# Hidden algebraic structure on cohomology of simplicial complexes, and TFT

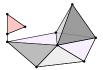
Pavel Mnev

University of Zurich

Trinity College Dublin, February 4, 2013

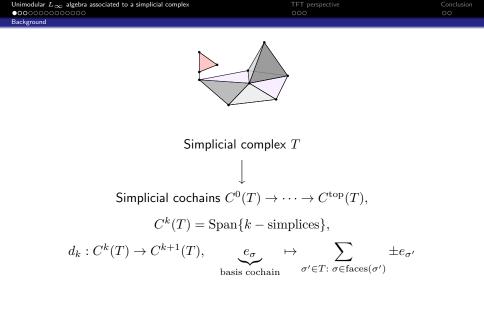
《曰》 《聞》 《臣》 《臣》 三臣 …

| Unimodular $L_{\infty}$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|--------------------------------------------------------------------|-----------------|------------|
| ••••••••••••                                                       |                 |            |
| Background                                                         |                 |            |
|                                                                    |                 |            |

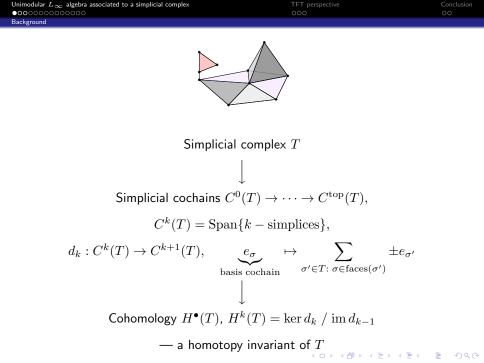


## Simplicial complex T





▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで



| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 000000000000                                                     |                 |            |
| Background                                                       |                 |            |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander's product for cochains.

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 000000000000                                                     |                 |            |
| Background                                                       |                 |            |
|                                                                  |                 |            |

Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander's product for cochains.

Massey operations on cohomology are a complete invariant of rational homotopy type in simply connected case (Quillen-Sullivan), i.e. rationalized homotopy groups  $\mathbb{Q} \otimes \pi_k(T)$  can be recovered from them.

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 00000000000                                                      |                 |            |
| Background                                                       |                 |            |

Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander's product for cochains.

Massey operations on cohomology are a complete invariant of rational homotopy type in simply connected case (Quillen-Sullivan), i.e. rationalized homotopy groups  $\mathbb{Q} \otimes \pi_k(T)$  can be recovered from them.

Example of use: linking of Borromean rings is detected by a non-vanishing Massey operation on cohomology of the complement.  $m_3([\alpha], [\beta], [\gamma]) = [u \land \gamma + \alpha \land v] \in H^2$ where  $[\alpha], [\beta], [\gamma] \in H^1$ ,  $du = \alpha \land \beta$ ,  $dv = \beta \land \gamma$ .



| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 00000000000                                                      |                 |            |
| Background                                                       |                 |            |

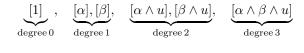
## Another example: nilmanifold

$$M = \mathsf{H}_{3}(\mathbb{R})/\mathsf{H}_{3}(\mathbb{Z})$$
$$= \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbb{R} \right\} / \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}$$

Denote

$$\alpha = dx, \ \beta = dy, \ u = dz - y \, dx \in \Omega^1(M)$$

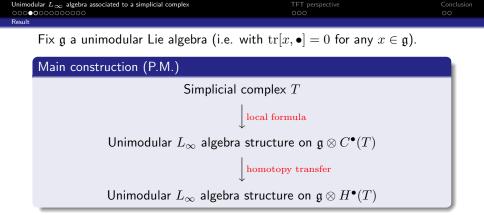
Important point:  $\alpha \wedge \beta = du$ . The cohomology is spanned by classes

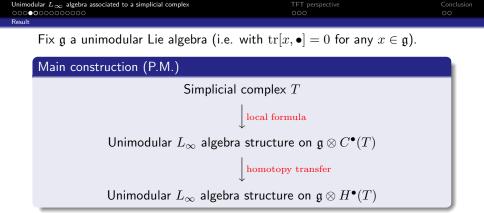


and

$$m_3([\alpha], [\beta], [\beta]) = [u \land \beta] \in H^2(M)$$

is a non-trivial Massey operation.



