarrow[\text { function }]{\text { generating }}$
$S=\left\langle B, d A+\frac{1}{2}[A, A]\right\rangle$

Homotopy transfer as BV pushforward (Losev, P.M.)
algebra
$\xrightarrow[{V^{\bullet}, d,[,}]]{\text { unimodular DGLA }} \xrightarrow[\text { function }]{\text { generating }}$
associated BV package
"abstract BF theory"
$\mathcal{F}=V[1] \oplus V^{*}[-2]$,
$S=\left\langle B, d A+\frac{1}{2}[A, A]\right\rangle$
BV pushforward
induced " $B F_{\infty}$ theory"
$\mathcal{F}^{\prime}=V^{\prime}[1] \oplus\left(V^{\prime}\right)^{*}[-2]$,
$S^{\prime}=\langle B^{\prime}, \sum_{n \geq 1} \frac{1}{n!} l_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}})\rangle$
$-i \hbar \sum_{n \geq 1} \frac{1}{n!} q_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})$

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra
unimodular DGLA $V^{\bullet}, d,[$,
$\xrightarrow[\text { function }]{\text { generating }}$
associated BV package
"abstract BF theory"
$\mathcal{F}=V[1] \oplus V^{*}[-2]$,
$S=\left\langle B, d A+\frac{1}{2}[A, A]\right\rangle$
BV pushforward
induced " $B F_{\infty}$ theory"
$\mathcal{F}^{\prime}=V^{\prime}[1] \oplus\left(V^{\prime}\right)^{*}[-2]$,
$\underset{\left(V^{\prime}\right)^{\bullet},\left\{l_{n}^{\prime}\right\}_{n \geq 1},\left\{q_{n}^{\prime}\right\}_{n \geq 1}}{\text { unimodular } L_{\infty} \text { algebra }} \underset{\text { expansion }}{\text { Taylor }}$
$S^{\prime}=\langle B^{\prime}, \sum_{n \geq 1} \frac{1}{n!} l_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})\rangle$
$-i \hbar \sum_{n \geq 1} \frac{1}{n!} q_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})$

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra
associated BV package
homotopy transfer \downarrow

"abstract BF theory"
$\mathcal{F}=V[1] \oplus V^{*}[-2]$,
$S=\left\langle B, d A+\frac{1}{2}[A, A]\right\rangle$
BV pushforward
induced " $B F_{\infty}$ theory"
$\mathcal{F}^{\prime}=V^{\prime}[1] \oplus\left(V^{\prime}\right)^{*}[-2]$,
$\underset{\left(V^{\prime}\right)^{\bullet},\left\{l_{n}^{\prime}\right\}_{n \geq 1},\left\{q_{n}^{\prime}\right\}_{n \geq 1}}{\text { unimodular } L_{\infty} \text { algebra }} \underset{\text { expansion }}{\text { Taylor }}$

$$
S^{\prime}=\langle B^{\prime}, \sum_{n \geq 1} \frac{1}{n!} l_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})\rangle
$$

$$
-i \hbar \sum_{n \geq 1} \frac{1}{n!} q_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})^{n}
$$

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra
unimodular DGLA
$V^{\bullet}, d,[$,
homotopy transfer \downarrow
associated BV package
"abstract BF theory"
$\mathcal{F}=V[1] \oplus V^{*}[-2]$,
$S=\left\langle B, d A+\frac{1}{2}[A, A]\right\rangle$
BV pushforward

$$
\begin{aligned}
& \text { induced " } B F_{\infty} \text { theory" } \\
& \mathcal{F}^{\prime}=V^{\prime}[1] \oplus\left(V^{\prime}\right)^{*}[-2], \\
& S^{\prime}=\langle B^{\prime}, \sum_{n \geq 1} \frac{1}{n!} l_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})\rangle \\
& -i \hbar \sum_{n \geq 1} \frac{1}{n!} q_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})
\end{aligned}
$$

Perturbative (Feynman diagram) computation of the BV pushforward yields the Kontsevich-Soibelman sum-over-trees formula for classical L_{∞} operations l_{n}^{\prime}, and a formula involving 1-loop graphs for induced "quantum operations" q_{n}^{\prime}.

