Hidden algebraic structure on cohomology of simplicial complexes, and TFT

Pavel Mnev
University of Zurich

Trinity College Dublin, February 4, 2013

Simplicial complex T

Simplicial complex T

Simplicial cochains $C^{0}(T) \rightarrow \cdots \rightarrow C^{\text {top }}(T)$,

$$
C^{k}(T)=\operatorname{Span}\{k-\text { simplices }\},
$$

$$
d_{k}: C^{k}(T) \rightarrow C^{k+1}(T), \quad \underbrace{e_{\sigma}}_{\text {basis cochain }} \mapsto \sum_{\sigma^{\prime} \in T: \sigma \in \text { faces }\left(\sigma^{\prime}\right)} \pm e_{\sigma^{\prime}}
$$

Simplicial complex T

Simplicial cochains $C^{0}(T) \rightarrow \cdots \rightarrow C^{\text {top }}(T)$,

$$
C^{k}(T)=\operatorname{Span}\{k-\text { simplices }\},
$$

$$
d_{k}: C^{k}(T) \rightarrow C^{k+1}(T), \quad \underbrace{e_{\sigma}}_{\text {basis cochain }} \mapsto \sum_{\sigma^{\prime} \in T: \sigma \in \operatorname{faces}\left(\sigma^{\prime}\right)} \pm e_{\sigma^{\prime}}
$$

Cohomology $H^{\bullet}(T), H^{k}(T)=\operatorname{ker} d_{k} / \operatorname{im} d_{k-1}$
— a homotopy invariant of T

Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander's product for cochains.

Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander's product for cochains.

Massey operations on cohomology are a complete invariant of rational homotopy type in simply connected case (Quillen-Sullivan), i.e. rationalized homotopy groups $\mathbb{Q} \otimes \pi_{k}(T)$ can be recovered from them.

Cohomology carries a commutative ring structure, coming from (non-commutative) Alexander's product for cochains.

Massey operations on cohomology are a complete invariant of rational homotopy type in simply connected case (Quillen-Sullivan), i.e. rationalized homotopy groups $\mathbb{Q} \otimes \pi_{k}(T)$ can be recovered from them.

Example of use: linking of Borromean rings is detected by a non-vanishing Massey operation on cohomology of the complement.
$m_{3}([\alpha],[\beta],[\gamma])=[u \wedge \gamma+\alpha \wedge v] \in H^{2}$ where $[\alpha],[\beta],[\gamma] \in H^{1}, d u=\alpha \wedge \beta, d v=\beta \wedge \gamma$.

Another example: nilmanifold

$$
\begin{aligned}
& M=\mathrm{H}_{3}(\mathbb{R}) / \mathrm{H}_{3}(\mathbb{Z}) \\
= & \left\{\left.\left(\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}\right\} /\left\{\left.\left(\begin{array}{lll}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}
\end{aligned}
$$

Denote

$$
\alpha=d x, \beta=d y, u=d z-y d x \in \Omega^{1}(M)
$$

Important point: $\alpha \wedge \beta=d u$. The cohomology is spanned by classes

$$
\underbrace{[1]}_{\text {degree } 0}, \underbrace{[\alpha],[\beta]}_{\text {degree } 1}, \quad \underbrace{[\alpha \wedge u],[\beta \wedge u]}_{\text {degree } 2}, \quad \underbrace{[\alpha \wedge \beta \wedge u]}_{\text {degree } 3}
$$

and

$$
m_{3}([\alpha],[\beta],[\beta])=[u \wedge \beta] \in H^{2}(M)
$$

is a non-trivial Massey operation.

Fix \mathfrak{g} a unimodular Lie algebra (i.e. with $\operatorname{tr}[x, \bullet]=0$ for any $x \in \mathfrak{g}$).

Main construction (P.M.)

Simplicial complex T
local formula
Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes C^{\bullet}(T)$
homotopy transfer
Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes H^{\bullet}(T)$

Fix \mathfrak{g} a unimodular Lie algebra (i.e. with $\operatorname{tr}[x, \bullet]=0$ for any $x \in \mathfrak{g}$).

Main construction (P.M.)

Simplicial complex T
local formula
Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes C^{\bullet}(T)$
homotopy transfer
Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes H^{\bullet}(T)$

Main theorem (P.M.)

Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes H^{\bullet}(T)$ (up to isomorphisms) is an invariant of T under simple homotopy equivalence.

Main construction (P.M.)

> Simplicial complex T
> $\quad \downarrow^{\text {local formula }}$
> Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes C^{\bullet}(T)$
> $\quad \downarrow_{\text {homotopy transfer }}$
> Unimodular L_{∞} algebra structure on $\mathfrak{g} \otimes H^{\bullet}(T)$

- Thom's problem: lifting ring structure on $H^{\bullet}(T)$ to a commutative product on cochains. Removing \mathfrak{g}, we get a homotopy commutative algebra on $C^{\bullet}(T)$. This is an improvement of Sullivan's result with cDGA structure on cochains $=\Omega_{\text {poly }}(T)$.
- Local formulae for Massey operations.
- Our invariant is strictly stronger than rational homotopy type.

Definition

A unimodular L_{∞} algebra is the following collection of data:
(a) a \mathbb{Z}-graded vector space V^{\bullet},
(b) "classical operations" $l_{n}: \wedge^{n} V \rightarrow V, n \geq 1$,
(c) "quantum operations" $q_{n}: \wedge^{n} V \rightarrow \mathbb{R}, n \geq 1$,

Definition

A unimodular L_{∞} algebra is the following collection of data:
(a) a \mathbb{Z}-graded vector space V^{\bullet},
(b) "classical operations" $l_{n}: \wedge^{n} V \rightarrow V, n \geq 1$,
(c) "quantum operations" $q_{n}: \wedge^{n} V \rightarrow \mathbb{R}, n \geq 1$,
subject to two sequences of quadratic relations:
(1) $\sum_{r+s=n} \frac{1}{r!s!} l_{r+1}\left(\bullet, \cdots, \bullet, l_{s}(\bullet, \cdots, \bullet)\right)=0, n \geq 1$ (anti-symmetrization over inputs implied),
(2) $\frac{1}{n!} \operatorname{Str} l_{n+1}(\bullet, \cdots, \bullet,-)+$

$$
\stackrel{n!}{+} \sum_{r+s=n} \frac{1}{r!s!} q_{r+1}\left(\bullet, \cdots, \bullet, l_{s}(\bullet, \cdots, \bullet)\right)=0
$$

Definition

A unimodular L_{∞} algebra is the following collection of data:
(a) a \mathbb{Z}-graded vector space V^{\bullet},
(b) "classical operations" $l_{n}: \wedge^{n} V \rightarrow V, n \geq 1$,
(c) "quantum operations" $q_{n}: \wedge^{n} V \rightarrow \mathbb{R}, n \geq 1$,
subject to two sequences of quadratic relations:
(1) $\sum_{r+s=n} \frac{1}{r!s!} l_{r+1}\left(\bullet, \cdots, \bullet, l_{s}(\bullet, \cdots, \bullet)\right)=0, n \geq 1$ (anti-symmetrization over inputs implied),
(c) $\frac{1}{n!} \operatorname{Str} l_{n+1}(\bullet, \cdots, \bullet,-)+$ $+\sum_{r+s=n} \frac{1}{r!s!} q_{r+1}\left(\bullet, \cdots, \bullet, l_{s}(\bullet, \cdots, \bullet)\right)=0$

Note:

- First classical operation satisfies $\left(l_{1}\right)^{2}=0$, so $\left(V^{\bullet}, l_{1}\right)$ is a complex.
- A unimodular L_{∞} algebra is in particular an L_{∞} algebra (as introduced by Lada-Stasheff), by ignoring q_{n}.
- Unimodular Lie algebra is the same as unimodular L_{∞} algebra with $l_{\neq 2}=q .=0$.

An alternative definition

A unimodular L_{∞} algebra is a graded vector space V endowed with

- a vector field Q on $V[1]$ of degree 1 ,
- a function ρ on $V[1]$ of degree 0 ,
satisfying the following identities:

$$
[Q, Q]=0, \quad \operatorname{div} Q=Q(\rho)
$$

Homotopy transfer theorem (P.M.)