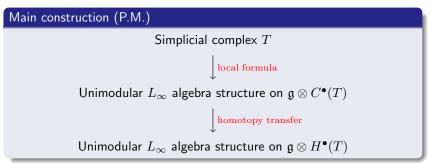


#### Main theorem (P.M.)

Unimodular  $L_{\infty}$  algebra structure on  $\mathfrak{g} \otimes H^{\bullet}(T)$  (up to isomorphisms) is an invariant of T under simple homotopy equivalence.



| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 000000000000                                                     |                 |            |
| Result                                                           |                 |            |



- Thom's problem: lifting ring structure on  $H^{\bullet}(T)$  to a **commutative** product on cochains. Removing  $\mathfrak{g}$ , we get a homotopy commutative algebra on  $C^{\bullet}(T)$ . This is an improvement of Sullivan's result with cDGA structure on cochains =  $\Omega_{poly}(T)$ .
- Local formulae for Massey operations.
- Our invariant is strictly stronger than rational homotopy type.

| Unimodular $L_\infty$ algebra associated to a simplicial complex $\circ \circ \circ$ | TFT perspective                        | Conclusion<br>OO |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|
| Unimodular $L_\infty$ algebras                                                                                                                                                       |                                        |                  |
| Definition                                                                                                                                                                           |                                        |                  |
| A unimodular $L_\infty$ algebra is the follow                                                                                                                                        | wing collection of data:               |                  |
| (a) a $\mathbb{Z}$ -graded vector space $V^{ullet}$ ,                                                                                                                                |                                        |                  |
| (b) "classical operations" $l_n:\wedge^n V$ –                                                                                                                                        | $ ightarrow V$ , $n\geq 1$ ,           |                  |
| (c) "quantum operations" $q_n:\wedge^n V$                                                                                                                                            | $ ightarrow \mathbb{R}$ , $n \geq 1$ , |                  |
|                                                                                                                                                                                      |                                        |                  |
|                                                                                                                                                                                      |                                        |                  |
|                                                                                                                                                                                      |                                        |                  |
|                                                                                                                                                                                      |                                        |                  |

| Jular $L_{\infty}$ algebra associated to a simplicial complex $\odot \odot \odot \odot \odot \odot \odot \odot$                                                                               | TFT perspective                        | Conclusion<br>OO |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|
| iular $L_\infty$ algebras                                                                                                                                                                     |                                        |                  |
|                                                                                                                                                                                               |                                        |                  |
| Definition                                                                                                                                                                                    |                                        |                  |
| A unimodular $L_\infty$ algebra is the follow                                                                                                                                                 | wing collection of data:               |                  |
| (a) a $\mathbb{Z}$ -graded vector space $V^ullet$ ,                                                                                                                                           |                                        |                  |
| (b) "classical operations" $l_n:\wedge^n V \to$                                                                                                                                               | $ ightarrow V$ , $n\geq 1$ ,           |                  |
| (c) "quantum operations" $q_n:\wedge^n V$ -                                                                                                                                                   | $ ightarrow \mathbb{R}$ , $n \geq 1$ , |                  |
| subject to two sequences of quadratic                                                                                                                                                         | relations:                             |                  |
| • $\sum_{r+s=n} \frac{1}{r!s!} l_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, \cdot))$ (anti-symmetrization over inputs                                                                       |                                        |                  |
| $ \stackrel{\bullet}{\bullet} \frac{\frac{1}{n!} \operatorname{Str} l_{n+1}(\bullet, \cdots, \bullet, -) +}{+ \sum_{r+s=n} \frac{1}{r!s!} q_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet)) } $ | $(\bullet,\cdots,\bullet))=0$          |                  |

