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Manifold −−−−→ Invariants of the manifold

Upper right way: algebraic topology (Poincaré, de Rham,...)
Lower left way: mathematical physics/topological field theory
(Schwarz, Witten, Kontsevich,...)
What happens when we replace M with its combinatorial description?
(E.g. a triangulation)
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Pushforward in probability theory:
y = F (x)
x has probability distribution µ
implies y has probability distribution F∗µ.
Examples:

1 Throw two dice. What is the distribution for the sum?
2 Benford’s law.

Pushforward in geometry: fiber integral.
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Plan.

From discrete forms on the interval to Batalin-Vilkovisky formalism

Effective action (BV pushforward)

Application to topological field theory
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Algebra of ”discrete forms” on the interval

Appetizer/warm-up problem:
discretize the algebra of differential forms on the interval I = [0, 1].
De Rham algebra Ω•(I) 3 f(t) + g(t) · dt with operations d,∧ satisfying

d2 = 0

Leibniz rule d(α ∧ β) = dα ∧ β ± α ∧ dβ
Associativity (α ∧ β) ∧ γ = α ∧ (β ∧ γ)

Also: super-commutativity α ∧ β = ±β ∧ α.
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Algebra of ”discrete forms” on the interval

The problem: construct the algebra structure on “discrete forms”
(cellular cochains) C•(I) = Span(e0, e1, e01) 3 a · e0 + b · e1 + c · e01

with same properties.
Represent generators by forms

i : e0 7→ 1− t, e1 7→ t, e01 7→ dt

And define a projection

p : f(t) + g(t) · dt 7→ f(0) · e0 + f(1) · e1 +

(∫ 1

0

g(τ)dτ

)
· e01

Construct d and ∧ on C•:

d = p ◦ d ◦ i , i.e.

d(e0) = −e01, d(e1) = e01, d(e01) = 0

α ∧ β = p(i(α) ∧ i(β)) , i.e.

e0∧e0 = e0, e1∧e1 = e1, e0∧e01 =
1

2
e01, e1∧e01 =

1

2
e01, e01∧e01 = 0
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Algebra of ”discrete forms” on the interval

d,∧ satisfy d2 = 0, Leibniz, but associativity fails:

e0 ∧ (e0 ∧ e01) 6= (e0 ∧ e0) ∧ e01

However, one can introduce a trilinear operation m3 such that

α ∧ (β ∧ γ)− (α ∧ β) ∧ γ =

= dm3(α, β, γ)±m3(dα, β, γ)±m3(α, dβ, γ)±m3(α, β, dγ)

– “associativity up to homotopy”.
m3 itself satisfies

[∧,m3] = −[d,m4]

for some 4-linear operation m4 etc.
– a sequence of operations (m1 = d,m2 = ∧,m3,m4, . . .) satisfying a
sequence of homotopy associativity relations – an A∞ algebra structure
on C•(I).
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Aside: A∞ algebras

Aside: A∞ algebras

Definition (Stasheff)

An A∞ algebra is:

1 a Z-graded vector space V •,

2 a set of multilinear operations mn : V ⊗n → V , n ≥ 1,

satisfying the set of quadratic relations∑
q+r+s=n

mq+s+1(•, · · · , •︸ ︷︷ ︸
q

,mr(•, · · · , •)︸ ︷︷ ︸
r

, •, · · · , •︸ ︷︷ ︸
s

) = 0

Remark:

Case m6=2 = 0 – associative algebra.

Case m6=1,2 = 0 – differential graded associative algebra (DGA).
Examples:

1 Singular cochains of a topological space C•sing(X) –
non-commutative DGA.

2 De Rham algebra of a manifold Ω•(M) – super-commutative DGA.
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Aside: A∞ algebras

Motivating example: Cohomology of a top. space H•(X) carries a
natural A∞ algebra structure, with

m1 = 0,

m2 the cup product,

m3,m4, · · · the (higher) Massey products on H•(X).