If $\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$ is a unimodular L_{∞} algebra and $V^{\prime} \hookrightarrow V$ is a deformation retract of $\left(V, l_{1}\right)$, then
(1) V^{\prime} carries a unimodular L_{∞} structure given by

$$
\begin{aligned}
& l_{n}^{\prime}=\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}: \wedge^{n} V^{\prime} \rightarrow V^{\prime} \\
& \left.q_{n}^{\prime}=\sum_{\Gamma_{1}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right|}\right\rangle>+\sum_{\Gamma_{0} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}>}: \wedge^{n} V^{\prime} \rightarrow \mathbb{R}
\end{aligned}
$$

where Γ_{0} runs over rooted trees with n leaves and Γ_{1} runs over 1-loop graphs with n leaves.

Homotopy transfer theorem (P.M.)

If $\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$ is a unimodular L_{∞} algebra and $V^{\prime} \hookrightarrow V$ is a deformation retract of $\left(V, l_{1}\right)$, then
(1) V^{\prime} carries a unimodular L_{∞} structure given by

$$
l_{n}^{\prime}=\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}
$$

$$
: \wedge^{n} V^{\prime} \rightarrow V^{\prime}
$$

$$
\left.q_{n}^{\prime}=\sum_{\Gamma_{1}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right|}\right\rangle \bigcirc<+\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|} \gg: \wedge^{n} V^{\prime} \rightarrow \mathbb{R}
$$ where Γ_{0} runs over rooted trees with n leaves and Γ_{1} runs over 1 -loop graphs with n leaves. Decorations:

leaf	$i: V^{\prime} \hookrightarrow V$	root	$p: V \rightarrow V^{\prime}$
edge	$-s: V^{\bullet} \rightarrow V^{\bullet-1}$	$(m+1)$-valent vertex	l_{m}
cycle	super-trace over V	m-valent o-vertex	q_{m}
where s is a chain homotopy, $l_{1} s+s l_{1}=$ id $-i p$			

Homotopy transfer theorem (P.M.)

If $\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$ is a unimodular L_{∞} algebra and $V^{\prime} \hookrightarrow V$ is a deformation retract of $\left(V, l_{1}\right)$, then
(1) V^{\prime} carries a unimodular L_{∞} structure given by

$$
l_{n}^{\prime}=\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|}
$$

$$
: \wedge^{n} V^{\prime} \rightarrow V^{\prime}
$$

$$
\left.q_{n}^{\prime}=\sum_{\Gamma_{1}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{1}\right)\right|}\right\rangle \bigcirc<+\sum_{\Gamma_{0}} \frac{1}{\left|\operatorname{Aut}\left(\Gamma_{0}\right)\right|} \gg: \wedge^{n} V^{\prime} \rightarrow \mathbb{R}
$$

where Γ_{0} runs over rooted trees with n leaves and Γ_{1} runs over 1 -loop graphs with n leaves. Decorations:

leaf	$i: V^{\prime} \hookrightarrow V$	$p: V \rightarrow V^{\prime}$	
edge	$-s: V^{\bullet} \rightarrow V^{\bullet-1}$	$(m+1)$-valent vertex	l_{m}
cycle	super-trace over V	m-valent o-vertex	q_{m}
where s is a chain homotopy, $l_{1} s+s l_{1}=$ id $-i p$			

(2) Algebra $\left(V^{\prime},\left\{l_{n}^{\prime}\right\},\left\{q_{n}^{\prime}\right\}\right)$ changes by isomorphisms under changes of induction data (i, p, s).

Locality of the algebraic structure on simplicial cochains

$$
\begin{aligned}
& l_{n}^{T}\left(X_{\sigma_{1}} e_{\sigma_{1}}, \cdots, X_{\sigma_{n}} e_{\sigma_{n}}\right)= \\
& \sum_{n \in T: \sigma_{1}, \ldots, \sigma_{n} \in \operatorname{faces}(\sigma)} \bar{l}_{n}^{\sigma}\left(X_{\sigma_{1}} e_{\sigma_{1}}, \cdots, X_{\sigma_{n}} e_{\sigma_{n}}\right) e_{\sigma} \\
& q_{n}^{T}\left(X_{\sigma_{1}} e_{\sigma_{1}}, \cdots, X_{\sigma_{n}} e_{\sigma_{n}}\right)= \\
& \sum_{n}^{\sigma}\left(X_{\sigma_{1}} e_{\sigma_{1}}, \cdots, X_{\sigma_{n}} e_{\sigma_{n}}\right)
\end{aligned}
$$

Notations: e_{σ} - basis cochain for a simplex $\sigma, X_{\bullet} \in \mathfrak{g}, X e_{\sigma}:=X \otimes e_{\sigma}$.