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

| Unimodular $L_{\infty}$ algebra associated to a simplicial complex 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TFT perspective<br>000          | Conclusion |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|
| Unimodular $L_\infty$ algebras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |            |
| Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |            |
| A unimodular $L_\infty$ algebra is the following | owing collection of data:       |            |
| (a) a $\mathbb{Z}$ -graded vector space $V^ullet$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |            |
| (b) "classical operations" $l_n:\wedge^n V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ ightarrow V$ , $n \geq 1$ ,   |            |
| (c) "quantum operations" $q_n:\wedge^n V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $r 	o \mathbb{R}$ , $n \ge 1$ , |            |
| subject to two sequences of quadrat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ic relations:                   |            |
| $ \sum_{\substack{r+s=n \ r!s!}} \frac{1}{r!s!} l_{r+1}(\bullet, \cdots, \bullet, l_s(\bullet, (\bullet, (\bullet, (\bullet, (\bullet, (\bullet, (\bullet, (\bullet, (\bullet, (\bullet, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |            |
| $ \stackrel{\bullet}{\rightarrow} \frac{\frac{1}{n!} \operatorname{Str} l_{n+1}(\bullet, \cdots, \bullet, -) +}{+ \sum_{r+s=n} \frac{1}{r!s!} q_{r+1}(\bullet, \cdots, \bullet, l_s) } $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(ullet,\cdots,ullet))=0$       |            |

### Note:

- First classical operation satisfies  $(l_1)^2 = 0$ , so  $(V^{\bullet}, l_1)$  is a complex.
- A unimodular  $L_{\infty}$  algebra is in particular an  $L_{\infty}$  algebra (as introduced by Lada-Stasheff), by ignoring  $q_n$ .
- Unimodular Lie algebra is the same as unimodular  $L_\infty$  algebra with  $l_{\neq 2} = q_{\bullet} = 0.$

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 0000000000                                                       |                 |            |
| Unimodular $L_\infty$ algebras                                   | i               |            |

## An alternative definition

A unimodular  $L_\infty$  algebra is a graded vector space V endowed with

- a vector field Q on V[1] of degree 1,
- a function  $\rho$  on V[1] of degree 0,

satisfying the following identities:

$$[Q,Q] = 0, \qquad \text{div } Q = Q(\rho)$$

| Unim | odula | r Lo | <sub>O</sub> algebra | associated | to a | simplicial | complex |
|------|-------|------|----------------------|------------|------|------------|---------|
|      |       | 000  |                      |            |      |            |         |
|      |       |      | -                    |            |      |            |         |

TFT perspective

## Homotopy transfer theorem (P.M.)

If  $(V,\{l_n\},\{q_n\})$  is a unimodular  $L_\infty$  algebra and  $V'\hookrightarrow V$  is a deformation retract of  $(V,l_1),$  then

( ) V' carries a unimodular  $L_{\infty}$  structure given by

$$l'_n = \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow \cdots : \wedge^n V' \to V'$$

$$q'_n = \sum_{\Gamma_1} \frac{1}{|\operatorname{Aut}(\Gamma_1)|} \longrightarrow + \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow : \wedge^n V' \to \mathbb{R}$$

where  $\Gamma_0$  runs over rooted trees with n leaves and  $\Gamma_1$  runs over 1-loop graphs with n leaves.

| Unimodular $L_{\infty}$ | algebra a | associated | to a si | implicial | complex |
|-------------------------|-----------|------------|---------|-----------|---------|
| 0000000000              |           |            |         |           |         |
|                         |           |            |         |           |         |

TFT perspective

## Homotopy transfer theorem (P.M.)

If  $(V,\{l_n\},\{q_n\})$  is a unimodular  $L_\infty$  algebra and  $V'\hookrightarrow V$  is a deformation retract of  $(V,l_1),$  then

 $\ \ \, {\bf 0} \ \ \, V' \mbox{ carries a unimodular } L_\infty \mbox{ structure given by} \ \ \,$ 

$$l'_n = \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \qquad : \wedge^n V' \to V'$$

$$q'_n = \sum_{\Gamma_1} \frac{1}{|\operatorname{Aut}(\Gamma_1)|} \longrightarrow + \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow : \wedge^n V' \to \mathbb{R}$$

where  $\Gamma_0$  runs over rooted trees with n leaves and  $\Gamma_1$  runs over 1-loop graphs with n leaves. **Decorations:** 