Homotopy transfer as BV pushforward (Losev, P.M.)
algebra
unimodular DGLA
$V^{\bullet}, d,[$,
homotopy transfer \downarrow
associated BV package
"abstract BF theory"
$\mathcal{F}=V[1] \oplus V^{*}[-2]$,
$S=\left\langle B, d A+\frac{1}{2}[A, A]\right\rangle$
BV pushforward
induced " $B F_{\infty}$ theory"
$\mathcal{F}^{\prime}=V^{\prime}[1] \oplus\left(V^{\prime}\right)^{*}[-2]$,
$S^{\prime}=\langle B^{\prime}, \sum_{n \geq 1} \frac{1}{n!} l_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})\rangle$
$-i \hbar \sum_{n \geq 1} \frac{1}{n!} q_{n}^{\prime}(\underbrace{A^{\prime}, \ldots, A^{\prime}}_{n})$

Perturbative (Feynman diagram) computation of the BV pushforward yields the Kontsevich-Soibelman sum-over-trees formula for classical L_{∞} operations l_{n}^{\prime}, and a formula involving 1-loop graphs for induced "quantum operations" q_{n}^{\prime}. Instead of starting with a uDGLA, one can start with a $u L_{\infty}$ algebra.

Homotopy transfer theorem (P.M.)
If $\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$ is a unimodular L_{∞} algebra and $V^{\prime} \hookrightarrow V$ is a deformation retract of $\left(V, l_{1}\right)$, then
(1) V^{\prime} carries a unimodular L_{∞} structure given by

$$
\begin{aligned}
& l_{n}^{\prime}=\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}: \wedge^{n} V^{\prime} \rightarrow V^{\prime} \\
& \left.q_{n}^{\prime}=\sum_{\Gamma_{1}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right|}\right\rangle>+\sum_{\Gamma_{0} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}>}: \wedge^{n} V^{\prime} \rightarrow \mathbb{R} \text {, }
\end{aligned}
$$

where Γ_{0} runs over rooted trees with n leaves and Γ_{1} runs over 1-loop graphs with n leaves.

Homotopy transfer theorem (P.M.)

If $\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$ is a unimodular L_{∞} algebra and $V^{\prime} \hookrightarrow V$ is a deformation retract of $\left(V, l_{1}\right)$, then
(1) V^{\prime} carries a unimodular L_{∞} structure given by

$$
\begin{aligned}
& l_{n}^{\prime}=\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}: \wedge^{n} V^{\prime} \rightarrow V^{\prime} \\
& \left.q_{n}^{\prime}=\sum_{\Gamma_{1}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right|}\right\rangle>+\sum_{\Gamma_{0} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}>}: \wedge^{n} V^{\prime} \rightarrow \mathbb{R}
\end{aligned}
$$ where Γ_{0} runs over rooted trees with n leaves and Γ_{1} runs over 1 -loop graphs with n leaves. Decorations:

leaf	$i: V^{\prime} \hookrightarrow V$	root	$p: V \rightarrow V^{\prime}$
edge	$-s: V^{\bullet} \rightarrow V^{\bullet-1}$	$(m+1)$-valent vertex	l_{m}
cycle	super-trace over V	m-valent o-vertex	q_{m}
where s is a chain homotopy, $l_{1} s+s l_{1}=$ id $-i p$			

Homotopy transfer theorem (P.M.)

If $\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$ is a unimodular L_{∞} algebra and $V^{\prime} \hookrightarrow V$ is a deformation retract of $\left(V, l_{1}\right)$, then
(1) V^{\prime} carries a unimodular L_{∞} structure given by

$$
\begin{aligned}
& l_{n}^{\prime}=\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|} \\
& : \wedge^{n} V^{\prime} \rightarrow V^{\prime} \\
& \left.q_{n}^{\prime}=\sum_{\Gamma_{1}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right|}\right\rangle \bigcirc+\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}>\wedge^{n} V^{\prime} \rightarrow \mathbb{R}
\end{aligned}
$$ where Γ_{0} runs over rooted trees with n leaves and Γ_{1} runs over 1-loop graphs with n leaves. Decorations:

leaf edge cycle	$\begin{aligned} & i: V^{\prime} \hookrightarrow V \\ & -s: V^{\bullet} \rightarrow V^{\bullet-1} \end{aligned}$ super-trace over V	root $(m+1)$-valent vertex m-valent o-vertex	$\begin{aligned} & \hline p: V \rightarrow V^{\prime} \\ & l_{m} \\ & q_{m} \\ & \hline \end{aligned}$
re s is a chain homotopy, $l_{1} s+s l_{1}=\mathrm{id}-i p$			

