BV pushforwards and exact discretizations in topological field theory

Pavel Mnev

Max Planck Institute for Mathematics, Bonn

Antrittsvorlesung, University of Zurich, February 29, 2016

《曰》 《聞》 《臣》 《臣》 三臣 …

Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory

Manifold ------ Invariants of the manifold

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory

Introduction	Algebra of "discrete forms" on the interval	Exact discretizations in topological field theory

Introduction	Algebra of "discrete forms" on the interval	Exact discretizations in topological field theory

Pushforward in probability theory:

y = F(x)x has probability distribution μ implies y has probability distribution $F_*\mu$. Examples:

- In the sum?
- Benford's law.

Pushforward in geometry: fiber integral.

Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	00000000000	0000000	000000000000

Plan.

• From discrete forms on the interval to Batalin-Vilkovisky formalism

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Effective action (BV pushforward)
- Application to topological field theory

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	• 00 00000000		
Algebra of "discrete	e forms" on the interval		

Appetizer/warm-up problem:

discretize the algebra of differential forms on the interval I = [0, 1]. De Rham algebra $\Omega^{\bullet}(I) \ni f(t) + g(t) \cdot dt$ with operations d, \wedge satisfying

•
$$d^2 = 0$$

- Leibniz rule $d(\alpha \wedge \beta) = d\alpha \wedge \beta \pm \alpha \wedge d\beta$
- Associativity $(\alpha \land \beta) \land \gamma = \alpha \land (\beta \land \gamma)$

Also: super-commutativity $\alpha \wedge \beta = \pm \beta \wedge \alpha$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Algebra of "discrete fo	orms" on the interval		

The problem: construct the algebra structure on "discrete forms" (cellular cochains) $C^{\bullet}(I) = \text{Span}(e_0, e_1, e_{01}) \ni a \cdot e_0 + b \cdot e_1 + c \cdot e_{01}$ with same properties.

Represent generators by forms

$$i: e_0 \mapsto 1-t, e_1 \mapsto t, e_{01} \mapsto dt$$

And define a projection

$$p: \quad f(t) + g(t) \cdot dt \quad \mapsto \quad f(0) \cdot e_0 + f(1) \cdot e_1 + \left(\int_0^1 g(\tau) d\tau\right) \cdot e_{01}$$

Construct d and \wedge on C^{\bullet} :

•
$$d = p \circ d \circ i$$
, i.e.

$$d(e_0) = -e_{01}, \ d(e_1) = e_{01}, \ d(e_{01}) = 0$$

• $\alpha \wedge \beta = p(i(\alpha) \wedge i(\beta))$, i.e.

 $e_0 \wedge e_0 = e_0, \ e_1 \wedge e_1 = e_1, \ e_0 \wedge e_{01} = \frac{1}{2} \ e_{01}, \ e_1 \wedge e_{01} = \frac{1}{2} \ e_{01}, \ e_{01} \wedge e_{01} = 0$

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Algebra of "discrete for	rms" on the interval		

 d, \wedge satisfy $d^2 = 0$, Leibniz, but associativity fails:

 $e_0 \land (e_0 \land e_{01}) \neq (e_0 \land e_0) \land e_{01}$

However, one can introduce a trilinear operation m_3 such that

$$\begin{aligned} \alpha \wedge (\beta \wedge \gamma) - (\alpha \wedge \beta) \wedge \gamma &= \\ &= d \, m_3(\alpha, \beta, \gamma) \pm m_3(d\alpha, \beta, \gamma) \pm m_3(\alpha, d\beta, \gamma) \pm m_3(\alpha, \beta, d\gamma) \end{aligned}$$

– "associativity up to homotopy". $m_{\rm 3}$ itself satisfies

$$[\wedge, m_3] = -[d, m_4]$$

for some 4-linear operation m_4 etc.

- a sequence of operations $(m_1 = d, m_2 = \land, m_3, m_4, \ldots)$ satisfying a sequence of homotopy associativity relations – an A_{∞} algebra structure on $C^{\bullet}(I)$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	000000000		
Aside: A_{∞} algebras			

Aside: A_{∞} algebras

Definition (Stasheff)

An A_{∞} algebra is:

• a \mathbb{Z} -graded vector space V^{\bullet} ,

2 a set of multilinear operations $m_n: V^{\otimes n} \to V$, $n \ge 1$,

satisfying the set of quadratic relations

$$\sum_{q+r+s=n} m_{q+s+1}(\underbrace{\bullet,\cdots,\bullet}_{q}, m_r(\underbrace{\bullet,\cdots,\bullet}_{r}), \underbrace{\bullet,\cdots,\bullet}_{s}) = 0$$

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Aside: A_∞ algebras			

Aside: A_{∞} algebras

Definition (Stasheff)

An A_{∞} algebra is:

• a \mathbb{Z} -graded vector space V^{\bullet} ,

2) a set of multilinear operations $m_n: V^{\otimes n} \to V$, $n \ge 1$,

satisfying the set of quadratic relations

$$\sum_{q+r+s=n} m_{q+s+1}(\underbrace{\bullet,\cdots,\bullet}_{q}, m_r(\underbrace{\bullet,\cdots,\bullet}_{r}), \underbrace{\bullet,\cdots,\bullet}_{s}) = 0$$

Remark:

- Case $m_{\neq 2} = 0$ associative algebra.
- Case $m_{\neq 1,2} = 0$ differential graded associative algebra (DGA).

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Aside: A_∞ algebras			

Aside: A_{∞} algebras

Definition (Stasheff)

An A_{∞} algebra is:

• a \mathbb{Z} -graded vector space V^{\bullet} ,

2) a set of multilinear operations $m_n: V^{\otimes n} \to V$, $n \ge 1$,

satisfying the set of quadratic relations

$$\sum_{q+r+s=n} m_{q+s+1}(\underbrace{\bullet,\cdots,\bullet}_{q}, m_r(\underbrace{\bullet,\cdots,\bullet}_{r}), \underbrace{\bullet,\cdots,\bullet}_{s}) = 0$$

Remark:

• Case $m_{\neq 2} = 0$ – associative algebra.

• Case $m_{\neq 1,2} = 0$ – differential graded associative algebra (DGA). Examples:

() Singular cochains of a topological space $C^{\bullet}_{sing}(X)$ – non-commutative DGA.

2 De Rham algebra of a manifold $\Omega^{\bullet}(M)$ – super-commutative DGA.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	000000000		
Aside: A_∞ algebras			

Motivating example: Cohomology of a top. space $H^{\bullet}(X)$ carries a natural A_{∞} algebra structure, with

- $m_1 = 0$,
- m_2 the cup product,
- m_3, m_4, \cdots the (higher) Massey products on $H^{\bullet}(X)$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Aside: A_∞ algebras			

Motivating example: Cohomology of a top. space $H^{\bullet}(X)$ carries a natural A_{∞} algebra structure, with

- $m_1 = 0$,
- m_2 the cup product,
- m_3, m_4, \cdots the (higher) Massey products on $H^{\bullet}(X)$.

Quillen, Sullivan: this A_{∞} structure encodes the data of rational homotopy type of X, i.e. rational homotopy groups $\mathbb{Q} \otimes \pi_k(X)$ can be recovered from $\{m_n\}$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Homotopy transfer of 2	A_{∞} algebras		

Homotopy transfer theorem for A_{∞} algebras (Kadeishvili, Kontsevich-Soibleman)

If $(V^{\bullet}, \{m_n\})$ is an A_{∞} algebra and $V' \hookrightarrow V$ a deformation retract of (V, m_1) , then V' carries an A_{∞} structure with

where T runs over rooted trees with n leaves.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Homotopy transfer of 2	Λ_∞ algebras		

Homotopy transfer theorem for A_{∞} algebras (Kadeishvili, Kontsevich-Soibleman)

If $(V^{\bullet}, \{m_n\})$ is an A_{∞} algebra and $V' \hookrightarrow V$ a deformation retract of (V, m_1) , then V' carries an A_{∞} structure with

$$m'_n = \sum_T \underbrace{} : (V')^{\otimes n} \to V$$

where T runs over rooted trees with \boldsymbol{n} leaves.