| leaf                                                      | $i: V' \hookrightarrow V$           | root                        | $p:V\twoheadrightarrow V'$ |
|-----------------------------------------------------------|-------------------------------------|-----------------------------|----------------------------|
| edge                                                      | $-s: V^{\bullet} \to V^{\bullet-1}$ | (m+1)-valent vertex         | $l_m$                      |
| cycle                                                     | super-trace over $V$                | $m$ -valent $\circ$ -vertex | $q_m$                      |
| where s is a chain homotopy, $l_1 s + s l_1 = id - i p$ . |                                     |                             |                            |

| Unimodular $L_{\infty}$ | algebra a | associated | to a sim | plicial co | omplex |
|-------------------------|-----------|------------|----------|------------|--------|
| 0000000000              |           |            |          |            |        |
|                         |           |            |          |            |        |

TFT perspective

## Homotopy transfer theorem (P.M.)

If  $(V,\{l_n\},\{q_n\})$  is a unimodular  $L_\infty$  algebra and  $V'\hookrightarrow V$  is a deformation retract of  $(V,l_1),$  then

 $\ \, {\bf 0} \ \, V' \ \, {\rm carries} \ \, {\rm a} \ \, {\rm unimodular} \ \, L_\infty \ \, {\rm structure} \ \, {\rm given} \ \, {\rm by} \ \,$ 

$$l'_n = \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \qquad : \wedge^n V' \to V'$$

$$q'_n = \sum_{\Gamma_1} \frac{1}{|\operatorname{Aut}(\Gamma_1)|} \longrightarrow + \sum_{\Gamma_0} \frac{1}{|\operatorname{Aut}(\Gamma_0)|} \longrightarrow : \wedge^n V' \to \mathbb{R}$$

where  $\Gamma_0$  runs over rooted trees with n leaves and  $\Gamma_1$  runs over 1-loop graphs with n leaves. **Decorations:** 

| leaf  |                                     | root                        | $p:V\twoheadrightarrow V'$ |
|-------|-------------------------------------|-----------------------------|----------------------------|
| edge  | $-s: V^{\bullet} \to V^{\bullet-1}$ | (m+1)-valent vertex         | $l_m$                      |
| cycle | super-trace over ${\cal V}$         | $m$ -valent $\circ$ -vertex | $q_m$                      |
|       |                                     |                             | -                          |

where s is a chain homotopy,  $l_1 s + s l_1 = id - i p$ .

Algebra (V', {l'<sub>n</sub>}, {q'<sub>n</sub>}) changes by isomorphisms under changes of induction data (i, p, s).

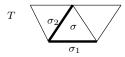
TFT perspective 000

Algebraic structure on simplicial cochains

# Locality of the algebraic structure on simplicial cochains

$$l_n^T(X_{\sigma_1}e_{\sigma_1},\cdots,X_{\sigma_n}e_{\sigma_n}) = \sum_{\substack{\sigma\in T: \sigma_1,\dots,\sigma_n\in \text{faces}(\sigma)}} \bar{l}_n^\sigma(X_{\sigma_1}e_{\sigma_1},\cdots,X_{\sigma_n}e_{\sigma_n})e_{\sigma_n}^\sigma$$
$$q_n^T(X_{\sigma_1}e_{\sigma_1},\cdots,X_{\sigma_n}e_{\sigma_n}) = \sum_{\substack{\sigma\in T: \sigma_1,\dots,\sigma_n\in \text{faces}(\sigma)}} \bar{q}_n^\sigma(X_{\sigma_1}e_{\sigma_1},\cdots,X_{\sigma_n}e_{\sigma_n})$$

**Notations:**  $e_{\sigma}$  – basis cochain for a simplex  $\sigma$ ,  $X_{\bullet} \in \mathfrak{g}$ ,  $Xe_{\sigma} := X \otimes e_{\sigma}$ .



Here  $\bar{l}_n^{\sigma} : \wedge^n(\mathfrak{g} \otimes C^{\bullet}(T)) \to \mathfrak{g}, \ \bar{q}_n^{\sigma} : \wedge^n(\mathfrak{g} \otimes C^{\bullet}(T)) \to \mathbb{R}$  are universal local building blocks, depending on dimension of  $\sigma$  only, not on combinatorics of T.