(2) Algebra $\left(V^{\prime},\left\{l_{n}^{\prime}\right\},\left\{q_{n}^{\prime}\right\}\right)$ changes by isomorphisms under changes of induction data (i, p, s).

Topological field theory (Lagrangian formalism).

On a manifold M, classically one has

- space of fields $F_{M}=\Gamma\left(M, \mathfrak{F}_{M}\right) \ni \phi$,
- action $S_{M}(\phi)=\int_{M} L\left(\phi, \partial \phi, \partial^{2} \phi, \cdots\right)$, invariant under diffeomorphisms of M.
Quantum partition function:

$$
Z_{M}=\int_{F_{M}} \mathcal{D} \phi e^{\frac{i}{\hbar} S_{M}(\phi)}
$$

- a diffeomorphism invariant of M to be defined e.g. via perturbative
(Feynman diagram) calculation as an asymptotic series at $\hbar \rightarrow 0$.

Simplicial program for TFTs: Given a TFT on a manifold M with space of fields F_{M} and action $S_{M} \in C^{\infty}\left(F_{M}\right)[[\hbar]]$, construct an exact discretization associating to a triangulation T of M a fin.dim. space F_{T} and a local action $S_{T} \in C^{\infty}\left(F_{T}\right)[[\hbar]]$, such that partition function Z_{M} and correlation functions can be obtained from $\left(F_{T}, S_{T}\right)$ by fin.dim. integrals. Also, if T^{\prime} is a subdivision of T, S_{T} is an effective action for $S_{T^{\prime}}$.

Example of a TFT for which the exact discretization exists: $B F$ theory:

- Fields: $F_{M}=\mathfrak{g} \otimes \Omega^{1}(M) \oplus \mathfrak{g}^{*} \otimes \Omega^{n-2}(M)$, BV fields: $\mathcal{F}_{M}=\mathfrak{g} \otimes \Omega^{\bullet}(M)[1] \oplus \mathfrak{g}^{*} \otimes \Omega^{\bullet}(M)[n-2] \ni(A, B)$.
- Action: $S_{M}=\int_{M}\left\langle B \hat{\wedge} d A+\frac{1}{2}[A \hat{,} A]\right\rangle$.

Realization of $B F$ theory on a triangulation. (Exact discretization.)
Reference: P. Mnev, Notes on simplicial BF theory, Moscow Math. J 9.2 (2009): 371-410.
P. Mnev, Discrete BF theory, arXiv:0809.1160.

Fix T a triangulation of M.

- Fields:

$$
\mathcal{F}_{T}=\mathfrak{g} \otimes C^{\bullet}(T)[1] \oplus \mathfrak{g}^{*} \otimes C \bullet(T)[-2] \quad \ni\left(A=\sum_{\sigma \in T} A^{\sigma} e_{\sigma}, B=\sum_{\sigma \in T} B_{\sigma} e^{\sigma}\right)
$$

with

$$
\begin{array}{rr}
A^{\sigma} \in \mathfrak{g}, & B_{\sigma} \in \mathfrak{g}^{*} \\
\operatorname{gh} A^{\sigma}=1-|\sigma|, & \operatorname{gh} B_{\sigma}=-2+|\sigma|
\end{array}
$$

- Action: $S_{T}=\sum_{\sigma \in T} \bar{S}_{\sigma}\left(\left\{A^{\sigma^{\prime}}\right\}_{\sigma^{\prime} \subset \sigma}, B_{\sigma} ; \hbar\right)$

Here \bar{S}_{σ} - universal local building block, depending only on the dimension of σ.