Quillen, Sullivan: this A∞ structure encodes the data of rational
homotopy type of X, i.e. rational homotopy groups Q⊗ πk(X) can be
recovered from {mn}.
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Homotopy transfer of A∞ algebras

Homotopy transfer theorem for A∞ algebras
(Kadeishvili, Kontsevich-Soibleman)

If (V •, {mn}) is an A∞ algebra and V ′ ↪→ V a deformation retract of
(V,m1), then V ′ carries an A∞ structure with

m′n =
∑
T : (V ′)⊗n → V ′

where T runs over rooted trees with n leaves.

Decorations:
leaf i : V ′ ↪→ V root p : V � V ′

edge −s : V • → V •−1 (k + 1)-valent vertex mk

where s is a chain homotopy, m1 s+ sm1 = id− i p.

Example: V = Ω•(M), d,∧ the de Rham algebra of a Riemannian
manifold (M, g),
V ′ = H•(M) de Rham cohomology realized by harmonic forms. Induced
(transferred) A∞ algebra gives Massey products.
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A∞ algebra on cochains of the interval

Back to the A∞ algebra on cochains of the interval.
Explicit answer for algebra operations:

mn+1(e01, . . . , e01︸ ︷︷ ︸
k

, e1, e01, . . . , e01︸ ︷︷ ︸
n−k

) = ±
(
n
k

)
·Bn · e01

(and similarly for e1 ↔ e0), where
B0 = 1, B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , . . . are Bernoulli numbers,

i.e. coefficients of x
ex−1 =

∑
n≥0

Bn
n! x

n.

References: X. Z. Cheng, E. Getzler, Transferring homotopy
commutative algebraic structures. Journal of Pure and Applied Algebra
212.11 (2008) 2535–2542.
R. Lawrence, D. Sullivan, A free differential Lie algebra for the interval,
arXiv:math/0610949.
P. Mnev, Notes on simplicial BF theory, Moscow Math. J 9.2 (2009)
371–410.
This is a special case of homotopy transfer of algebraic structures
(Kontsevich-Soibelman,. . . ), (Ω•(I), d,∧)→ (C•(I),m1,m2,m3, · · · ).
Another point of view (Losev-P.M.): this result comes from a calculation
of a particular path integral, and Bernoulli numbers arise as values of
certain Feynman diagrams!
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Towards Batalin-Vilkovisky formalism

Allow coefficients of cochains to be matrices N ×N , or elements of a
more general Lie algebra g. Then we get an L∞ algebra structure on
C•(I, g), with skew-symmetric multilinear operations
(l1 = d, l2 = [, ], l3, l4, . . .) satisfying a sequence of homotopy Jacobi
identities.

Ω•(I)⊗ g, d, [ ∧, ] −→ C•(I)⊗ g, {ln}n≥1

Definition (Lada-Stasheff)

An L∞ algebra is:

1 a Z-graded vector space V •,

2 a set of skew-symmetric multilinear operations ln : ∧nV → V ,
n ≥ 1,

satisfying the set of quadratic relations∑
r+s=n

1

r!s!
lr+1(•, · · · , •︸ ︷︷ ︸

r

, ls(•, · · · , •︸ ︷︷ ︸
s

)) = 0

with skew-symmetrization over all inputs implied.
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Towards Batalin-Vilkovisky formalism

An L∞ algebra structure on a graded vector space V • can be packaged
into a generating function (the master action)

S(A,B) =
∑
n≥1

1

n!
〈B, ln(A, . . . , A︸ ︷︷ ︸

n

)〉

where A,B ∈ V [1]⊕ V ∗[−2] are the variables – fields.
Quadratic relations on operations ln are packaged into the
Batalin-Vilkoviski (classical) master equation

{S, S} = 0

where {f, g} =
∑
i
∂f
∂Ai

∂g
∂Bi
− ∂f

∂Bi

∂g
∂Ai is the odd Poisson bracket.
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Towards Batalin-Vilkovisky formalism