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 0000000000000                                                    |                 |            |
| Building blocks                                                  |                 |            |

# **Zero-dimensional simplex** $\sigma = [A]$ :

 $\overline{l}_2(Xe_A, Ye_A) = [X, Y]$ , all other operations vanish.



| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 0000000000000                                                    |                 |            |
| Building blocks                                                  |                 |            |

Zero-dimensional simplex  $\sigma = [A]$ :  $\overline{l}_2(Xe_A, Ye_A) = [X, Y]$ , all other operations vanish. One-dimensional simplex  $\sigma = [AB]$ :

$$\bar{l}_{n+1}(X_1e_{AB},\cdots,X_ne_{AB},Ye_B) = \frac{B_n}{n!} \sum_{\theta \in S_n} [X_{\theta_1},\cdots,[X_{\theta_n},Y]\cdots]$$

$$\bar{l}_{n+1}(X_1e_{AB},\cdots,X_ne_{AB},Ye_A) = (-1)^{n+1}\frac{B_n}{n!} \sum_{\theta \in S_n} [X_{\theta_1},\cdots,[X_{\theta_n},Y]\cdots]$$

$$\bar{q}_n(X_1e_{AB},\cdots,X_ne_{AB}) = \frac{B_n}{n\cdot n!} \sum_{\theta \in S_n} \operatorname{tr}_{\mathfrak{g}} [X_{\theta_1},\cdots,[X_{\theta_n},\bullet]\cdots]$$

where  $B_0 = 1$ ,  $B_1 = -1/2$ ,  $B_2 = 1/6$ ,  $B_3 = 0$ ,  $B_4 = -1/30$ ,... are Bernoulli numbers.

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 000000000000000                                                  |                 |            |
| Building blocks                                                  |                 |            |

Higher-dimensional simplices,  $\sigma = \Delta^N$ ,  $N \ge 2$ :  $\bar{l}_n, \bar{q}_n$  are given by a *regularized* homotopy transfer formula for transfer  $\mathfrak{g} \otimes \Omega^{\bullet}(\Delta^N) \to \mathfrak{g} \otimes C^{\bullet}(\Delta^N)$ 

| Unimodular $L_{\infty}$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|--------------------------------------------------------------------|-----------------|------------|
| 000000000000000000000000000000000000000                            |                 |            |
| Building blocks                                                    |                 |            |

Higher-dimensional simplices,  $\sigma = \Delta^N$ ,  $N \ge 2$ :  $\bar{l}_n, \bar{q}_n$  are given by a *regularized* homotopy transfer formula for transfer  $\mathfrak{g} \otimes \Omega^{\bullet}(\Delta^N) \to \mathfrak{g} \otimes C^{\bullet}(\Delta^N)$ , with

- i= representation of cochains by Whitney elementary forms,
- p = integration over faces,
- s =Dupont's chain homotopy operator.

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 000000000000000000000000000000000000000                          |                 |            |
| Building blocks                                                  |                 |            |

Higher-dimensional simplices,  $\sigma = \Delta^N$ ,  $N \ge 2$ :  $\bar{l}_n, \bar{q}_n$  are given by a *regularized* homotopy transfer formula for transfer  $\mathfrak{g} \otimes \Omega^{\bullet}(\Delta^N) \to \mathfrak{g} \otimes C^{\bullet}(\Delta^N)$ , with

- i = representation of cochains by Whitney elementary forms,
- p = integration over faces,
- s =Dupont's chain homotopy operator.

$$\bar{q}_n^{\sigma} \left. \right\} (X_{\sigma_1} e_{\sigma_1}, \cdots, X_{\sigma_n} e_{\sigma_n}) = \sum_{\Gamma} C(\Gamma)_{\sigma_1 \cdots \sigma_n}^{\sigma} \operatorname{Jacobi}_{\mathfrak{g}}(\Gamma; X_{\sigma_1}, \cdots, X_{\sigma_n})$$

where  $\Gamma$  runs over **binary** rooted trees with n leaves for  $\bar{l}_n^{\sigma}$  and over **trivalent** 1-loop graphs with n leaves for  $\bar{q}_n^{\sigma}$ ;  $C(\Gamma)_{\sigma_1\cdots\sigma_n}^{\sigma} \in \mathbb{R}$  are structure constants.

