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Atyiah-Segal’s axiomatics of QFT

n-dimensional QFT (in the sense of Atiyah-Segal)

Data:
@ Closed (n — 1)-manifold ~ — H. — “space of states”
(Hilbert space).
@ n-manifold > with boundary — Zs, € Hox — “partition
function.”
Axioms:

@ Multiplicativity Hy, 1y, = Hyy @ Hy,
Q Gluing: if 0¥ = Uy, 0X" =y U~s and ¥ = X' Uy, X", then

Zs = (Zsr, Zsn),,

. )
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Example: quantum mechanics

Fix 7 a Hilbert space, Ha self-adjoint operator.
o pt—H
e interval of length ¢t — Z; = e~#Ht ¢ End(H) = H*®H
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Atyiah-Segal's axiomatics of QFT: functorial language

Another formulation:

(H,Z) : | Cob, —  Vect
Ob (n — 1)-manifold ~ — M, — vector space
Mor n-cobordism 7, =N Yo + Zs:Hy — H,, — linear map
o sewing — composition Zx, = Zxy o Iy
& u Y

— a functor of symmetric monoidal categories.



Scalar theory
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Scalar field theory (as a classical field theory)

Action:
1 m? ,
Sz((b) = / §d¢ A xdo + 7(? dvol +p<¢)dV01
by

Here:
@ Y - 2d surface with a Riemannian metric
o field ¢ € C=(%)
e m > 0 mass

e p(¢) = Z %qﬁ” — polynomial interaction potential
n>3

Critical point equation:

6S=0 & (A+m?)op+p()=0



Quantization on a closed surface
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Path integral on a closed surface

For X closed, the partition function is:
hE 1%

Zg:“/ Dpe 752 7 .= det ™3 (A + m? Pr
o~ A +m) Y

Here:
Q det(A +m?) = =< with ¢(s) = 3, A\™° — zeta-regularized
determinant

Examples:
o For S', det(A 4+ m?) = 4sinh® rmR.
o For S2,

—om2R2
e m~R

cosm(§ — m2R2)z

det(A + m2) _ e%—4§’(_1)R—2(%—m232) . . G(Oc1)2G(o¢2)2

where a1 2 — roots of a® — a+ (mR)? = 0 and G - Barnes’ double
Gamma function.



Quantization on a closed surface
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Path integral on a closed surface

For X closed, the partition function is:

hE_V
Iy = “/ D¢e_%52(¢) V= detfé(A +m?) —— O
C () ZF: |Aut(I')]
Here:

Q det(A +m?) = e < with ¢(s) = 3, A\™% — zeta-regularized
determinant

@ & - formal infinitesimal parameter
© T runs over graphs
@ Evaluation of a graph:

(I)F = / H (7pval('u))’ H G(l‘u, IIZw) d25171 e d2$v

Confy (L) 3(z1,..zy) vertices v edges e=(uw)

where G(x,y) — Green's function for A + m?.
Note: Coefficient of ¥, k > 0, is a sum of finitely many graphs.



Quantization on a closed surface
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Short loops in graphs

Note:
o G(z,y) e —%logd(az,y). So, integrals in @ are convergent,

except if I' contains a short loop — G(x,x) needs to be
regularized.

e Naive presciption: G(z,z) := 0. - Incompatible with gluing.

o Better solution ‘ G(z,z) = 7(x) ‘— “tadpole function,” a datum of
regularization of the theory.




Quantization with boundaries
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Qunatization with boundary

Let v =S'U---US' —acircle, or several circles, endowed with
Riemannian metric.

Space of states

Naively: -, = Fun(C>°(7y)). More explicitly:

n>0

=" Conf, (v)
-y

n>0

where
e 7 € C*°(v) — boundary field

@ ¢, € C~(Conf,(y)) — “n-particle wavefunction,” assumed to have
“admissible singularities” on diagonals:
o Yn = O(logd(zi, ;) if x5 — ;.
o ¥n, = O(e~%) if k > 3 points coalesce at mutual distances O(e).




Quantization with boundaries

[ Je]

Qunatization with boundary

Let v =S'U---US' —acircle, or several circles, endowed with
Riemannian metric.

Space of states

Naively: -, = Fun(C>°(7y)). More explicitly:

n>0

=" Conf, (v)
-y

n>0

where
e 7 € C*°(v) — boundary field
o 1, € C=(Conf,(v))5[[i'/?]] - “n-particle wavefunction,”
assumed to have “admissible singularities” on diagonals:
o ¢n = O(logd(zi, z;)) if x; — ;.
o P, = O(e*~%) if k > 3 points coalesce at mutual distances O(e).
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Qunatization with boundary, cont'd

Partition function for a surface ¥ with boundary ~:

¢|'y—f"7

RE-V-2
= e~ 2 [y P2 ot~ 2(A—|—m Z Aut (T )|‘1>r(77)

Here:
@ I' runs over graphs with 1-valent boundary vertices allowed; no
v — v edges; n = #~y—vertices, V = #bulk vertices.