Decorations:

		root	$p:V \twoheadrightarrow V'$		
edge	$-s: V^{\bullet} \to V^{\bullet-1}$	(k+1)-valent vertex	m_k		
where s is a chain homotopy, $m_1 s + s m_1 = id - i p$.					

Example: $V = \Omega^{\bullet}(M), d, \wedge$ the de Rham algebra of a Riemannian manifold (M, g), $V' = H^{\bullet}(M)$ de Rham cohomology realized by harmonic forms. Induced (transferred) A_{∞} algebra gives Massey products.

Intro	duct	

BV pushforward

Exact discretizations in topological field theory

 A_{∞} algebra on cochains of the interval

Back to the A_{∞} algebra on cochains of the interval. Explicit answer for algebra operations:

$$m_{n+1}(\underbrace{e_{01},\ldots,e_{01}}_{k},e_1,\underbrace{e_{01},\ldots,e_{01}}_{n-k}) = \pm \begin{pmatrix} n\\k \end{pmatrix} \cdot B_n \cdot e_{01}$$

(and similarly for $e_1 \leftrightarrow e_0$), where $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, \dots$ are Bernoulli numbers, i.e. coefficients of $\frac{x}{e^x - 1} = \sum_{n \ge 0} \frac{B_n}{n!} x^n$.

ln'				

BV pushforward

Exact discretizations in topological field theory

 A_{∞} algebra on cochains of the interval

Back to the A_{∞} algebra on cochains of the interval. Explicit answer for algebra operations:

$$m_{n+1}(\underbrace{e_{01},\ldots,e_{01}}_{k},e_1,\underbrace{e_{01},\ldots,e_{01}}_{n-k}) = \pm \begin{pmatrix} n\\k \end{pmatrix} \cdot B_n \cdot e_{01}$$

(and similarly for $e_1 \leftrightarrow e_0$), where $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, \ldots$ are Bernoulli numbers, i.e. coefficients of $\frac{x}{e^x - 1} = \sum_{n \ge 0} \frac{B_n}{n!} x^n$. References: X. Z. Cheng, E. Getzler, *Transferring homotopy commutative algebraic structures*. Journal of Pure and Applied Algebra 212.11 (2008) 2535–2542.

R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, arXiv:math/0610949.

P. Mnev, *Notes on simplicial BF* theory, Moscow Math. J 9.2 (2009) 371–410.

ln'				

BV pushforward

Exact discretizations in topological field theory

 A_{∞} algebra on cochains of the interval

Back to the A_{∞} algebra on cochains of the interval. Explicit answer for algebra operations:

$$m_{n+1}(\underbrace{e_{01},\ldots,e_{01}}_{k},e_1,\underbrace{e_{01},\ldots,e_{01}}_{n-k}) = \pm \begin{pmatrix} n\\k \end{pmatrix} \cdot B_n \cdot e_{01}$$

(and similarly for $e_1 \leftrightarrow e_0$), where $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, \dots$ are Bernoulli numbers, i.e. coefficients of $\frac{x}{e^x - 1} = \sum_{n \ge 0} \frac{B_n}{n!} x^n$. References: X. Z. Cheng, E. Getzler, *Transferring homotopy commutative algebraic structures*. Journal of Pure and Applied Algebra 212.11 (2008) 2535–2542.

R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, arXiv:math/0610949.

P. Mnev, *Notes on simplicial BF* theory, Moscow Math. J 9.2 (2009) 371–410.

This is a special case of homotopy transfer of algebraic structures (Kontsevich-Soibelman,...), $(\Omega^{\bullet}(I), d, \wedge) \rightarrow (C^{\bullet}(I), m_1, m_2, m_3, \cdots)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

In				

BV pushforward

Exact discretizations in topological field theory

 A_{∞} algebra on cochains of the interval

Back to the A_{∞} algebra on cochains of the interval. Explicit answer for algebra operations:

$$m_{n+1}(\underbrace{e_{01},\ldots,e_{01}}_{k},e_1,\underbrace{e_{01},\ldots,e_{01}}_{n-k}) = \pm \begin{pmatrix} n\\k \end{pmatrix} \cdot B_n \cdot e_{01}$$

(and similarly for $e_1 \leftrightarrow e_0$), where $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}, \ldots$ are Bernoulli numbers, i.e. coefficients of $\frac{x}{e^x - 1} = \sum_{n \ge 0} \frac{B_n}{n!} x^n$. References: X. Z. Cheng, E. Getzler, *Transferring homotopy commutative algebraic structures*. Journal of Pure and Applied Algebra 212.11 (2008) 2535–2542.

R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval, arXiv:math/0610949.

P. Mnev, *Notes on simplicial BF* theory, Moscow Math. J 9.2 (2009) 371–410.

This is a special case of homotopy transfer of algebraic structures (Kontsevich-Soibelman,...), $(\Omega^{\bullet}(I), d, \wedge) \rightarrow (C^{\bullet}(I), m_1, m_2, m_3, \cdots)$. Another point of view (Losev-P.M.): this result comes from a calculation of a particular path integral, and Bernoulli numbers arise as values of certain Feynman diagrams!

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory				
	000000000000000000000000000000000000000						
Towards Batalin-Vilkovisky formalism							

Allow coefficients of cochains to be matrices $N \times N$, or elements of a more general Lie algebra \mathfrak{g} . Then we get an L_{∞} algebra structure on $C^{\bullet}(I,\mathfrak{g})$, with skew-symmetric multilinear operations $(l_1 = d, l_2 = [,], l_3, l_4, \ldots)$ satisfying a sequence of homotopy Jacobi identities.

 $\Omega^{\bullet}(I) \otimes \mathfrak{g}, \ d, \ [\ \uparrow] \quad \longrightarrow \quad C^{\bullet}(I) \otimes \mathfrak{g}, \ \{l_n\}_{n \ge 1}$

Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	000000000000000000000000000000000000000		
Towards Batalin-V	ilkovisky formalism		

Allow coefficients of cochains to be matrices $N \times N$, or elements of a more general Lie algebra \mathfrak{g} . Then we get an L_{∞} algebra structure on $C^{\bullet}(I,\mathfrak{g})$, with skew-symmetric multilinear operations $(l_1 = d, l_2 = [,], l_3, l_4, \ldots)$ satisfying a sequence of homotopy Jacobi identities.