| Unimodular $L_{\infty}$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|--------------------------------------------------------------------|-----------------|------------|
| 000000000000000000000000000000000000000                            |                 |            |
| Building blocks                                                    |                 |            |

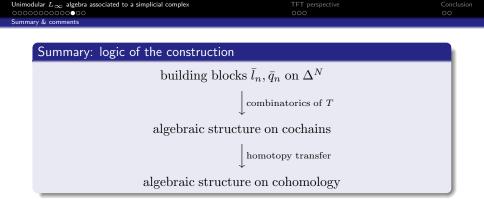
Higher-dimensional simplices,  $\sigma = \Delta^N$ ,  $N \ge 2$ :  $\bar{l}_n, \bar{q}_n$  are given by a *regularized* homotopy transfer formula for transfer  $\mathfrak{g} \otimes \Omega^{\bullet}(\Delta^N) \to \mathfrak{g} \otimes C^{\bullet}(\Delta^N)$ , with

- i= representation of cochains by Whitney elementary forms,
- p = integration over faces,
- s =Dupont's chain homotopy operator.

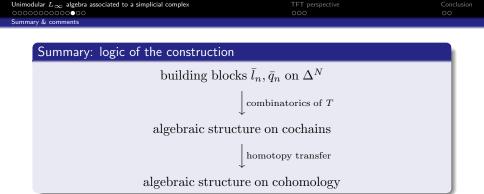
$$\bar{q}_n^{\sigma} \left. \right\} (X_{\sigma_1} e_{\sigma_1}, \cdots, X_{\sigma_n} e_{\sigma_n}) = \sum_{\Gamma} C(\Gamma)_{\sigma_1 \cdots \sigma_n}^{\sigma} \operatorname{Jacobi}_{\mathfrak{g}}(\Gamma; X_{\sigma_1}, \cdots, X_{\sigma_n})$$

where  $\Gamma$  runs over **binary** rooted trees with n leaves for  $\bar{l}_n^{\sigma}$  and over **trivalent** 1-loop graphs with n leaves for  $\bar{q}_n^{\sigma}$ ;  $C(\Gamma)_{\sigma_1\cdots\sigma_n}^{\sigma} \in \mathbb{R}$  are structure constants. There are explicit formulae for structure constants for small n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



- Operations l<sub>n</sub> on g ⊗ H<sup>•</sup>(T) are Massey brackets on cohomology and are a complete invariant of rational homotopy type in simply-connected case.
- Operations q<sub>n</sub> on g ⊗ H<sup>•</sup>(T) give a version of Reidemeister torsion of T.
- Construction above yields new local combinatorial formulae for Massey brackets (in other words: Massey brackets lift to a local algebraic structure on simplicial cochains).

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
| 000000000000000                                                  |                 |            |
| Example: quantum operations                                      |                 |            |
|                                                                  |                 |            |

**Example:** for a circle and a Klein bottle,  $H^{\bullet}(S^1) \simeq H^{\bullet}(KB)$  as rings, but  $\mathfrak{g} \otimes H^{\bullet}(S^1) \not\simeq \mathfrak{g} \otimes H^{\bullet}(KB)$  as unimodular  $L_{\infty}$  algebras (distinguished by quantum operations).

$$e^{\sum_{n} \frac{1}{n!} q_{n}(X \otimes \varepsilon, \cdots X \otimes \varepsilon)} = \frac{e^{\sum_{n} \frac{1}{n!} q_{n}(X \otimes \varepsilon, \cdots X \otimes \varepsilon)}}{\det_{\mathfrak{g}} \left(\frac{\sinh \frac{\operatorname{ad}_{X}}{2}}{\frac{\operatorname{ad}_{X}}{2}}\right) \qquad \det_{\mathfrak{g}} \left(\frac{\operatorname{ad}_{X}}{2} \cdot \coth \frac{\operatorname{ad}_{X}}{2}\right)^{-1}}$$
for  $S^{1}$  for Klein bottle

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where  $\varepsilon \in H^1$  – generator,  $X \in \mathfrak{g}$  – variable.