Universal local building blocks

- For $\operatorname{dim} \sigma=0$ a point, $\bar{S}_{\mathrm{pt}}=\left\langle B_{0}, \frac{1}{2}\left[A^{0}, A^{0}\right]\right\rangle$.
- For $\operatorname{dim} \sigma=1$ an interval,

$$
\bar{S}_{01}=\left\langle B_{01},\left[A^{01}, \frac{A^{0}+A^{1}}{2}\right]+\mathrm{F}\left(\operatorname{ad}_{A^{01}}\right)\left(A^{1}-A^{0}\right)\right\rangle-i \hbar \log \operatorname{det}_{\mathfrak{g}} \mathrm{G}\left(\operatorname{ad}_{A^{01}}\right)
$$

with $\mathrm{F}(x)=\frac{x}{2} \operatorname{coth} \frac{x}{2}, \mathrm{G}(x)=\frac{2}{x} \sinh \frac{x}{2}$.

- For $\operatorname{dim} \sigma \geq 2$,

$$
\begin{aligned}
& \bar{S}_{\sigma}= \\
& \sum_{n \geq 1} \sum_{T} \sum_{\sigma_{1}, \ldots, \sigma_{n} \subset \sigma} \frac{1}{|\operatorname{Aut}(T)|} C(T)_{\sigma_{1} \cdots \sigma_{n}}^{\sigma}\left\langle B_{\sigma}, \mathrm{Jacobi}_{\mathfrak{g}}\left(T ; A^{\sigma_{1}}, \cdots, A^{\sigma_{k}}\right)\right\rangle- \\
& -i \hbar \sum_{n \geq 2} \sum_{L} \sum_{\sigma_{1}, \ldots, \sigma_{n} \subset \sigma} \frac{1}{|\operatorname{Aut}(L)|} C(L)_{\sigma_{1} \cdots \sigma_{n}} \mathrm{Jacobi}_{\mathfrak{g}}\left(L ; A^{\sigma_{1}}, \cdots, A^{\sigma_{k}}\right)
\end{aligned}
$$

Here T runs over rooted binary trees, L runs over connected trivalent 1-loop graphs. $C(T), C(L) \in \mathbb{Q}$ are structure constants.

Examples of structure constants.

depending on the combinatorics of the triple of faces $\sigma_{1}, \sigma_{2}, \sigma_{3} \subset \sigma$.

Examples of structure constants.

$$
C(\gg-)_{\sigma_{1} \sigma_{2} \sigma_{3}}^{\sigma}=\left\{\begin{array}{l}
\pm \frac{\left|\sigma_{1}\right|!\left|\sigma_{2}\right|!\left|\cdot \sigma_{3}\right|!}{\left(\left|\sigma_{1}\right|| | \sigma_{2} \mid+1\right) \cdot(|\sigma|+2)!} \\
0
\end{array}\right.
$$

depending on the combinatorics of the triple of faces $\sigma_{1}, \sigma_{2}, \sigma_{3} \subset \sigma$.

where the nonzero structure constant corresponds to $\sigma_{1}=\sigma_{2}$ an edge (1-simplex) of σ.

Effective action on cohomology Consider BV pushforward to
$\mathcal{F}_{H} \bullet=\mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^{*} \otimes H_{\bullet}(M)$,
$S_{H} \bullet=\left\langle B, \sum_{n \geq 2} \frac{1}{n!} l_{n}^{H^{\bullet}}(A, \ldots, A)\right\rangle-i \hbar \sum_{n \geq 2} \frac{1}{n!} q_{n}^{H^{\bullet}}(A, \ldots, A)$.

Effective action on cohomology Consider BV pushforward to $\mathcal{F}_{H^{\bullet}}=\mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^{*} \otimes H_{\bullet}(M)$, $S_{H} \bullet=\left\langle B, \sum_{n \geq 2} \frac{1}{n!} l_{n}^{H^{\bullet}}(A, \ldots, A)\right\rangle-i \hbar \sum_{n \geq 2} \frac{1}{n!} q_{n}^{H^{\bullet}}(A, \ldots, A)$. Operations l_{n} are Massey brackets and encode the rational homotopy type of $M ; q_{n}$ correspond to the expansion of R-torsion near zero connection on the moduli space of flat connections on M. This invariant is stronger than rational homotopy type.