Several classes of algebraic/geometric structures can be packaged into
solutions of the master equation (allowing for different parities of {, },
S):

Lie and L∞ algebras

quadratic Lie and cyclic L∞ algebras

representation of a Lie algebra, “representation up to homotopy”

Lie algebroids

Courant algebroids

Poisson manifolds

differential graded manifolds

coisotropic submanifold of a symplectic manifold
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From CME to QME

Classical master equation (CME) {S, S} = 0 is the leading term of the
Quantum master equation (QME)

{S~, S~} − 2i~∆S~ ⇔ ∆e
i
~S~ = 0

on S~ = S + S(1)~ + S(2)~2 + · · · ∈ C∞(Fields)[[~]], where

∆ =
∑
i

∂

∂Ai
∂

∂Bi

is the BV odd Laplacian.

Example. (P.M.) Solution of CME corresponding to the discrete forms
on the interval extends (uniquely!) to a solution of QME:

S~ = 〈B0,
1

2
[A0, A0]〉+ 〈B1,

1

2
[A1, A1]〉+

+ 〈B01,

[
A01,

A0 + A1

2

]
+ F([A01, •]) ◦ (A1 −A0)〉−i~ log detgG([A01, •])︸ ︷︷ ︸

~−correction

where

F(x) =
x

2
coth

x

2
, G(x) =

2

x
sinh

x

2

S~ generates the unimodular (or quantum) L∞ structure on C•(I, g).
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Unimodular L∞ algebras

Definition (Gran̊aker, P.M.)

A unimodular L∞ algebra is:

an L∞ algebra V, {ln}n≥1, endowed additionally with

”quantum operations” qn : ∧nV → R, n ≥ 1,

satisfying, in addition to L∞ relations,
1
n!Str ln+1(•, · · · , •,−)+
+
∑
r+s=n

1
r!s!qr+1(•, · · · , •, ls(•, · · · , •)) = 0

(with inputs skew-symmetrized).
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BV summary

Summary of BV structure:

Z-graded vector space of fields F ,

symplectic structure (BV 2-form) ω on F of degree ghω = −1 –
induces {, } and ∆ on C∞(F),

action S ∈ C∞(F)[[~]] – a solution of QME

∆e
i
~S = 0
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BV pushforward

Construction (Costello, Losev, P.M.): pushforward of solutions of
QME — BV pushforward/effective BV action/fiber BV integral.
Let

F = F ′ ⊕F ′′ – splitting compatible with ω = ω′ ⊕ ω′′,
L ⊂ F ′′ a Lagrangian subspace

Define S′ ∈ C∞(F ′)[[~]] by

e
i
~S
′(x′;~) =

∫
L3x′′

e
i
~S(x′+x′′;~)

Remark: to make sense of this, we need reference half-densities µ, µ′, µ′′

on F ,F ′,F ′′ with µ = µ′ · µ′′. Correct formula:

e
i
~S
′(x′;~)µ′ =

∫
L3x′′

e
i
~S(x′+x′′;~) µ|L︸︷︷︸

µ′·µ′′|L
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Construction (Costello, Losev, P.M.): pushforward of solutions of
QME — BV pushforward/effective BV action/fiber BV integral.
Let

F = F ′ ⊕F ′′ – splitting compatible with ω = ω′ ⊕ ω′′,
L ⊂ F ′′ a Lagrangian subspace
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e
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BV pushforward

Properties:

If S satisfies QME on F then S′ satisfies QME on on F ′,
if S̃ is equivalent (homotopic) to S, i.e. e

i
~ S̃ − e i~S = ∆(· · · ), then

the corresponding BV pushforwards S̃′ and S′ are equivalent.

If L̃ is a Lagrangian homotopic to L in F ′′, then the corresponding
BV pushforward S̃′ is equivalent to S′ (obtained with L).

Notation: e
i
~S
′

= P
(L)
∗

(
e
i
~S
)

.