Unimodular  $L_\infty$  algebra associated to a simplicial complex  $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$ 

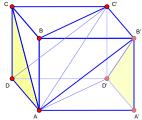
TFT perspective

Conclusion 00

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Example: Massey bracket on the nilmanifold, combinatorial calculation

## Triangulation of the nilmanifold:



one **0-simplex:** A=B=C=D=A'=B'=C'=D' seven 1-simplices: AD=BC=A'D'=B'C', AA'=BB'=CC'=DD', AB=DC=D'B', AC=A'B'=D'C', AB'=DC', AD'=BC', AC' twelve **2-simplices:** AA'B'=DD'C', AB'B=DC'C, AA'D'=BB'C', AD'D=BC'C, ACD=AB'D', ABC=D'B'C', AB'D', AC'D', ACC', ABC' six **3-simplices:** AA'B'D', AB'C'D',

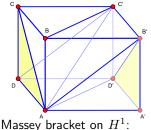
ADC'D', ABB'C', ABCC', ACDC'

Unimodular  $L_{\infty}$  algebra associated to a simplicial complex  $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$ 

TFT perspective 000 Conclusion 00

Example: Massey bracket on the nilmanifold, combinatorial calculation

## Triangulation of the nilmanifold:

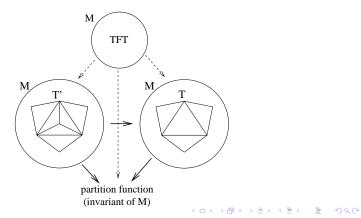


one 0-simplex: A=B=C=D=A'=B'=C'=D' seven 1-simplices: AD=BC=A'D'=B'C', AA'=BB'=CC'=DD', AB=DC=D'B', AC=A'B'=D'C', AB'=DC', AD'=BC', AC' twelve 2-simplices: AA'B'=DD'C', AB'B=DC'C, AA'D'=BB'C', AD'D=BC'C, ACD=AB'D', ABC=D'B'C', AB'D', AC'D', ACC', ABC' six 3-simplices: AA'B'D', AB'C'D', ADC'D', ABB'C', ABCC', ACDC'

$$\begin{split} l_3(X\otimes [\alpha], Y\otimes [\beta], Z\otimes [\beta]) = \\ &= \frac{1}{2} \underbrace{\begin{smallmatrix} X\otimes \alpha \\ Y\otimes \beta \end{smallmatrix}_{Z\otimes \beta} } \underbrace{\begin{smallmatrix} l_2^T \\ -s^T \\ Z\otimes \beta \end{smallmatrix}_{Z\otimes \beta} + \frac{1}{6} \underbrace{\begin{smallmatrix} X\otimes \alpha \\ Y\otimes \beta \\ Z\otimes \beta \end{smallmatrix}_{Z\otimes \beta} + permutations of inputs \\ &= ([[X,Y],Z] + [[X,Z],Y])\otimes [\eta] \in \mathfrak{g} \otimes H^2(T) \\ \end{split}$$
where  $s^T = d^{\vee}/(dd^{\vee} + d^{\vee}d);$  $\alpha = e_{AC} + e_{AD} + e_{AC'} + e_{AD'}, \ \beta = e_{AA'} + e_{AB'} + e_{AC'} + e_{AD'}$ 

– representatives of cohomology classes [ $\alpha$ ], [ $\beta$ ] in simplicial cochains.

Simplicial program for TFTs: Given a TFT on a manifold M with space of fields  $F_M$  and action  $S_M \in C^{\infty}(F_M)[[\hbar]]$ , construct an exact discretization associating to a triangulation T of M a fin.dim. space  $F_T$ and a local action  $S_T \in C^{\infty}(F_T)[[\hbar]]$ , such that partition function  $Z_M$ and correlation functions can be obtained from  $(F_T, S_T)$  by fin.dim. integrals. Also, if T' is a subdivision of T,  $S_T$  is an effective action for  $S_{T'}$ .



| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
|                                                                  | 000             |            |
| BF theory                                                        |                 |            |

Example of a TFT for which the exact discretization exists: BF theory:

• fields: 
$$F_M = \underbrace{\mathfrak{g} \otimes \Omega^1(M)}_A \oplus \underbrace{\mathfrak{g}^* \otimes \Omega^{\dim M - 2}(M)}_B$$