Effective action on cohomology Consider BV pushforward to $\mathcal{F}_{H} \bullet=\mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^{*} \otimes H_{\bullet}(M)$,
$S_{H} \bullet=\left\langle B, \sum_{n \geq 2} \frac{1}{n!} l_{n}^{H^{\bullet}}(A, \ldots, A)\right\rangle-i \hbar \sum_{n \geq 2} \frac{1}{n!} q_{n}^{H^{\bullet}}(A, \ldots, A)$.
Operations l_{n} are Massey brackets and encode the rational homotopy type of M; q_{n} correspond to the expansion of R-torsion near zero connection on the moduli space of flat connections on M. This invariant is stronger than rational homotopy type.

Example:

(1) $M=S^{1}$,

$$
S_{H} \bullet=\left\langle B_{(0)}, \frac{1}{2}\left[A^{(0)}, A^{(0)}\right]\right\rangle+\left\langle B_{(1)},\left[A^{(0)}, A^{(1)}\right]\right\rangle-i \hbar \log \operatorname{det}_{\mathfrak{g}} \frac{\sinh \frac{\operatorname{ad}_{A(1)}}{2}}{\frac{\operatorname{ad}_{A(1)}}{2}}
$$

(2) M the Klein bottle,

$$
S_{H} \bullet=\left\langle B_{(0)}, \frac{1}{2}\left[A^{(0)}, A^{(0)}\right]\right\rangle+\left\langle B_{(1)},\left[A^{(0)}, A^{(1)}\right]\right\rangle-i \hbar \log \operatorname{det}_{\mathfrak{g}} \frac{\tanh \frac{\operatorname{ad}_{A(1)}}{2}}{\frac{\operatorname{ad}_{A}(1)}{2}}
$$

Effective action on cohomology Consider BV pushforward to $\mathcal{F}_{H} \bullet=\mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^{*} \otimes H_{\bullet}(M)$,
$S_{H} \bullet=\left\langle B, \sum_{n \geq 2} \frac{1}{n!} l_{n}^{H^{\bullet}}(A, \ldots, A)\right\rangle-i \hbar \sum_{n \geq 2} \frac{1}{n!} q_{n}^{H^{\bullet}}(A, \ldots, A)$.
Operations l_{n} are Massey brackets and encode the rational homotopy type of M; q_{n} correspond to the expansion of R-torsion near zero connection on the moduli space of flat connections on M. This invariant is stronger than rational homotopy type.

Example:

(1) $M=S^{1}$,

$$
S_{H} \bullet=\left\langle B_{(0)}, \frac{1}{2}\left[A^{(0)}, A^{(0)}\right]\right\rangle+\left\langle B_{(1)},\left[A^{(0)}, A^{(1)}\right]\right\rangle-i \hbar \log \operatorname{det}_{\mathfrak{g}} \frac{\sinh \frac{\operatorname{ad}_{A^{(1)}}}{2}}{\frac{\operatorname{ad}_{A^{(1)}}^{2}}{2}}
$$

(2) M the Klein bottle,

$$
S_{H} \bullet=\left\langle B_{(0)}, \frac{1}{2}\left[A^{(0)}, A^{(0)}\right]\right\rangle+\left\langle B_{(1)},\left[A^{(0)}, A^{(1)}\right]\right\rangle-i \hbar \log \operatorname{det}_{\mathfrak{g}} \frac{\tanh \frac{\operatorname{ad}_{A^{(1)}}}{2}}{\frac{\operatorname{ad}_{A^{(1)}}}{2}}
$$

$S^{1} \sim$ Klein Bottle rationally, but distinguished by quantum operations on cohomology.

One-dimensional simplicial Chern-Simons theory.

Reference: A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Comm. Math. Phys. 307.1 (2011) 185-227.
Continuum theory on a circle. Fix $(\mathfrak{g},\langle\rangle$,$) be a quadratic$ even-dimensional Lie algebra.