(Here P : F � F ′.)
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Example: Reidemester torsion

Example: Reidemeister torsion as BV pushforward.
Reference: P. Mnev, ”Lecture notes on torsions,” arXiv:1406.3705
[math.AT],
A. S. Cattaneo, P. Mnev, N. Reshetikhin, ”Cellular BV-BFV-BF theory,”
in preparation.
Input: X - cellular complex, ρ : π1(X)→ O(m) local system.

Set V • = C•ρ(X) – cellular cochains with differential twisted by ρ.

Define a BV system F = V [1]⊕ V ∗[−2] 3 (A,B), S = 〈B, dρA〉 .

Induce onto cohomology F ′ = H•[1]⊕ (H•)∗[−2].
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Example: Reidemester torsion

Example: Reidemeister torsion as BV pushforward.
Result of BV pushforward:

P∗(e
i
~S) = ζ · τ(X, ρ) ∈ Dens

1
2F ′ ∼= DetH•/{±1}.

τ(X, ρ) ∈ DetH•/{±1} — the Reidemeister torsion (an invariant of
simple homotopy type of X, in particular invariant under
subdivisions of X).

ζ = (2π~)
dimLeven

2 · ( i~ )
dimLodd

2 = ξH
•

ξC•
∈ C. Here

ξH
•

= (2π~)
∑
k(− 1

4−
1
2k(−1)k)·dimHk · (e−πi2 ~)

∑
k( 1

4−
1
2k(−1)k)·dimHk

– a topological invariant, ξC
•

– ”extensive” (multiplicative in
numbers of cells).

Thus
P∗(e

i
~S · ξC

•︸︷︷︸
correction toµ

) = ξH
•
· τ(X, ρ)

— a topological invariant, contains a mod 16 phase.
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Aside: perturbed Gaussian integrals

Aside: perturbed Gaussian integrals. (After Feynman, Dyson).
Let W vector space with fixed basis, B(x, y) = Bijx

ixj non-degenerate

bilinear form on W , p(x) =
∑
k

(pk)i1···ik
k! xi1 · · ·xik a polynomial.

One has the following asymptotic equivalence as ~→ 0:∫
W

dx · e
i
~ ( 1

2B(x,x)+p(x)) ∼
~→0

∼ (2π~)
1
2 dimW e

πi
4 sgn(B) · (detB)−

1
2 · exp

i

~
∑

Γ

(−i~)loops(Γ)

|Aut(Γ)|
· ΦΓ

where Γ runs over connected graphs, ΦΓ is the tensor contraction of

(B−1)ij assigned to edges

(pk)i1···ik assigned to vertices of valence k
(i1, . . . , ik are labels on the incident half-edges).

This formula converts a measure theoretic object to an algebraic one!
This gives a way to define (special) infinite-dimensional integrals in terms
of ”Feynman diagrams” Γ.
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Homotopy transfer as BV pushforward

Homotopy transfer as BV pushforward (Losev, P.M.)

algebra associated BV package

unimodular DGLA
V •, d, [, ]

generating−−−−−−−→
function

”abstract BF theory”
F = V [1]⊕ V ∗[−2],
S = 〈B, dA+ 1

2 [A,A]〉yBV pushforward

induced ”BF∞ theory”
F ′ = V ′[1]⊕ (V ′)∗[−2],
S′ = 〈B′,

∑
n≥1

1
n! l
′
n(A′, . . . , A′︸ ︷︷ ︸

n

)〉

−i~
∑
n≥1

1
n!q
′
n(A′, . . . , A′︸ ︷︷ ︸

n

)

Perturbative (Feynman diagram) computation of the BV pushforward
yields the Kontsevich-Soibelman sum-over-trees formula for classical L∞
operations l′n, and a formula involving 1-loop graphs for induced
”quantum operations” q′n.
Instead of starting with a uDGLA, one can start with a uL∞ algebra.
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Homotopy transfer as BV pushforward

Homotopy transfer theorem (P.M.)