• action: 
$$S_M = \int_M \langle B, dA + A \wedge A \rangle$$
,

• equations of motion:  $dA + A \wedge A = 0$ ,  $d_A B = 0$ .

| Unimodular $L_{\infty}$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|--------------------------------------------------------------------|-----------------|------------|
|                                                                    | 000             |            |
| Algebra – TFT dictionary                                           |                 |            |

| Algebra – TFT dictionary                                |                                                                                                           |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
| de Rham algebra $\mathfrak{g}\otimes \Omega^{ullet}(M)$ | BF theory                                                                                                 |  |
| (as a dg Lie algebra)                                   |                                                                                                           |  |
| unimodular $L_\infty$ algebra                           | $BF_{\infty}$ theory, $F=V[1]\oplus V^*[-2]$ ,                                                            |  |
| $(V, \{l_n\}, \{q_n\})$                                 | $S = \sum_{n n!} \langle B, l_n(A, \cdots, A) \rangle + \\ + \hbar \sum_n \frac{1}{n!} q_n(A, \cdots, A)$ |  |
|                                                         | $+\hbar \sum_{n} \frac{1}{n!} q_n(A, \cdots, A)$                                                          |  |
| quadratic relations on operations                       | Batalin-Vilkoviski master equation                                                                        |  |
|                                                         | $\Delta e^{S/\hbar} = 0$                                                                                  |  |
|                                                         | $\frac{\partial}{\partial A} \frac{\partial}{\partial B}$                                                 |  |
| homotopy transfer                                       | effective action $e^{S'/\hbar} = \int_{L \subset F''} e^{S/\hbar}$ ,                                      |  |
| $V \rightarrow V'$                                      | $F = F' \oplus F''$                                                                                       |  |
| choice of chain homotopy $s$                            | gauge-fixing                                                                                              |  |
|                                                         | (choice of Lagrangian $L \subset F''$ )                                                                   |  |

| Unimodular $L_{\infty}$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|--------------------------------------------------------------------|-----------------|------------|
|                                                                    |                 | ••         |
| Program                                                            |                 |            |

## Goal:

- Construct other simplicial TFTs, in particular simplicial Chern-Simons theory.
- Explore applications to invariants of manifolds and (generalized) knots, consistent with gluing-cutting.

## Goal:

Program

- Construct other simplicial TFTs, in particular simplicial Chern-Simons theory.
- Explore applications to invariants of manifolds and (generalized) knots, consistent with gluing-cutting.

## Steps:

- Construct simplicial 1-dimensional Chern-Simons theory as Atiyah's TFT on triangulated 1-cobordisms (**complete**, with Anton Alekseev).
- Construct a finite-dimensional algebraic model of 3-dimensional Chern-Simons theory; study effective action induced on de Rham cohomology and corresponding 3-manifold invariants (**complete**, with Alberto Cattaneo).
- Extend cohomological Batalin-Vilkovisky formalism for treating gauge symmetry of TFTs to allow spacetime manifolds with boundary or corners in a way consistent with gluing (**complete**, with Alberto Cattaneo and Nicolai Reshetikhin).
- Construct the quantization of TFTs on manifolds with boundary in BV formalism by perturbative path integral (**in progress**).
- Extend previous step to manifolds with corners (in progress).

| Unimodular $L_\infty$ algebra associated to a simplicial complex | TFT perspective | Conclusion |
|------------------------------------------------------------------|-----------------|------------|
|                                                                  |                 | 00         |
| References                                                       |                 |            |
|                                                                  |                 |            |

## **References:**

- (i) P. Mnev, Discrete BF theory, arXiv:0809.1160
- (ii) P. Mnev, Notes on simplicial BF theory, Moscow Mathematical Journal 9, 2 (2009), 371–410
- (iii) A. Cattaneo, P. Mnev, *Remarks on Chern-Simons invariants*, Comm. in Math. Phys. 293 3 (2010) 803-836
- (iv) A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Comm. in Math. Phys. 307 1 (2011) 185–227
- (v) A. Cattaneo, P. Mnev, N. Reshetikhin, *Classical BV theories on manifolds with boundary*, arXiv:1201.0290