 $\Omega^{\bullet}(I) \otimes \mathfrak{g}, \ d, \ [\ \uparrow] \quad \longrightarrow \quad C^{\bullet}(I) \otimes \mathfrak{g}, \ \{l_n\}_{n \ge 1}$

Definition (Lada-Stasheff)

An L_{∞} algebra is:

- a \mathbb{Z} -graded vector space V^{\bullet} ,
- (a) a set of skew-symmetric multilinear operations $l_n : \wedge^n V \to V$, $n \ge 1$,

satisfying the set of quadratic relations

$$\sum_{r+s=n} \frac{1}{r!s!} l_{r+1}(\underbrace{\bullet, \cdots, \bullet}_{r}, l_s(\underbrace{\bullet, \cdots, \bullet}_{s})) = 0$$

with skew-symmetrization over all inputs implied.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000000		
Towards Batalin-Vill	kovisky formalism		

An L_{∞} algebra structure on a graded vector space V^{\bullet} can be packaged into a generating function (the master action)

$$S(A,B) = \sum_{n \ge 1} \frac{1}{n!} \langle B, l_n(\underbrace{A, \dots, A}_n) \rangle$$

where $A, B \in V[1] \oplus V^*[-2]$ are the variables – fields. Quadratic relations on operations l_n are packaged into the Batalin-Vilkoviski (classical) master equation

$$\{S,S\}=0$$

where $\{f,g\} = \sum_i \frac{\partial f}{\partial A^i} \frac{\partial g}{\partial B_i} - \frac{\partial f}{\partial B_i} \frac{\partial g}{\partial A^i}$ is the **odd Poisson bracket**.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory			
	000000000000000000000000000000000000000					
Towards Batalin-Vilkovisky formalism						

Several classes of algebraic/geometric structures can be packaged into solutions of the master equation (allowing for different parities of $\{,\}, S$):

- Lie and L_{∞} algebras
- $\bullet\,$ quadratic Lie and cyclic L_∞ algebras
- representation of a Lie algebra, "representation up to homotopy"

- Lie algebroids
- Courant algebroids
- Poisson manifolds
- differential graded manifolds
- coisotropic submanifold of a symplectic manifold

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	00000000000		
From CME to QME			

Classical master equation (CME) $\{S, S\} = 0$ is the leading term of the Quantum master equation (QME)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\begin{split} \{S_{\hbar}, S_{\hbar}\} - 2i\hbar\Delta S_{\hbar} & \Leftrightarrow \quad \Delta e^{\frac{i}{\hbar}S_{\hbar}} = 0\\ \text{on } S_{\hbar} &= S + S^{(1)}\hbar + S^{(2)}\hbar^{2} + \cdots \ \in C^{\infty}(Fields)[[\hbar]], \text{ where} \\ \Delta &= \sum_{i} \frac{\partial}{\partial A^{i}} \frac{\partial}{\partial B_{i}} \end{split}$$

is the BV odd Laplacian.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	00000000000		
From CME to QME			

Classical master equation (CME) $\{S, S\} = 0$ is the leading term of the Quantum master equation (QME)

$$\begin{split} \{S_{\hbar}, S_{\hbar}\} - 2i\hbar\Delta S_{\hbar} &\Leftrightarrow \quad \Delta e^{\frac{i}{\hbar}S_{\hbar}} = 0\\ \text{on } S_{\hbar} = S + S^{(1)}\hbar + S^{(2)}\hbar^{2} + \cdots \in C^{\infty}(Fields)[[\hbar]], \text{ where}\\ \Delta = \sum_{i} \frac{\partial}{\partial A^{i}} \frac{\partial}{\partial B_{i}} \end{split}$$

is the BV odd Laplacian.

Example. (P.M.) Solution of CME corresponding to the discrete forms on the interval extends (uniquely!) to a solution of QME:

$$S_{\hbar} = \langle B_0, \frac{1}{2}[A_0, A_0] \rangle + \langle B_1, \frac{1}{2}[A_1, A_1] \rangle + \langle B_{01}, \left[A_{01}, \frac{A_0 + A_1}{2}\right] + \mathsf{F}([A_{01}, \bullet]) \circ (A_1 - A_0) \rangle \underbrace{-i\hbar \log \det_{\mathfrak{g}} \mathsf{G}([A_{01}, \bullet])}_{\hbar - \text{correction}}$$

where

$$\mathsf{F}(x) = \frac{x}{2} \coth \frac{x}{2}, \quad \mathsf{G}(x) = \frac{2}{x} \sinh \frac{x}{2}$$

~

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	00000000000		
From CME to QME			

Classical master equation (CME) $\{S, S\} = 0$ is the leading term of the Quantum master equation (QME)

$$\begin{split} \{S_{\hbar}, S_{\hbar}\} - 2i\hbar\Delta S_{\hbar} &\Leftrightarrow \quad \Delta e^{\frac{i}{\hbar}S_{\hbar}} = 0\\ \text{on } S_{\hbar} = S + S^{(1)}\hbar + S^{(2)}\hbar^{2} + \cdots \in C^{\infty}(Fields)[[\hbar]], \text{ where}\\ \Delta = \sum_{i} \frac{\partial}{\partial A^{i}} \frac{\partial}{\partial B_{i}} \end{split}$$

is the BV odd Laplacian.

Example. (P.M.) Solution of CME corresponding to the discrete forms on the interval extends (uniquely!) to a solution of QME:

$$S_{\hbar} = \langle B_0, \frac{1}{2}[A_0, A_0] \rangle + \langle B_1, \frac{1}{2}[A_1, A_1] \rangle + \langle B_{01}, \left[A_{01}, \frac{A_0 + A_1}{2}\right] + \mathsf{F}([A_{01}, \bullet]) \circ (A_1 - A_0) \rangle \underbrace{-i\hbar \log \det_{\mathfrak{g}} \mathsf{G}([A_{01}, \bullet])}_{\hbar - \text{correction}}$$

where

$$\mathsf{F}(x) = \frac{x}{2} \coth \frac{x}{2}, \quad \mathsf{G}(x) = \frac{2}{x} \sinh \frac{x}{2}$$

 S_{\hbar} generates the unimodular (or quantum) L_{∞} structure on $C^{\bullet}(I,\mathfrak{g})$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000		
Unimodular L_∞	algebras		

Definition (Granåker, P.M.)

A unimodular L_{∞} algebra is:

- an L_{∞} algebra $V, \{l_n\}_{n\geq 1}$, endowed additionally with
- "quantum operations" $q_n : \wedge^n V \to \mathbb{R}$, $n \ge 1$,

satisfying, in addition to L_{∞} relations, $\frac{1}{n!} \operatorname{Str} l_{n+1}(\bullet, \cdots, \bullet, -) +$ $+ \sum_{r+s=n} \frac{1}{r!s!} q_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, \cdots, \bullet)) = 0$ (with inputs skew-symmetrized).

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	0000000000	0000000	00000000000
BV summary			

Summary of BV structure:

- \mathbb{Z} -graded vector space of fields \mathcal{F} ,
- symplectic structure (BV 2-form) ω on \mathcal{F} of degree $gh \omega = -1 induces \{,\}$ and Δ on $C^{\infty}(\mathcal{F})$,
- action $S \in C^{\infty}(\mathcal{F})[[\hbar]]$ a solution of QME

$$\Delta e^{\frac{i}{\hbar}S} = 0$$

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
BV pushforward			

Construction (Costello, Losev, P.M.): pushforward of solutions of QME — BV pushforward/effective BV action/fiber BV integral. Let

- $\mathcal{F} = \mathcal{F}' \oplus \mathcal{F}''$ splitting compatible with $\omega = \omega' \oplus \omega''$,
- $\mathcal{L} \subset \mathcal{F}''$ a Lagrangian subspace

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
BV pushforward			

Construction (Costello, Losev, P.M.): pushforward of solutions of QME — BV pushforward/effective BV action/fiber BV integral. Let

- $\mathcal{F}=\mathcal{F}'\oplus\mathcal{F}''$ splitting compatible with $\omega=\omega'\oplus\omega'',$
- $\mathcal{L} \subset \mathcal{F}''$ a Lagrangian subspace

Define $S'\in C^\infty(\mathcal{F}')[[\hbar]]$ by

$$e^{\frac{i}{\hbar}S'(x';\hbar)} = \int_{\mathcal{L} \ni x''} e^{\frac{i}{\hbar}S(x'+x'';\hbar)}$$

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		000000	
BV pushforward			

Construction (Costello, Losev, P.M.): pushforward of solutions of QME — BV pushforward/effective BV action/fiber BV integral. Let