If (V, {ln}, {qn}) is a unimodular L∞ algebra and V ′ ↪→ V is a
deformation retract of (V, l1), then

1 V ′ carries a unimodular L∞ structure given by

l′n =
∑

Γ0

1
|Aut(Γ0)| : ∧nV ′ → V ′

q′n =
∑

Γ1

1
|Aut(Γ1)| +

∑
Γ0

1
|Aut(Γ0)| : ∧nV ′ → R

where Γ0 runs over rooted trees with n leaves and Γ1 runs over
1-loop graphs with n leaves.

Decorations:
leaf i : V ′ ↪→ V root p : V � V ′

edge −s : V • → V •−1 (m+ 1)-valent vertex lm
cycle super-trace over V m-valent ◦-vertex qm

where s is a chain homotopy, l1 s+ s l1 = id− i p.

2 Algebra (V ′, {l′n}, {q′n}) changes by isomorphisms under changes of
induction data (i, p, s).
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2 Algebra (V ′, {l′n}, {q′n}) changes by isomorphisms under changes of
induction data (i, p, s).
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TFT background

Topological field theory (Lagrangian formalism).
On a manifold M , classically one has

space of fields FM = Γ(M,FM ) 3 φ,

action SM (φ) =
∫
M
L(φ, ∂φ, ∂2φ, · · · ),

invariant under diffeomorphisms of M .

Quantum partition function:

ZM =

∫
FM

Dφ e i~SM (φ)

– a diffeomorphism invariant of M to be defined e.g. via perturbative
(Feynman diagram) calculation as an asymptotic series at ~→ 0.
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Simplicial program for TFT

Simplicial program for TFTs: Given a TFT on a manifold M with
space of fields FM and action SM ∈ C∞(FM )[[~]], construct an exact
discretization associating to a triangulation T of M a fin.dim. space FT
and a local action ST ∈ C∞(FT )[[~]], such that partition function ZM
and correlation functions can be obtained from (FT , ST ) by fin.dim.
integrals. Also, if T ′ is a subdivision of T , ST is an effective action for
ST ′ .

M

TFT

partition function

M M
T’ T

(invariant of M)
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BF theory

Example of a TFT for which the exact discretization exists:
BF theory:

Fields: FM = g⊗ Ω1(M)⊕ g∗ ⊗ Ωn−2(M),
BV fields: FM = g⊗ Ω•(M)[1]⊕ g∗ ⊗ Ω•(M)[n− 2] 3 (A,B).

Action: SM =
∫
M
〈B ∧, dA+ 1

2 [A ∧, A]〉.
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Discretized BF theory

Realization of BF theory on a triangulation. (Exact discretization.)
Reference: P. Mnev, Notes on simplicial BF theory, Moscow Math. J 9.2
(2009): 371–410.
P. Mnev, Discrete BF theory, arXiv:0809.1160.

Fix T a triangulation of M .

Fields:

FT = g⊗C•(T )[1]⊕g∗⊗C•(T )[−2] 3 (A =
∑
σ∈T

Aσeσ, B =
∑
σ∈T

Bσe
σ)

with

Aσ ∈ g, Bσ ∈ g∗

ghAσ = 1− |σ|, ghBσ = −2 + |σ|

Action: ST =
∑
σ∈T S̄σ({Aσ′}σ′⊂σ, Bσ; ~)

Here S̄σ – universal local building block, depending only on the
dimension of σ.
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Discretized BF theory

Universal local building blocks

For dimσ = 0 a point, S̄pt = 〈B0,
1
2 [A0, A0]〉.

For dimσ = 1 an interval,

S̄01 =

〈
B01, [A

01,
A0 +A1

2
] + F(adA01)(A1 −A0)

〉
−i~ log detgG(adA01)

with F(x) = x
2 coth x

2 , G(x) = 2
x sinh x

2 .