Here $\bar{l}_{n}^{\sigma}: \wedge^{n}\left(\mathfrak{g} \otimes C^{\bullet}(T)\right) \rightarrow \mathfrak{g}, \bar{q}_{n}^{\sigma}: \wedge^{n}\left(\mathfrak{g} \otimes C^{\bullet}(T)\right) \rightarrow \mathbb{R}$ are universal local building blocks, depending on dimension of σ only, not on combinatorics of T.

Zero-dimensional simplex $\sigma=[A]$: $\bar{l}_{2}\left(X e_{A}, Y e_{A}\right)=[X, Y]$, all other operations vanish.

Zero-dimensional simplex $\sigma=[A]$: $\bar{l}_{2}\left(X e_{A}, Y e_{A}\right)=[X, Y]$, all other operations vanish.
One-dimensional simplex $\sigma=[A B]$:

$$
\begin{aligned}
\bar{l}_{n+1}\left(X_{1} e_{A B}, \cdots, X_{n} e_{A B}, Y e_{B}\right) & =\frac{B_{n}}{n!} \sum_{\theta \in S_{n}}\left[X_{\theta_{1}}, \cdots,\left[X_{\theta_{n}}, Y\right] \cdots\right] \\
\bar{l}_{n+1}\left(X_{1} e_{A B}, \cdots, X_{n} e_{A B}, Y e_{A}\right) & =(-1)^{n+1} \frac{B_{n}}{n!} \sum_{\theta \in S_{n}}\left[X_{\theta_{1}}, \cdots,\left[X_{\theta_{n}}, Y\right] \cdots\right] \\
\bar{q}_{n}\left(X_{1} e_{A B}, \cdots, X_{n} e_{A B}\right) & =\frac{B_{n}}{n \cdot n!} \sum_{\theta \in S_{n}} \operatorname{tr}_{\mathfrak{g}}\left[X_{\theta_{1}}, \cdots,\left[X_{\theta_{n}}, \bullet\right] \cdots\right]
\end{aligned}
$$

where $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, \ldots$ are
Bernoulli numbers.

Higher-dimensional simplices, $\sigma=\Delta^{N}, N \geq 2: \bar{l}_{n}, \bar{q}_{n}$ are given by a regularized homotopy transfer formula for transfer $\mathfrak{g} \otimes \Omega^{\bullet}\left(\Delta^{N}\right) \rightarrow \mathfrak{g} \otimes C^{\bullet}\left(\Delta^{N}\right)$

Higher-dimensional simplices, $\sigma=\Delta^{N}, N \geq 2$: \bar{l}_{n}, \bar{q}_{n} are given by a regularized homotopy transfer formula for transfer $\mathfrak{g} \otimes \Omega^{\bullet}\left(\Delta^{N}\right) \rightarrow \mathfrak{g} \otimes C^{\bullet}\left(\Delta^{N}\right)$, with

- $i=$ representation of cochains by Whitney elementary forms,
- $p=$ integration over faces,
- $s=$ Dupont's chain homotopy operator.

Higher-dimensional simplices, $\sigma=\Delta^{N}, N \geq 2$: \bar{l}_{n}, \bar{q}_{n} are given by a regularized homotopy transfer formula for transfer $\mathfrak{g} \otimes \Omega^{\bullet}\left(\Delta^{N}\right) \rightarrow \mathfrak{g} \otimes C^{\bullet}\left(\Delta^{N}\right)$, with

- $i=$ representation of cochains by Whitney elementary forms,
- $p=$ integration over faces,
- $s=$ Dupont's chain homotopy operator.