- $\mathcal{F} = \mathcal{F}' \oplus \mathcal{F}''$ splitting compatible with $\omega = \omega' \oplus \omega''$,
- $\mathcal{L} \subset \mathcal{F}''$ a Lagrangian subspace

Define $S'\in C^\infty(\mathcal{F}')[[\hbar]]$ by

$$e^{\frac{i}{\hbar}S'(x';\hbar)} = \int_{\mathcal{L} \ni x''} e^{\frac{i}{\hbar}S(x'+x'';\hbar)}$$

Remark: to make sense of this, we need reference half-densities μ, μ', μ'' on $\mathcal{F}, \mathcal{F}', \mathcal{F}''$ with $\mu = \mu' \cdot \mu''$. Correct formula:

$$e^{\frac{i}{\hbar}S'(x';\hbar)}\mu' = \int_{\mathcal{L}\ni x''} e^{\frac{i}{\hbar}S(x'+x'';\hbar)} \underbrace{\mu|_{\mathcal{L}}}_{\mu'\cdot\mu''|_{\mathcal{L}}}$$

	Algebra of "discrete forms" on the interval	BV pushforward ○○●○○○○○	Exact discretizations in topological field theory
BV pushforward			

Properties:

- If S satisfies QME on ${\mathcal F}$ then S' satisfies QME on on ${\mathcal F}',$
- if \widetilde{S} is equivalent (homotopic) to S, i.e. $e^{\frac{i}{\hbar}\widetilde{S}} e^{\frac{i}{\hbar}S} = \Delta(\cdots)$, then the corresponding BV pushforwards \widetilde{S}' and S' are equivalent.
- If *L̃* is a Lagrangian homotopic to *L* in *F*", then the corresponding BV pushforward *S̃*' is equivalent to *S*' (obtained with *L*).

	Algebra of "discrete forms" on the interval	BV pushforward ○○●○○○○○	Exact discretizations in topological field theory
BV pushforward			

Properties:

- If S satisfies QME on ${\mathcal F}$ then S' satisfies QME on on ${\mathcal F}',$
- if \widetilde{S} is equivalent (homotopic) to S, i.e. $e^{\frac{i}{\hbar}\widetilde{S}} e^{\frac{i}{\hbar}S} = \Delta(\cdots)$, then the corresponding BV pushforwards \widetilde{S}' and S' are equivalent.
- If $\widetilde{\mathcal{L}}$ is a Lagrangian homotopic to \mathcal{L} in \mathcal{F}'' , then the corresponding BV pushforward \widetilde{S}' is equivalent to S' (obtained with \mathcal{L}).

Notation:
$$e^{\frac{i}{\hbar}S'} = P^{(\mathcal{L})}_{*}\left(e^{\frac{i}{\hbar}S}\right)$$
.
(Here $P: \mathcal{F} \twoheadrightarrow \mathcal{F}'$.)

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
Example: Reideme	ster torsion		

Example: Reidemeister torsion as BV pushforward.

Reference: P. Mnev, "Lecture notes on torsions," arXiv:1406.3705 [math.AT],

A. S. Cattaneo, P. Mnev, N. Reshetikhin, "Cellular BV-BFV-BF theory," in preparation.

Input: X - cellular complex, $\rho : \pi_1(X) \to O(m)$ local system.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
Example: Reideme	ster torsion		

Example: Reidemeister torsion as BV pushforward.

Reference: P. Mnev, "Lecture notes on torsions," arXiv:1406.3705 [math.AT],

A. S. Cattaneo, P. Mnev, N. Reshetikhin, "Cellular BV-BFV-BF theory," in preparation.

Input: X - cellular complex, $\rho:\pi_1(X)\to O(m)$ local system.

Set $V^{\bullet} = C^{\bullet}_{\rho}(X)$ – cellular cochains with differential twisted by ρ .

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
Example: Reideme	ester torsion		

Example: Reidemeister torsion as BV pushforward.

Reference: P. Mnev, "Lecture notes on torsions," arXiv:1406.3705 [math.AT],

A. S. Cattaneo, P. Mnev, N. Reshetikhin, "Cellular BV-BFV-BF theory," in preparation.

Input: X - cellular complex, $\rho : \pi_1(X) \to O(m)$ local system.

Set $V^{\bullet} = C^{\bullet}_{\rho}(X)$ – cellular cochains with differential twisted by ρ .

Define a BV system $\mathcal{F} = V[1] \oplus V^*[-2] \ni (A, B), |S = \langle B, d_\rho A \rangle|$. Induce onto cohomology $\mathcal{F}' = H^{\bullet}[1] \oplus (H^{\bullet})^*[-2].$

(日) (同) (三) (三) (三) (○) (○)

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		00000000	
Example: Reidemester	torsion		

Example: Reidemeister torsion as BV pushforward. Result of BV pushforward:

$$P_*(e^{\frac{i}{\hbar}S}) = \zeta \cdot \tau(X, \rho) \quad \in \text{Dens}^{\frac{1}{2}} \mathcal{F}' \cong \text{Det}H^{\bullet}/\{\pm 1\}.$$

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		00000000	
Example: Reidemest	er torsion		

Example: Reidemeister torsion as BV pushforward. Result of BV pushforward:

$$P_*(e^{\frac{i}{\hbar}S}) = \zeta \cdot \tau(X, \rho) \quad \in \operatorname{Dens}^{\frac{1}{2}} \mathcal{F}' \cong \operatorname{Det} H^{\bullet}/\{\pm 1\}.$$

τ(X, ρ) ∈ DetH•/{±1} — the Reidemeister torsion (an invariant of simple homotopy type of X, in particular invariant under subdivisions of X).

•
$$\zeta = (2\pi\hbar)^{\frac{\dim \mathcal{L}^{\text{even}}}{2}} \cdot (\frac{i}{\hbar})^{\frac{\dim \mathcal{L}^{\text{odd}}}{2}} = \frac{\xi^{H^{\bullet}}}{\xi^{C^{\bullet}}} \in \mathbb{C}.$$
 Here
 $\xi^{H^{\bullet}} = (2\pi\hbar)\sum_{k}(-\frac{1}{4}-\frac{1}{2}k(-1)^{k})\cdot\dim H^{k} \cdot (e^{-\frac{\pi i}{2}}\hbar)\sum_{k}(\frac{1}{4}-\frac{1}{2}k(-1)^{k})\cdot\dim H^{k}$
– a topological invariant, $\xi^{C^{\bullet}}$ – "extensive" (multiplicative in numbers of cells).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		00000000	
Example: Reidemester	torsion		

Example: Reidemeister torsion as BV pushforward. Result of BV pushforward:

$$P_*(e^{\frac{i}{\hbar}S}) = \zeta \cdot \tau(X, \rho) \quad \in \text{Dens}^{\frac{1}{2}} \mathcal{F}' \cong \text{Det} H^{\bullet} / \{\pm 1\}.$$

τ(X, ρ) ∈ DetH•/{±1} — the Reidemeister torsion (an invariant of simple homotopy type of X, in particular invariant under subdivisions of X).

•
$$\zeta = (2\pi\hbar)^{\frac{\dim \mathcal{L}^{\text{even}}}{2}} \cdot (\frac{i}{\hbar})^{\frac{\dim \mathcal{L}^{\text{odd}}}{2}} = \frac{\xi^{H^{\bullet}}}{\xi^{C^{\bullet}}} \in \mathbb{C}.$$
 Here
 $\xi^{H^{\bullet}} = (2\pi\hbar)\sum_{k}(-\frac{1}{4}-\frac{1}{2}k(-1)^{k})\cdot\dim H^{k} \cdot (e^{-\frac{\pi i}{2}}\hbar)\sum_{k}(\frac{1}{4}-\frac{1}{2}k(-1)^{k})\cdot\dim H^{k}$
– a topological invariant, $\xi^{C^{\bullet}}$ – "extensive" (multiplicative in numbers of cells).