- Fields: A - a \mathfrak{g}-valued 1 -form, ψ - an odd \mathfrak{g}-valued 0 -form. The odd symplectic structure: $\omega=\int_{S^{1}}\langle\delta \psi \hat{,} \delta A\rangle$
- Action: $S(\psi, A)=\int_{S^{1}}\langle\psi \hat{,} d \psi+[A, \psi]\rangle$

BV pushforward to cochains of triangulated circle. Denote T_{N} the triangulation of S^{1} with N vertices. Discrete space of fields: cellular 0 - and 1-cochains of T_{N} with values in \mathfrak{g}, with coordinates $\left\{\psi_{k} \in \Pi \mathfrak{g}, A_{k} \in \mathfrak{g}\right\}_{k=1}^{N}$ and odd symplectic form

$$
\omega_{T_{N}}=\sum_{k=1}^{N}\langle\underbrace{\delta\left(\frac{\psi_{k}+\psi_{k+1}}{2}\right)}_{\tilde{\psi}_{k}}, \delta A_{k}\rangle
$$

Explicit simplicial Chern-Simons action on cochains of triangulated

 circle:$$
\begin{aligned}
& S_{T_{N}}= \\
& =-\frac{1}{2} \sum_{k=1}^{N}\left(\left(\psi_{k}, \psi_{k+1}\right)+\frac{1}{3}\left(\psi_{k}, \operatorname{ad}_{A_{k}} \psi_{k}\right)+\frac{1}{3}\left(\psi_{k+1}, \operatorname{ad}_{A_{k}} \psi_{k+1}\right)+\frac{1}{3}\left(\psi_{k}, \operatorname{ad}_{A_{k}} \psi_{k+1}\right)\right)+ \\
& + \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(\psi_{k+1}-\psi_{k},\left(\frac{1-R\left(\operatorname{ad}_{A_{k}}\right)}{2}\left(\frac{1}{1+\mu_{k}\left(A^{\prime}\right)}-\frac{1}{1+R\left(\operatorname{ad}_{A_{k}}\right)}\right) \frac{1-R\left(\operatorname{ad}_{A_{k}}\right)}{2 R\left(\operatorname{ad}_{A_{k}}\right)}+\right.\right. \\
& \left.\left.+\left(\operatorname{ad}_{A_{k}}\right)^{-1}+\frac{1}{12} \operatorname{ad}_{A_{k}}-\frac{1}{2} \operatorname{coth} \frac{\operatorname{ad}_{A_{k}}}{2}\right) \circ\left(\psi_{k+1}-\psi_{k}\right)\right)+ \\
& +\frac{1}{2} \sum_{k^{\prime}=1}^{N} \sum_{k=k^{\prime}+1}^{k^{\prime}+N-1}(-1)^{k-k^{\prime}}\left(\psi_{k+1}-\psi_{k}, \frac{1-R\left(\operatorname{ad}_{A_{k}}\right)}{2} R\left(\operatorname{ad}_{A_{k-1}}\right) \cdots R\left(\operatorname{ad}_{A_{k^{\prime}}}\right)\right. \\
& \left.\cdot \frac{1}{1+\mu_{k^{\prime}}\left(A^{\prime}\right)} \cdot \frac{1-R\left(\operatorname{ad}_{A_{k^{\prime}}}\right)}{2 R\left(\operatorname{ad}_{A_{k^{\prime}}}\right)} \circ\left(\psi_{k^{\prime}+1}-\psi_{k^{\prime}}\right)\right)+ \\
& \\
& +\hbar \frac{1}{2} \operatorname{tr}_{\mathfrak{g}} \log \left(\left(1+\mu_{\bullet}\left(A^{\prime}\right)\right) \prod_{k=1}^{n}\left(\frac{1}{1+R\left(\operatorname{ad}_{A_{k}}\right)} \cdot \frac{\sinh \frac{\operatorname{ad}_{A_{k}}}{2}}{\frac{\operatorname{ad}_{A_{k}}}{2}}\right)\right)
\end{aligned}
$$

where
$R(\mathcal{A})=-\frac{\mathcal{A}^{-1}+\frac{1}{2}-\frac{1}{2} \operatorname{coth} \frac{\mathcal{A}}{2}}{\mathcal{A}^{-1}-\frac{1}{2}-\frac{1}{2} \operatorname{coth} \frac{\mathcal{A}}{2}}, \quad \mu_{k}\left(A^{\prime}\right)=R\left(\operatorname{ad}_{A_{k-1}}\right) R\left(\operatorname{ad}_{A_{k-2}}\right) \cdots R\left(\operatorname{ad}_{A_{k+1}}\right) R\left(\operatorname{ad}_{A_{k}}\right)$