$$
\left.\begin{array}{l}
\bar{l}_{n}^{\sigma} \\
\bar{q}_{n}^{\sigma}
\end{array}\right\}\left(X_{\sigma_{1}} e_{\sigma_{1}}, \cdots, X_{\sigma_{n}} e_{\sigma_{n}}\right)=\sum_{\Gamma} C(\Gamma)_{\sigma_{1} \cdots \sigma_{n}}^{\sigma} \operatorname{Jacobi}_{\mathfrak{g}}\left(\Gamma ; X_{\sigma_{1}}, \cdots, X_{\sigma_{n}}\right)
$$

where Γ runs over binary rooted trees with n leaves for \bar{l}_{n}^{σ} and over trivalent 1-loop graphs with n leaves for \bar{q}_{n}^{σ}; $C(\Gamma)_{\sigma_{1} \cdots \sigma_{n}}^{\sigma} \in \mathbb{R}$ are structure constants.

Higher-dimensional simplices, $\sigma=\Delta^{N}, N \geq 2$: \bar{l}_{n}, \bar{q}_{n} are given by a regularized homotopy transfer formula for transfer $\mathfrak{g} \otimes \Omega^{\bullet}\left(\Delta^{N}\right) \rightarrow \mathfrak{g} \otimes C^{\bullet}\left(\Delta^{N}\right)$, with

- $i=$ representation of cochains by Whitney elementary forms,
- $p=$ integration over faces,
- $s=$ Dupont's chain homotopy operator.

$$
\left.\begin{array}{l}
\bar{l}_{n}^{\sigma} \\
\bar{q}_{n}^{\sigma}
\end{array}\right\}\left(X_{\sigma_{1}} e_{\sigma_{1}}, \cdots, X_{\sigma_{n}} e_{\sigma_{n}}\right)=\sum_{\Gamma} C(\Gamma)_{\sigma_{1} \cdots \sigma_{n}}^{\sigma} \operatorname{Jacobi}_{\mathfrak{g}}\left(\Gamma ; X_{\sigma_{1}}, \cdots, X_{\sigma_{n}}\right)
$$

where Γ runs over binary rooted trees with n leaves for \bar{l}_{n}^{σ} and over trivalent 1-loop graphs with n leaves for \bar{q}_{n}^{σ};
$C(\Gamma)_{\sigma_{1} \cdots \sigma_{n}}^{\sigma} \in \mathbb{R}$ are structure constants.
There are explicit formulae for structure constants for small n.

Summary: logic of the construction

building blocks \bar{l}_{n}, \bar{q}_{n} on Δ^{N} combinatorics of T
algebraic structure on cochains
homotopy transfer
algebraic structure on cohomology

Summary: logic of the construction

> building blocks \bar{l}_{n}, \bar{q}_{n} on Δ^{N} $$
\text { combinatorics of } T
$$

algebraic structure on cochains
homotopy transfer
algebraic structure on cohomology

- Operations l_{n} on $\mathfrak{g} \otimes H^{\bullet}(T)$ are Massey brackets on cohomology and are a complete invariant of rational homotopy type in simply-connected case.
- Operations q_{n} on $\mathfrak{g} \otimes H^{\bullet}(T)$ give a version of Reidemeister torsion of T.
- Construction above yields new local combinatorial formulae for Massey brackets (in other words: Massey brackets lift to a local algebraic structure on simplicial cochains).

Example: for a circle and a Klein bottle, $H^{\bullet}\left(S^{1}\right) \simeq H^{\bullet}(K B)$ as rings, but $\mathfrak{g} \otimes H^{\bullet}\left(S^{1}\right) \not 千 \mathfrak{g} \otimes H^{\bullet}(K B)$ as unimodular L_{∞} algebras (distinguished by quantum operations).

$$
\begin{aligned}
& e^{\sum_{n} \frac{1}{n!} q_{n}(X \otimes \varepsilon, \cdots X \otimes \varepsilon)}= \\
& \operatorname{det}_{\mathfrak{g}}\left(\frac{\sinh \frac{\operatorname{da} X}{2}}{\frac{\operatorname{ad} X}{2}}\right) \quad \operatorname{det}_{\mathfrak{g}}\left(\frac{\operatorname{ad} X}{2} \cdot \operatorname{coth} \frac{\operatorname{ad} X}{2}\right)^{-1} \\
& \text { for } S^{1} \\
& \text { for Klein bottle }
\end{aligned}
$$

where $\varepsilon \in H^{1}$ - generator, $X \in \mathfrak{g}$ - variable.