Thus

$$P_*(e^{\frac{i}{\hbar}S} \cdot \underbrace{\xi^{C^{\bullet}}}_{\text{correction to }\mu}) = \xi^{H^{\bullet}} \cdot \tau(X,\rho)$$

- a topological invariant, contains a mod 16 phase.

ln'				

Algebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Aside: perturbed Gaussian integrals

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y) = B_{ij}x^ix^j$ non-degenerate bilinear form on W, $p(x) = \sum_k \frac{(p_k)_{i_1\cdots i_k}}{k!} x^{i_1}\cdots x^{i_k}$ a polynomial.

Ir					

Igebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Aside: perturbed Gaussian integrals

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y) = B_{ij}x^ix^j$ non-degenerate bilinear form on W, $p(x) = \sum_k \frac{(p_k)_{i_1}\cdots i_k}{k!}x^{i_1}\cdots x^{i_k}$ a polynomial. One has the following asymptotic equivalence as $\hbar \to 0$:

$$\int_{W} dx \cdot e^{\frac{i}{\hbar} \left(\frac{1}{2}B(x,x) + p(x)\right)} \underset{\hbar \to 0}{\sim} \\ \sim (2\pi\hbar)^{\frac{1}{2}\dim W} e^{\frac{\pi i}{4}\operatorname{sgn}(B)} \cdot (\det B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i\hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}$$

				tı	
	τľ				

Igebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

Aside: perturbed Gaussian integrals

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y) = B_{ij}x^ix^j$ non-degenerate bilinear form on W, $p(x) = \sum_k \frac{(p_k)_{i_1\cdots i_k}}{k!} x^{i_1}\cdots x^{i_k}$ a polynomial. One has the following asymptotic equivalence as $\hbar \to 0$:

$$\int_{W} dx \cdot e^{\frac{i}{\hbar} \left(\frac{1}{2}B(x,x) + p(x)\right)} \underset{\hbar \to 0}{\sim} \\ \sim (2\pi\hbar)^{\frac{1}{2}\dim W} e^{\frac{\pi i}{4}\operatorname{sgn}(B)} \cdot (\det B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i\hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}$$

where Γ runs over connected graphs, Φ_{Γ} is the tensor contraction of

- $(B^{-1})^{ij}$ assigned to edges
- $(p_k)_{i_1\cdots i_k}$ assigned to vertices of valence k $(i_1,\ldots,i_k$ are labels on the incident half-edges).

				tı	
	τľ				

lgebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

Aside: perturbed Gaussian integrals

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y) = B_{ij}x^ix^j$ non-degenerate bilinear form on W, $p(x) = \sum_k \frac{(p_k)_{i_1\cdots i_k}}{k!} x^{i_1}\cdots x^{i_k}$ a polynomial. One has the following asymptotic equivalence as $\hbar \to 0$:

$$\int_{W} dx \cdot e^{\frac{i}{\hbar} \left(\frac{1}{2}B(x,x) + p(x)\right)} \underset{\hbar \to 0}{\sim} \\ \sim (2\pi\hbar)^{\frac{1}{2}\dim W} e^{\frac{\pi i}{4}\operatorname{sgn}(B)} \cdot (\det B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i\hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}$$

where Γ runs over connected graphs, Φ_{Γ} is the tensor contraction of

- $(B^{-1})^{ij}$ assigned to edges
- (p_k)_{i1}...i_k assigned to vertices of valence k
 (i1,...,ik are labels on the incident half-edges).

This formula converts a measure theoretic object to an algebraic one!

				tı	
	τľ				

Algebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

Aside: perturbed Gaussian integrals

Aside: perturbed Gaussian integrals. (After Feynman, Dyson). Let W vector space with fixed basis, $B(x, y) = B_{ij}x^ix^j$ non-degenerate bilinear form on W, $p(x) = \sum_k \frac{(p_k)_{i_1\cdots i_k}}{k!} x^{i_1}\cdots x^{i_k}$ a polynomial. One has the following asymptotic equivalence as $\hbar \to 0$:

$$\int_{W} dx \cdot e^{\frac{i}{\hbar} \left(\frac{1}{2}B(x,x) + p(x)\right)} \underset{\hbar \to 0}{\sim} \\ \sim (2\pi\hbar)^{\frac{1}{2}\dim W} e^{\frac{\pi i}{4}\operatorname{sgn}(B)} \cdot (\det B)^{-\frac{1}{2}} \cdot \exp \frac{i}{\hbar} \sum_{\Gamma} \frac{(-i\hbar)^{\operatorname{loops}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \cdot \Phi_{\Gamma}$$

where Γ runs over connected graphs, Φ_{Γ} is the tensor contraction of

- $(B^{-1})^{ij}$ assigned to edges
- (p_k)_{i1}...i_k assigned to vertices of valence k
 (i1,...,ik are labels on the incident half-edges).

This formula converts a measure theoretic object to an algebraic one! This gives a way to define (special) infinite-dimensional integrals in terms of "Feynman diagrams" Γ .

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		00000000	
Homotopy transfer	as BV pushforward		

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra

associated BV package

(ロ)、(型)、(E)、(E)、 E) の(の)

unimodular DGLA $V^{\bullet}, d, [,]$

Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
	00000000	

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra

associated BV package

unimodular DGLA $V^{\bullet}, d, [,]$

function

"abstract BF theory" $\xrightarrow{\text{generating}} \quad \mathcal{F} = V[1] \oplus V^*[-2],$ $S = \langle B, dA + \frac{1}{2}[A, A] \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algebra of "discrete forms" on the interval BV pushforward 00000000 Homotopy transfer as BV pushforward Homotopy transfer as BV pushforward (Losev, P.M.) algebra associated BV package "abstract BF theory" unimodular DGLA generating $\mathcal{F} = V[1] \oplus V^*[-2],$ $V^{\bullet}, d, [,]$ function $S = \langle B, dA + \frac{1}{2}[A, A] \rangle$ BV pushforward induced " BF_{∞} theory" $\mathcal{F}' = V'[1] \oplus (V')^*[-2],$ $S' = \langle B', \sum_{n \ge 1} \frac{1}{n!} l'_n (\underline{A'}, \dots, \underline{A'}) \rangle$ $-i\hbar \sum_{n \ge 1} \frac{1}{n!} q'_n (\underline{A'}, \dots, \underline{A'})$ n

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < 0

Perturbative (Feynman diagram) computation of the BV pushforward yields the Kontsevich-Soibelman sum-over-trees formula for classical L_{∞} operations l'_n , and a formula involving 1-loop graphs for induced "quantum operations" q'_n .

Perturbative (Feynman diagram) computation of the BV pushforward yields the Kontsevich-Soibelman sum-over-trees formula for classical L_{∞} operations l'_n , and a formula involving 1-loop graphs for induced "quantum operations" q'_n . Instead of starting with a uDGLA, one can start with a uL_{∞} algebra.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
Homotopy transfe	r as BV pushforward		

Homotopy transfer theorem (P.M.)