For dimσ ≥ 2,

S̄σ =∑
n≥1

∑
T

∑
σ1,...,σn⊂σ

1

|Aut(T )|
C(T )σσ1···σn〈Bσ, Jacobig(T ;Aσ1 , · · · , Aσk)〉−

−i~
∑
n≥2

∑
L

∑
σ1,...,σn⊂σ

1

|Aut(L)|
C(L)σ1···σnJacobig(L;Aσ1 , · · · , Aσk)

Here T runs over rooted binary trees, L runs over connected
trivalent 1-loop graphs. C(T ), C(L) ∈ Q are structure constants.
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Discretized BF theory

Examples of structure constants.

C( )σσ1σ2σ3
=

{
± |σ1|!·|σ2|!·|σ3|!

(|σ1|+|σ2|+1)·(|σ|+2)!

0

depending on the combinatorics of the triple of faces σ1, σ2, σ3 ⊂ σ.

C( )σσ1σ2
=

{
± 1

(|σ|+1)2·(|σ|+2)

0

where the nonzero structure constant corresponds to σ1 = σ2 an edge
(1-simplex) of σ.
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Discretized BF theory

Examples of structure constants.
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Discretized BF theory

Effective action on cohomology Consider BV pushforward to
FH• = g⊗H•(M)⊕ g∗ ⊗H•(M),
SH• = 〈B,

∑
n≥2

1
n! l

H•

n (A, . . . , A)〉 − i~
∑
n≥2

1
n!q

H•

n (A, . . . , A).

Operations ln are Massey brackets and encode the rational homotopy
type of M ; qn correspond to the expansion of R-torsion near zero
connection on the moduli space of flat connections on M . This invariant
is stronger than rational homotopy type.
Example:

1 M = S1,

SH• = 〈B(0),
1

2
[A(0), A(0)]〉+〈B(1), [A

(0), A(1)]〉−i~ log detg
sinh

ad
A(1)

2
ad
A(1)

2

2 M the Klein bottle,

SH• = 〈B(0),
1

2
[A(0), A(0)]〉+〈B(1), [A

(0), A(1)]〉−i~ log detg
tanh

ad
A(1)

2
ad
A(1)

2

S1 ∼ Klein Bottle rationally, but distinguished by quantum operations
on cohomology.
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1-dimensional Chern-Simons theory

One-dimensional simplicial Chern-Simons theory.
Reference: A. Alekseev, P. Mnev, One-dimensional Chern-Simons
theory, Comm. Math. Phys. 307.1 (2011) 185–227.

Continuum theory on a circle. Fix (g, 〈, 〉) be a quadratic
even-dimensional Lie algebra.

Fields: A – a g-valued 1-form, ψ – an odd g-valued 0-form. The odd
symplectic structure: ω =

∫
S1〈δψ ∧, δA〉

Action: S(ψ,A) =
∫
S1〈ψ ∧, dψ + [A,ψ]〉

BV pushforward to cochains of triangulated circle.
Denote TN the triangulation of S1 with N vertices. Discrete space of
fields: cellular 0- and 1-cochains of TN with values in g, with coordinates
{ψk ∈ Πg, Ak ∈ g}Nk=1 and odd symplectic form

ωTN =
N∑
k=1

〈
δ

(
ψk + ψk+1

2

)
︸ ︷︷ ︸

ψ̃k

, δAk

〉
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1-dimensional Chern-Simons theory

Explicit simplicial Chern-Simons action on cochains of triangulated
circle:

STN =

= −
1

2

N∑
k=1

(
(ψk, ψk+1) +

1

3
(ψk, adAkψk) +

1

3
(ψk+1, adAkψk+1) +

1

3
(ψk, adAkψk+1)

)
+

+
1

2

N∑
k=1

(ψk+1 − ψk,
(

1− R(adAk )

2

(
1

1 + µk(A′)
−

1

1 + R(adAk )

)
1− R(adAk )