Triangulation of the nilmanifold:

$$
\begin{aligned}
& \text { one 0-simplex: } A=B=C=D=A^{\prime}=B^{\prime}=C^{\prime}=D^{\prime} \\
& \hline \text { seven 1-simplices: } A D=B C=A^{\prime} D^{\prime}=B^{\prime} C^{\prime}, \\
& A A^{\prime}=B^{\prime}=C^{\prime}=C^{\prime}=A B=D C=D^{\prime} B^{\prime}, \\
& A C=A^{\prime} B^{\prime}=D^{\prime} C^{\prime}, A B^{\prime}=D C^{\prime}, A D^{\prime}=B^{\prime}, A C^{\prime} \\
& \hline \text { twelve 2-simplices: } A A^{\prime} B^{\prime}=D^{\prime} C^{\prime}, A B^{\prime} B=D^{\prime} C \text {, } \\
& {A A^{\prime} D^{\prime}=B^{\prime} C^{\prime}, A D ' D=B C^{\prime} C, A C D^{\prime}=A B^{\prime} D^{\prime},}_{\text {ABC=}=D^{\prime} B^{\prime} C^{\prime}, A B^{\prime} D^{\prime}, A C^{\prime} D^{\prime}, A C C^{\prime}, A B C^{\prime}}^{\text {six 3-simplices: } A A^{\prime} B^{\prime} D^{\prime}, A B^{\prime} C^{\prime} D^{\prime},} \\
& A D C^{\prime} D^{\prime}, A B B^{\prime} C^{\prime}, A B C C^{\prime}, A C D C^{\prime}
\end{aligned}
$$

Triangulation of the nilmanifold:

$$
\begin{aligned}
& \text { one 0-simplex: } A=B=C=D=A^{\prime}=B^{\prime}=C^{\prime}=D^{\prime} \\
& \hline \text { seven 1-simplices: } A D=B C=A^{\prime} D^{\prime}=B^{\prime} C^{\prime}, \\
& A^{\prime}=B^{\prime}=C^{\prime}=C^{\prime}=D^{\prime}, A B=D C=D^{\prime} B^{\prime}, \\
& A C=A^{\prime} B^{\prime}=D^{\prime} C^{\prime}, A B^{\prime}=D C^{\prime}, A D^{\prime}=B^{\prime}, A C^{\prime} \\
& \hline \text { twelve 2-simplices: } A A^{\prime} B^{\prime}=D^{\prime} C^{\prime}, A B^{\prime} B=D^{\prime} C \text {, } \\
& {A A^{\prime} D^{\prime}=B^{\prime} C^{\prime}, A D ' D=B C^{\prime} C, A C D=A B^{\prime} D^{\prime},}_{\text {ABC=}=D^{\prime} B^{\prime} C^{\prime}, A B^{\prime} D^{\prime}, A C^{\prime} D^{\prime}, A C C^{\prime}, A B C^{\prime}}^{\text {six 3-simplices: } A A^{\prime} B^{\prime} D^{\prime}, A B^{\prime} C^{\prime} D^{\prime},} \\
& A D C^{\prime} D^{\prime}, A B B^{\prime} C^{\prime}, A B C C^{\prime}, A C D C^{\prime}
\end{aligned}
$$

Massey bracket on H^{1} :

$$
\begin{aligned}
& l_{3}(X \otimes[\alpha], Y \otimes[\beta], Z \otimes[\beta])=
\end{aligned}
$$

$$
\begin{aligned}
& =([[X, Y], Z]+[[X, Z], Y]) \otimes[\eta] \in \mathfrak{g} \otimes H^{2}(T)
\end{aligned}
$$

where $s^{T}=d^{\vee} /\left(d d^{\vee}+d^{\vee} d\right)$;
$\alpha=e_{A C}+e_{A D}+e_{A C^{\prime}}+e_{A D^{\prime}}, \beta=e_{A A^{\prime}}+e_{A B^{\prime}}+e_{A C^{\prime}}+e_{A D^{\prime}}$

- representatives of cohomology classes $[\alpha],[\beta]$ in simplicial cochains.