If $(V,\{l_n\},\{q_n\})$ is a unimodular L_∞ algebra and $V'\hookrightarrow V$ is a deformation retract of $(V,l_1),$ then

 $\ \ \, {\bf 0} \ \ \, V' \mbox{ carries a unimodular } L_\infty \mbox{ structure given by} \ \ \,$

$$l'_n = \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow \cdots : \wedge^n V' \to V'$$

$$q'_n = \sum_{\Gamma_1} \frac{1}{|\operatorname{Aut}(\Gamma_1)|} \longrightarrow + \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow : \wedge^n V' \to \mathbb{R}$$

where Γ_0 runs over rooted trees with n leaves and Γ_1 runs over 1-loop graphs with n leaves.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
		0000000	
Homotopy transfer	as BV pushforward		

Homotopy transfer theorem (P.M.)

If $(V,\{l_n\},\{q_n\})$ is a unimodular L_∞ algebra and $V'\hookrightarrow V$ is a deformation retract of $(V,l_1),$ then

 $\ \ \, {\bf 0} \ \ \, V' \mbox{ carries a unimodular } L_\infty \mbox{ structure given by} \ \ \,$

$$l'_n = \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow \cdots : \wedge^n V' \to V'$$

$$q'_n = \sum_{\Gamma_1} \frac{1}{|\operatorname{Aut}(\Gamma_1)|} \longrightarrow + \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow : \wedge^n V' \to \mathbb{R}$$

where Γ_0 runs over rooted trees with n leaves and Γ_1 runs over 1-loop graphs with n leaves. **Decorations:**

leaf	$i:V' \hookrightarrow V$	root	$p:V\twoheadrightarrow V'$		
edge	$-s: V^{\bullet} \to V^{\bullet -1}$	(m+1)-valent vertex	l_m		
cycle super-trace over $V \parallel m$ -valent \circ -vertex q_m					
where s is a chain homotopy $l_1 s + s l_1 = id - in$					

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory		
Homotopy transfer	Homotopy transfer as BV pushforward				

Homotopy transfer theorem (P.M.)

If $(V,\{l_n\},\{q_n\})$ is a unimodular L_∞ algebra and $V'\hookrightarrow V$ is a deformation retract of $(V,l_1),$ then

 $\textcircled{O} V' \text{ carries a unimodular } L_\infty \text{ structure given by}$

$$l'_n = \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow \cdots : \wedge^n V' \to V'$$

$$q'_n = \sum_{\Gamma_1} \frac{1}{|\operatorname{Aut}(\Gamma_1)|} \longrightarrow + \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow : \wedge^n V' \to \mathbb{R}$$

where Γ_0 runs over rooted trees with n leaves and Γ_1 runs over 1-loop graphs with n leaves. **Decorations:**

leaf	$i:V' \hookrightarrow V$	root	$p:V \twoheadrightarrow V'$
edge	$-s: V^{\bullet} \to V^{\bullet - 1}$	(m+1)-valent vertex	l_m
cycle	super-trace over ${\boldsymbol{V}}$	m -valent \circ -vertex	q_m

where s is a chain homotopy, $l_1 s + s l_1 = id - i p$.

Algebra (V', {l'_n}, {q'_n}) changes by isomorphisms under changes of induction data (i, p, s).

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			00000000000
TFT background			

Topological field theory (Lagrangian formalism).

On a manifold M, classically one has

- space of fields $F_M = \Gamma(M, \mathfrak{F}_M) \ \ni \phi$,
- action $S_M(\phi) = \int_M L(\phi, \partial \phi, \partial^2 \phi, \cdots)$, invariant under diffeomorphisms of M.

4

Quantum partition function:

$$Z_M = \int_{F_M} \mathcal{D}\phi \; e^{\frac{i}{\hbar}S_M(\phi)}$$

– a diffeomorphism invariant of M to be defined e.g. via perturbative (Feynman diagram) calculation as an asymptotic series at $\hbar \rightarrow 0$.

Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			00000000000
Simplicial program	for TFT		

Simplicial program for TFTs: Given a TFT on a manifold M with space of fields F_M and action $S_M \in C^{\infty}(F_M)[[\hbar]]$, construct an exact discretization associating to a triangulation T of M a fin.dim. space F_T and a local action $S_T \in C^{\infty}(F_T)[[\hbar]]$, such that partition function Z_M and correlation functions can be obtained from (F_T, S_T) by fin.dim. integrals. Also, if T' is a subdivision of T, S_T is an effective action for $S_{T'}$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			00000000000
BF theory			

Example of a TFT for which the exact discretization exists: BF theory:

• Fields: $F_M = \mathfrak{g} \otimes \Omega^1(M) \oplus \mathfrak{g}^* \otimes \Omega^{n-2}(M)$, BV fields: $\mathcal{F}_M = \mathfrak{g} \otimes \Omega^{\bullet}(M)[1] \oplus \mathfrak{g}^* \otimes \Omega^{\bullet}(M)[n-2] \ni (A,B)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Action: $S_M = \int_M \langle B \uparrow dA + \frac{1}{2} [A \uparrow A] \rangle$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			0000000000
Discretized BF theory			

Realization of *BF* **theory on a triangulation. (Exact discretization.)** Reference: P. Mnev, *Notes on simplicial BF theory*, Moscow Math. J 9.2 (2009): 371–410. P. Mnev, *Discrete BF theory*, arXiv:0809.1160.

Fix T a triangulation of M.

• Fields:

$$\mathcal{F}_T = \mathfrak{g} \otimes C^{\bullet}(T)[1] \oplus \mathfrak{g}^* \otimes C_{\bullet}(T)[-2] \quad \ni (A = \sum_{\sigma \in T} A^{\sigma} e_{\sigma}, B = \sum_{\sigma \in T} B_{\sigma} e^{\sigma})$$

with

$$A^{\sigma} \in \mathfrak{g}, \qquad \qquad B_{\sigma} \in \mathfrak{g}^*$$

gh $A^{\sigma} = 1 - |\sigma|, \qquad \qquad gh B_{\sigma} = -2 + |\sigma|$

• Action: $S_T = \sum_{\sigma \in T} \bar{S}_{\sigma}(\{A^{\sigma'}\}_{\sigma' \subset \sigma}, B_{\sigma}; \hbar)$

Here \bar{S}_{σ} – universal local building block, depending only on the dimension of σ .

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			0000000000
Discretized BF theory			

Universal local building blocks

- For dim $\sigma = 0$ a point, $\overline{S}_{pt} = \langle B_0, \frac{1}{2}[A^0, A^0] \rangle$.
- For dim $\sigma = 1$ an interval.

۲

r

$$\bar{S}_{01} = \left\langle B_{01}, [A^{01}, \frac{A^0 + A^1}{2}] + \mathsf{F}(\mathrm{ad}_{A^{01}})(A^1 - A^0) \right\rangle - i\hbar \log \det_{\mathfrak{g}} \mathsf{G}(\mathrm{ad}_{A^{01}})$$

with
$$F(x) = \frac{x}{2} \coth \frac{x}{2}$$
, $G(x) = \frac{2}{x} \sinh \frac{x}{2}$.
For dim $\sigma > 2$.

$$\bar{S}_{\sigma} = \sum_{n \ge 1} \sum_{T} \sum_{\sigma_1, \dots, \sigma_n \subset \sigma} \frac{1}{|\operatorname{Aut}(T)|} C(T)^{\sigma}_{\sigma_1 \dots \sigma_n} \langle B_{\sigma}, \operatorname{Jacobi}_{\mathfrak{g}}(T; A^{\sigma_1}, \dots, A^{\sigma_k}) \rangle - i\hbar \sum_{n \ge 2} \sum_{L} \sum_{\sigma_1, \dots, \sigma_n \subset \sigma} \frac{1}{|\operatorname{Aut}(L)|} C(L)_{\sigma_1 \dots \sigma_n} \operatorname{Jacobi}_{\mathfrak{g}}(L; A^{\sigma_1}, \dots, A^{\sigma_k})$$