2R(adAk )
+

+(adAk )
−1

+
1

12
adAk −

1

2
coth

adAk
2

)
◦ (ψk+1 − ψk))+

+
1

2

N∑
k′=1

k′+N−1∑
k=k′+1

(−1)
k−k′

(ψk+1 − ψk,
1− R(adAk )

2
R(adAk−1

) · · ·R(adA
k′

)·

·
1

1 + µk′ (A
′)
·

1− R(adA
k′

)

2R(adA
k′

)
◦ (ψk′+1 − ψk′ ))+

+ ~
1

2
trg log

(1 + µ•(A
′
))

n∏
k=1

 1

1 + R(adAk )
·

sinh
adAk

2
adAk

2


where

R(A) = −
A−1 + 1

2 −
1
2 coth A2

A−1 − 1
2 −

1
2 coth A2

, µk(A
′
) = R(adAk−1

)R(adAk−2
) · · ·R(adAk+1

)R(adAk )
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1-dimensional Chern-Simons theory

Questions:

Why such a long formula?

It is not simplicially local (there are monomials involving distant
simplices). How to disassemble the result into contributions of
individual simplices?

How to check quantum master equation for STN explicitly?

Simplicial aggregations should be given by finite-dimensional BV
integrals; how to check that?
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1-dimensional Chern-Simons theory

Introduce the building block

ζ( ψ̃︸︷︷︸
∈Πg

, A︸︷︷︸
∈g

) = (i~)−
dim g

2

∫
Πg
Dλ exp

(
−

1

2~
〈ψ̂, [A, ψ̂]〉+ 〈λ, ψ̂ − ψ̃〉

)
∈ Cl(g)

where {ψ̂a} are generators of the Clifford algebra Cl(g),

ψ̂aψ̂b + ψ̂bψ̂a = ~δab

Theorem (A.Alekseev, P.M.)

1 For a triangulated circle,

e
i
~STN = StrCl(g)

(
ζ(ψ̃N , AN ) ∗ · · · ∗ ζ(ψ̃1, A1)

)
2 The bulding block satisfies the modified quantum master equation

~∆ζ +
1

~

[
1

6
〈ψ̂, [ψ̂, ψ̂]〉, ζ

]
Cl(g)

= 0

where ∆ = ∂
∂ψ̃

∂
∂A .

3 Simplicial action on triangulated circle STN satisfies the usual BV

quantum master equation, ∆TN e
i
~STN = 0, where

∆TN =
∑
k

∂
∂ψ̃k

∂
∂Ak

.
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Further developments

Further developments

Discrete BF theory and simplicial 1D Chern-Simons can be
extended to triangulated manifolds with boundary, with Atiyah-Segal
(functorial) cutting/pasting rule.
References: A. Alekseev, P. Mnev, One-dimensional Chern-Simons
theory, Comm. Math. Phys. 307.1 (2011) 185–227.
A. S. Cattaneo, P. Mnev, N. Reshetikhin, Cellular BV-BFV-BF
theory, in preparation.

Pushforward to cohomology in perturbative Chern-Simons theory -
yields perturbative invariants of 3-manifolds without acyclicity
condition on background local system.
Reference: A. S. Cattaneo, P. Mnev, Remarks on Chern-Simons
invariants, Comm. Math. Phys. 293.3 (2010) 803–836.

Pushforward to cohomology in Poisson sigma model.
Reference: F. Bonechi, A. S. Cattaneo, P. Mnev, The Poisson
sigma model on closed surfaces, JHEP 2012.1 (2012) 1–27.
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Further developments

Pushforward to residual fields is made compatible with functorial
cutting-pasting in the programme of
perturbative BV quantization on manifolds with boundary/corners,
References: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV
theories on manifolds with boundary, Comm. Math. Phys. 332.2 (2014)
535–603.
A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative quantum gauge
theories on manifolds with boundary, arXiv:1507.01221.
Short survey: A. S. Cattaneo, P. Mnev, N. Reshetikhin, Perturbative
BV theories with Segal-like gluing, arXiv:1602.00741.
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