Questions:

- Why such a long formula?
- It is not simplicially local (there are monomials involving distant simplices). How to disassemble the result into contributions of individual simplices?
- How to check quantum master equation for $S_{T_{N}}$ explicitly?
- Simplicial aggregations should be given by finite-dimensional BV integrals; how to check that?

1-dimensional Chern-Simons theory

Introduce the building block

$$
\zeta(\underbrace{\tilde{\psi}}_{\in \Pi \mathfrak{q}}, \underbrace{A}_{\in \mathfrak{g}})=(i \hbar)^{-\frac{\operatorname{dim} \mathfrak{g}}{2}} \int_{\Pi \mathfrak{g}} D \lambda \exp \left(-\frac{1}{2 \hbar}\langle\hat{\psi},[A, \hat{\psi}]\rangle+\langle\lambda, \hat{\psi}-\tilde{\psi}\rangle\right) \in C l(\mathfrak{g})
$$

where $\left\{\hat{\psi}^{a}\right\}$ are generators of the Clifford algebra $\operatorname{Cl}(\mathfrak{g})$,
$\hat{\psi}^{a} \hat{\psi}^{b}+\hat{\psi}^{b} \hat{\psi}^{a}=\hbar \delta^{a b}$

Theorem (A.Alekseev, P.M.)

(1) For a triangulated circle,

$$
e^{\frac{i}{\hbar} S_{T_{N}}}=\operatorname{Str}_{C l(\mathfrak{g})}\left(\zeta\left(\tilde{\psi}_{N}, A_{N}\right) * \cdots * \zeta\left(\tilde{\psi}_{1}, A_{1}\right)\right)
$$

(2) The bulding block satisfies the modified quantum master equation

$$
\hbar \Delta \zeta+\frac{1}{\hbar}\left[\frac{1}{6}\langle\hat{\psi},[\hat{\psi}, \hat{\psi}]\rangle, \zeta\right]_{C l(\mathfrak{g})}=0
$$

where $\Delta=\frac{\partial}{\partial \tilde{\psi}} \frac{\partial}{\partial A}$.
(0 Simplicial action on triangulated circle $S_{T_{N}}$ satisfies the usual BV quantum master equation, $\Delta_{T_{N}} e^{\frac{i}{\hbar} S_{T_{N}}}=0$, where $\Delta_{T_{N}}=\sum_{k} \frac{\partial}{\partial \tilde{\psi}_{k}} \frac{\partial}{\partial A_{k}}$.

Further developments

- Discrete $B F$ theory and simplicial 1D Chern-Simons can be extended to triangulated manifolds with boundary, with Atiyah-Segal (functorial) cutting/pasting rule.
References: A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Comm. Math. Phys. 307.1 (2011) 185-227.
A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV-BF theory, in preparation.
- Pushforward to cohomology in perturbative Chern-Simons theory yields perturbative invariants of 3 -manifolds without acyclicity condition on background local system.
Reference: A. S. Cattaneo, P. Mnev, Remarks on Chern-Simons invariants, Comm. Math. Phys. 293.3 (2010) 803-836.
- Pushforward to cohomology in Poisson sigma model.

Reference: F. Bonechi, A. S. Cattaneo, P. Mnev, The Poisson sigma model on closed surfaces, JHEP 2012.1 (2012) 1-27.

Pushforward to residual fields is made compatible with functorial cutting-pasting in the programme of perturbative BV quantization on manifolds with boundary/corners, References: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, Comm. Math. Phys. 332.2 (2014) 535-603.
A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative quantum gauge theories on manifolds with boundary, arXiv:1507.01221.
Short survey: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative BV theories with Segal-like gluing, arXiv:1602.00741.