Here T runs over rooted binary trees, L runs over connected trivalent 1-loop graphs. $C(T), C(L) \in \mathbb{Q}$ are structure constants.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			00000000000
Discretized BF theory	1		

Examples of structure constants.

$$C() = \begin{cases} \frac{|\sigma_1|! \cdot |\sigma_2|! \cdot |\sigma_3|!}{(|\sigma_1| + |\sigma_2| + 1) \cdot (|\sigma| + 2)!} \\ 0 \end{cases}$$

depending on the combinatorics of the triple of faces $\sigma_1, \sigma_2, \sigma_3 \subset \sigma$.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			0000000000
Discretized BF theory	/		

Examples of structure constants.

$$C() = \begin{cases} \frac{|\sigma_1|! \cdot |\sigma_2|! \cdot |\sigma_3|!}{(|\sigma_1| + |\sigma_2| + 1) \cdot (|\sigma| + 2)!} \\ 0 \end{cases}$$

depending on the combinatorics of the triple of faces $\sigma_1, \sigma_2, \sigma_3 \subset \sigma$.

$$C(-)^{\sigma}_{\sigma_1 \sigma_2} = \begin{cases} \pm \frac{1}{(|\sigma|+1)^2 \cdot (|\sigma|+2)} \\ 0 \end{cases}$$

where the nonzero structure constant corresponds to $\sigma_1 = \sigma_2$ an edge (1-simplex) of σ .

Introduction

Algebra of "discrete forms" on the interval

BV pushforward

Discretized BF theory

Effective action on cohomology Consider BV pushforward to $\mathcal{F}_{H^{\bullet}} = \mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^* \otimes H_{\bullet}(M),$ $S_{H^{\bullet}} = \langle B, \sum_{n>2} \frac{1}{n!} l_n^{H^{\bullet}}(A, \dots, A) \rangle - i\hbar \sum_{n>2} \frac{1}{n!} q_n^{H^{\bullet}}(A, \dots, A).$

Discretized BF the		00000000	000000000000000000000000000000000000000			
Effective action on cohomology Consider BV pushforward to						

$$\begin{split} \mathcal{F}_{H^{\bullet}} &= \mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^{*} \otimes H_{\bullet}(M), \\ S_{H^{\bullet}} &= \langle B, \sum_{n \geq 2} \frac{1}{n!} l_{n}^{H^{\bullet}}(A, \ldots, A) \rangle - i \hbar \sum_{n \geq 2} \frac{1}{n!} q_{n}^{H^{\bullet}}(A, \ldots, A). \\ \text{Operations } l_{n} \text{ are Massey brackets and encode the rational homotopy} \\ \text{type of } M; q_{n} \text{ correspond to the expansion of R-torsion near zero} \\ \text{connection on the moduli space of flat connections on } M. \\ \text{This invariant} \\ \text{is stronger than rational homotopy type.} \end{split}$$

Effective action on cohomology Consider BV/ pushforward to				
Discretized BF the	eory			
	0000000000	0000000	00000000000	
Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory	

Effective action on cohomology Consider BV pushforward to $\mathcal{F}_{H^{\bullet}} = \mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^* \otimes H_{\bullet}(M),$ $S_{H^{\bullet}} = \langle B, \sum_{n \geq 2} \frac{1}{n!} l_n^{H^{\bullet}}(A, \dots, A) \rangle - i\hbar \sum_{n \geq 2} \frac{1}{n!} q_n^{H^{\bullet}}(A, \dots, A).$ Operations l_n are Massey brackets and encode the rational homotopy type of M; q_n correspond to the expansion of R-torsion near zero connection on the moduli space of flat connections on M. This invariant is stronger than rational homotopy type. **Example:**

$$M = S^1.$$

$$S_{H\bullet} = \langle B_{(0)}, \frac{1}{2} [A^{(0)}, A^{(0)}] \rangle + \langle B_{(1)}, [A^{(0)}, A^{(1)}] \rangle - i\hbar \log \det_{\mathfrak{g}} \frac{\sinh \frac{\mathrm{ad}_{A^{(1)}}}{2}}{\frac{\mathrm{ad}_{A^{(1)}}}{2}}$$

M the Klein bottle,

$$S_{H\bullet} = \langle B_{(0)}, \frac{1}{2} [A^{(0)}, A^{(0)}] \rangle + \langle B_{(1)}, [A^{(0)}, A^{(1)}] \rangle - i\hbar \log \det_{\mathfrak{g}} \frac{\tanh \frac{\mathrm{ad}_{A^{(1)}}}{2}}{\frac{\mathrm{ad}_{A^{(1)}}}{2}}$$

Effective action on cohomology Consider BV pushforward to					
Discretized BF theory					
	0000000000		00000000000		
Introduction	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory		

Effective action on cohomology Consider BV pushforward to $\mathcal{F}_{H^{\bullet}} = \mathfrak{g} \otimes H^{\bullet}(M) \oplus \mathfrak{g}^* \otimes H_{\bullet}(M),$ $S_{H^{\bullet}} = \langle B, \sum_{n \geq 2} \frac{1}{n!} l_n^{H^{\bullet}}(A, \dots, A) \rangle - i\hbar \sum_{n \geq 2} \frac{1}{n!} q_n^{H^{\bullet}}(A, \dots, A).$ Operations l_n are Massey brackets and encode the rational homotopy type of M; q_n correspond to the expansion of R-torsion near zero connection on the moduli space of flat connections on M. This invariant is stronger than rational homotopy type. **Example:**

$$M = S^1.$$

$$S_{H\bullet} = \langle B_{(0)}, \frac{1}{2} [A^{(0)}, A^{(0)}] \rangle + \langle B_{(1)}, [A^{(0)}, A^{(1)}] \rangle - i\hbar \log \det_{\mathfrak{g}} \frac{\sinh \frac{\mathrm{ad}_{A^{(1)}}}{2}}{\frac{\mathrm{ad}_{A^{(1)}}}{2}}$$

M the Klein bottle,

$$S_{H\bullet} = \langle B_{(0)}, \frac{1}{2} [A^{(0)}, A^{(0)}] \rangle + \langle B_{(1)}, [A^{(0)}, A^{(1)}] \rangle - i\hbar \log \det_{\mathfrak{g}} \frac{\tanh \frac{\mathrm{dd}_{A^{(1)}}}{2}}{\frac{\mathrm{dd}_{A^{(1)}}}{2}}$$

 $S^1 \sim \text{Klein Bottle rationally, but distinguished by quantum operations}$ on cohomology.

Introduction

Algebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

1-dimensional Chern-Simons theory

One-dimensional simplicial Chern-Simons theory. Reference: A. Alekseev, P. Mnev, *One-dimensional Chern-Simons theory*, Comm. Math. Phys. 307.1 (2011) 185–227.

Continuum theory on a circle. Fix $(\mathfrak{g}, \langle, \rangle)$ be a *quadratic* even-dimensional Lie algebra.

- Fields: A a g-valued 1-form, ψ an odd g-valued 0-form. The odd symplectic structure: $\omega = \int_{S^1} \langle \delta \psi \uparrow, \delta A \rangle$
- Action: $S(\psi, A) = \int_{S^1} \langle \psi \uparrow d\psi + [A, \psi] \rangle$

BV pushforward to cochains of triangulated circle.