Simplicial program for TFTs: Given a TFT on a manifold M with space of fields F_{M} and action $S_{M} \in C^{\infty}\left(F_{M}\right)[[\hbar]]$, construct an exact discretization associating to a triangulation T of M a fin.dim. space F_{T} and a local action $S_{T} \in C^{\infty}\left(F_{T}\right)[[\hbar]]$, such that partition function Z_{M} and correlation functions can be obtained from $\left(F_{T}, S_{T}\right)$ by fin.dim. integrals. Also, if T^{\prime} is a subdivision of T, S_{T} is an effective action for $S_{T^{\prime}}$.

Example of a TFT for which the exact discretization exists: $B F$ theory:

- fields: $F_{M}=\underbrace{\mathfrak{g} \otimes \Omega^{1}(M)}_{A} \oplus \underbrace{\mathfrak{g}^{*} \otimes \Omega^{\operatorname{dim} M-2}(M)}_{B}$,
- action: $S_{M}=\int_{M}\langle B, d A+A \wedge A\rangle$,
- equations of motion: $d A+A \wedge A=0, d_{A} B=0$.

Algebra - TFT dictionary

de Rham algebra $\mathfrak{g} \otimes \Omega^{\bullet}(M)$ (as a dg Lie algebra)	$B F$ theory
unimodular L_{∞} algebra	$B F_{\infty}$ theory, $F=V[1] \oplus V^{*}[-2]$,
$\left(V,\left\{l_{n}\right\},\left\{q_{n}\right\}\right)$	$S=\sum_{n} \frac{1}{n!}\left\langle B, l_{n}(A, \cdots, A)\right\rangle+$
	$+\hbar \sum_{n} \frac{1}{n!} q_{n}(A, \cdots, A)$
quadratic relations on operations	Batalin-Vilkoviski master equation
	$\underbrace{\frac{\partial}{\partial A} e^{S / \hbar}=0}$
homotopy transfer	effective action $e^{S^{\prime} / \hbar}=\int_{L \subset F^{\prime \prime}} e^{S / \hbar}$,
$V \rightarrow V^{\prime}$	$F=F^{\prime} \oplus F^{\prime \prime}$
choice of chain homotopy s	gauge-fixing
	(choice of Lagrangian $\left.L \subset F^{\prime \prime}\right)$

Goal:

- Construct other simplicial TFTs, in particular simplicial Chern-Simons theory.
- Explore applications to invariants of manifolds and (generalized) knots, consistent with gluing-cutting.

Goal:

- Construct other simplicial TFTs, in particular simplicial Chern-Simons theory.
- Explore applications to invariants of manifolds and (generalized) knots, consistent with gluing-cutting.

Steps:

- Construct simplicial 1-dimensional Chern-Simons theory as Atiyah's TFT on triangulated 1-cobordisms (complete, with Anton Alekseev).
- Construct a finite-dimensional algebraic model of 3-dimensional Chern-Simons theory; study effective action induced on de Rham cohomology and corresponding 3-manifold invariants (complete, with Alberto Cattaneo).
- Extend cohomological Batalin-Vilkovisky formalism for treating gauge symmetry of TFTs to allow spacetime manifolds with boundary or corners in a way consistent with gluing (complete, with Alberto Cattaneo and Nicolai Reshetikhin).
- Construct the quantization of TFTs on manifolds with boundary in BV formalism by perturbative path integral (in progress).
- Extend previous step to manifolds with corners (in progress).

References:

(i) P. Mnev, Discrete BF theory, arXiv:0809.1160
(ii) P. Mnev, Notes on simplicial BF theory, Moscow Mathematical Journal 9, 2 (2009), 371-410
(iii) A. Cattaneo, P. Mnev, Remarks on Chern-Simons invariants, Comm. in Math. Phys. 2933 (2010) 803-836
(iv) A. Alekseev, P. Mnev, One-dimensional Chern-Simons theory, Comm. in Math. Phys. 3071 (2011) 185-227
(v) A. Cattaneo, P. Mnev, N. Reshetikhin, Classical BV theories on manifolds with boundary, arXiv:1201.0290