Denote T_N the triangulation of S^1 with N vertices. Discrete space of fields: cellular 0- and 1-cochains of T_N with values in \mathfrak{g} , with coordinates $\{\psi_k \in \Pi \mathfrak{g}, A_k \in \mathfrak{g}\}_{k=1}^N$ and odd symplectic form

$$\omega_{T_N} = \sum_{k=1}^N \left\langle \delta \underbrace{\left(\frac{\psi_k + \psi_{k+1}}{2} \right)}_{\tilde{\psi}_k}, \delta A_k \right\rangle$$

	Ξt	

Algebra of "discrete forms" on the interval

BV pushforward

Exact discretizations in topological field theory

1-dimensional Chern-Simons theory

Explicit simplicial Chern-Simons action on cochains of triangulated circle:

$$\begin{split} S_{T_N} &= \\ &= -\frac{1}{2} \sum_{k=1}^N \left(\left(\psi_k, \psi_{k+1} \right) + \frac{1}{3} (\psi_k, \mathrm{ad}_A_k \psi_k) + \frac{1}{3} (\psi_{k+1}, \mathrm{ad}_A_k \psi_{k+1}) + \frac{1}{3} (\psi_k, \mathrm{ad}_A_k \psi_{k+1}) \right) + \\ &+ \frac{1}{2} \sum_{k=1}^N (\psi_{k+1} - \psi_k, \left(\frac{1 - R(\mathrm{ad}_A_k)}{2} \left(\frac{1}{1 + \mu_k(A')} - \frac{1}{1 + R(\mathrm{ad}_A_k)} \right) \frac{1 - R(\mathrm{ad}_A_k)}{2R(\mathrm{ad}_A_k)} + \\ &+ (\mathrm{ad}_A_k)^{-1} + \frac{1}{12} \mathrm{ad}_A_k - \frac{1}{2} \coth \frac{\mathrm{ad}_A_k}{2} \right) \circ (\psi_{k+1} - \psi_k)) + \\ &+ \frac{1}{2} \sum_{k'=1}^N \sum_{k=k'+1}^{k'+N-1} (-1)^{k-k'} (\psi_{k+1} - \psi_k, \frac{1 - R(\mathrm{ad}_A_k)}{2} R(\mathrm{ad}_{A_{k-1}}) \cdots R(\mathrm{ad}_{A_{k'}}) \cdot \\ &\cdot \frac{1}{1 + \mu_{k'}(A')} \cdot \frac{1 - R(\mathrm{ad}_{A_{k'}})}{2R(\mathrm{ad}_{A_{k'}})} \circ (\psi_{k'+1} - \psi_{k'})) + \\ &+ \hbar \frac{1}{2} \operatorname{tr}_{\mathfrak{g}} \log \left((1 + \mu_{\bullet}(A')) \prod_{k=1}^n \left(\frac{1}{1 + R(\mathrm{ad}_A_k)} \cdot \frac{\sinh \frac{\mathrm{ad}_A_k}{2}}{\frac{\mathrm{ad}_A_k}{2}} \right) \right) \end{split}$$

where

$$R(\mathcal{A}) = -\frac{\mathcal{A}^{-1} + \frac{1}{2} - \frac{1}{2} \coth \frac{\mathcal{A}}{2}}{\mathcal{A}^{-1} - \frac{1}{2} - \frac{1}{2} \coth \frac{\mathcal{A}}{2}}, \quad \mu_k(\mathcal{A}') = R(\operatorname{ad}_{A_{k-1}})R(\operatorname{ad}_{A_{k-2}}) \cdots R(\operatorname{ad}_{A_{k+1}})R(\operatorname{ad}_{A_k})$$

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			000000000000000000000000000000000000000
1-dimensional Cher	rn-Simons theory		

Questions:

- Why such a long formula?
- It is not simplicially local (there are monomials involving distant simplices). How to disassemble the result into contributions of individual simplices?
- How to check quantum master equation for S_{T_N} explicitly?
- Simplicial aggregations should be given by finite-dimensional BV integrals; how to check that?

0000000000		0000000000000
1-dimensional Chern-Simons theory		
Introduce the building block		
Introduce the building block $\zeta(\underbrace{\tilde{\psi}}_{\in\Pi\mathfrak{g}},\underbrace{A}_{\in\mathfrak{g}}) = (i\hbar)^{-\frac{\dim\mathfrak{g}}{2}} \int_{\Pi\mathfrak{g}} D\lambda \exp\left(\frac{i\hbar}{2}\right)^{-\frac{1}{2}} \int_{\Pi\mathfrak{g}} D\lambda \exp\left(\frac{i\hbar}{2}\right)^{-\frac{1}{2$	$p\left(-\frac{1}{2\hbar}\langle\hat{\psi},[A,\hat{\psi}]\rangle\right)$	$ angle + \langle \lambda, \hat{\psi} - ilde{\psi} angle igg) \ \in Cl(\mathfrak{g})$
where $\{\hat{\psi}^a\}$ are generators of the $\hat{\psi}^a\hat{\psi}^b+\hat{\psi}^b\hat{\psi}^a=\hbar\delta^{ab}$	Clifford algebra	a $Cl(\mathfrak{g})$,
Theorem (A.Alekseev, P.M.)		
Cor a triangulated circle		

• For a triangulated circle, $e^{\frac{i}{\hbar}S_{T_N}} = \operatorname{Str}_{Cl(\mathfrak{g})} \left(\zeta(\tilde{\psi}_N, A_N) * \cdots * \zeta(\tilde{\psi}_1, A_1) \right)$

2 The bulding block satisfies the *modified* quantum master equation

$$\hbar\Delta\zeta + \frac{1}{\hbar} \left[\frac{1}{6} \langle \hat{\psi}, [\hat{\psi}, \hat{\psi}] \rangle, \zeta \right]_{Cl(\mathfrak{g})} = 0$$

where $\Delta = \frac{\partial}{\partial \tilde{\psi}} \frac{\partial}{\partial A}$.

• Simplicial action on triangulated circle S_{T_N} satisfies the usual BV quantum master equation, $\Delta_{T_N} e^{\frac{i}{\hbar}S_{T_N}} = 0$, where $\Delta_{T_N} = \sum_k \frac{\partial}{\partial \tilde{\psi}_k} \frac{\partial}{\partial A_k}$.

iscretizations in topological field theory

Introduction	Algebra of "discrete forms" on the interval	BV pushforward 00000000	Exact discretizations in topological field theory
Further developme	nts		
Further	^r developments		

- Discrete BF theory and simplicial 1D Chern-Simons can be extended to triangulated manifolds with boundary, with Atiyah-Segal (functorial) cutting/pasting rule.
 References: A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Comm. Math. Phys. 307.1 (2011) 185-227.
 A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV-BF theory, in preparation.
- Pushforward to cohomology in perturbative Chern-Simons theory yields perturbative invariants of 3-manifolds without acyclicity condition on background local system.
 Reference: A. S. Cattaneo, P. Mnev, *Remarks on Chern-Simons invariants*, Comm. Math. Phys. 293.3 (2010) 803–836.
- Pushforward to cohomology in Poisson sigma model.
 Reference: F. Bonechi, A. S. Cattaneo, P. Mnev, *The Poisson sigma model on closed surfaces*, JHEP 2012.1 (2012) 1–27.

	Algebra of "discrete forms" on the interval	BV pushforward	Exact discretizations in topological field theory
			00000000000
Further developments			

Pushforward to residual fields is made compatible with functorial cutting-pasting in the programme of

perturbative BV quantization on manifolds with boundary/corners,

References: A. S. Cattaneo, P. Mnev, N. Reshetikhin, *Classical BV theories on manifolds with boundary,* Comm. Math. Phys. 332.2 (2014) 535–603.

A. S. Cattaneo, P. Mnev, N. Reshetikhin, *Perturbative quantum gauge theories on manifolds with boundary*, arXiv:1507.01221.

Short survey: A. S. Cattaneo, P. Mnev, N. Reshetikhin, *Perturbative BV theories with Segal-like gluing*, arXiv:1602.00741.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