2 g
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Qunatization with boundary, cont'd

Partition function for a surface ¥ with boundary ~:

¢|'y—f"7

RE-V-2
= e~ 2 [y P2 ot~ 2(A—|—m Z Aut (T )|‘1>r(77)

Here:
@ I' runs over graphs with 1-valent boundary vertices allowed; no
v — v edges; n = #~y—vertices, V = #bulk vertices.
e Feynman rules for ®r(n):

boundary vertices = n(z;)
bulk vertices —  —DPval(v)
bulk-bulk edges = G(Yaryp)

— Green's fun. with Dirichlet b.c. on
bulk-boundary edges — %G(mi,ya)
— normal derivative of Green’s fun.
Take a product of decorations and integrate over y, € X3, z; € .
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Qunatization with boundary, cont'd

Partition function for a surface ¥ with boundary ~:

¢|7_\/>"7
E V-3

= e~ 2 Jy P2 ot~ 2(A—|—m Z Aut(T )|‘I’F(77)

Here:
@ I runs over graphs with 1-valent boundary vertices allowed; no
v — v edges; n = #~y—vertices, V = #bulk vertices.
e Feynman rules for ®r(n):

Pp(n) = / dzy---dxy, Hn(xl) . / 2y - dPyy-
Conf,, (v) ;

Confy (%)

0
JJpeaiwa)) - [ Garvs) - ] 8n(xi)G(xi,ya)

(aB)EE (ia)EE
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Qunatization with boundary, cont'd

Partition function for a surface ¥ with boundary ~:

dly= fﬁ

RE-V-2
= e~ 2 /5 1P=() ot~ 2(A+m Z Aut(T )|@F(77)

Here:

@ I runs over graphs with 1-valent boundary vertices allowed; no
v — 7 edges; n = #vy—vertices, V = #bulk vertices.

o det(A + m?) — zeta-regularized determinant of A + m? with

Dirichlet b.c.
© Ds: 1+ ¢y > Ondyly — Dirichlet-to-Neumann operator.
€C>=(v)

¢y, — a solution of (A +m?)¢ = 0 with b.c. ¢|, =n.
Zsx,(n) € Hy



Gluing
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Let 3 = ¥; Uy X2 a closed surface.

Gluing |. Formal gluing: we expect
Zo=+ [ DuZs,)Zsn)
=)

— “Fubini theorem for path integrals.”
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Gluing Il. Introduce Zz = detZ (A+m?)> -, such that

s, = e 3 E(n)Z ;-
Also, introduce an L? pairing (,)p : H, ® H, — R,

(9, Uy )p= / Y1(x1, ., Tn) V2 (Tpgts - oo, Trgm)-
~ =~ Z Confypm ()

e en(™ ¢
H D™z, x5) detfé(D)
(i,5)€€

Here:

o D= Dgl + D22,
@ ¢ runs over perfect matching on a set of n + m elements

Theorem A

Zs = (Zs,(n), Zs,(n))p

R.h.s. is a rewriting of “ fC""(v) Dny et nD(n)221(7]) 222 (m)?”
by Wick's lemma.
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|dea of proof of Theorem A

@ Burghelea-Friedlander-Kappeler gluing formula for zeta-regularized
determinants:

dets; (A +m?) = dety, (A +m?) - dets, (A +m?) - det, D
© Gluing of Green's functions. For z,y € ¥;:

B 0 . 0
GE(xvy) —Gzl(xay)'f‘[{du ’ydvai‘d(xvu)D (u,v)iGgl(v,y)

on(v)

Forx € ¥4,y € Xo:

Gx(z,y) = [yduLdvana(u)Ggl(x,u)D_l(u,v)af@)ng(v,y)
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|dea of proof of Theorem A, cont'd

o
E= D Be= D (05D
VF_>{172}7E1"_>{U’C} ry,re
Fdec
) -
<D

Here
o u,c (“uncut”, “cut”) — terms in the gluing formula for Green's
functions.
o 1,2 — restrict integration to X1, ¥a.
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o0

Tadpoles

In fact, Zs(n) = Z%(n), with 7 € C*°(X) — a tadpole function assigned

o /)

Then Z& = (Z3,Z3)p with T = 71 * 7 glued tadpole:

@) 5, m)+ "

In particular, for 7y = 0,75 =0, 71 * 19 # 0 |
So, assigning 7 = 0 for all surfaces is incompatible with gluing.
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A natural choice compatible with gluing.

Zeta-regularized tadpole

(@) = Tecreg(o) = iy [ det K 00) - s )

with K (t,x,y) the heat kernel for A + m?.

Another choice:

1 log2 —
Teplit () = lim (G(m,y) + o log d(m,y)) = T¢—reg(T) + - it

y—x 2

One might ask an additional compatibility condition:

/ D e~k Jo Faon=do+ 2 62 dvol+§ 6% d vol

(1 — = [ ala)r(z)d*x + O(a2)> ~det™2 (A +m?)
de

7%(A+m +a)

This fixes the tadpole uniquely: 7 = 7¢_eg.



Functorial gluing
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Gluing revisited

Drawback of Gluing II: non-functoriality. Pairing (,)p depends on
Y1,25. Cannot use it to define a functor Cobg1em — Hilb.

Gluing I111.

e Fact: Dy is "very close” to the operator s = VA +m?|,. In fact:
s = Dy, — s is a pseudodifferential operador of order < —2.

Examples:
)\n An — Wnp
disk m?zgzg —#n_z +0(n3)
"I Ta nFITa -
hemisphere N G L G s fman*‘s +0(n™%)

2
R
«

F(ntfl)F(n+u2)

2—a+(mR)*=0

cylinder

wn, coth Hw,

O(n—>)
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Gluing revisited

Drawback of Gluing II: non-functoriality. Pairing (,)p depends on
Y1,25. Cannot use it to define a functor Cobg1em — Hilb.

Gluing I111.

@ Fact: Dy is “very close” to the operator sr = VA 4+ m?|,. In fact:
s = Dy, — s is a pseudodifferential operador of order < —2.

e Let Zx(n) € ez /s =) 7o () € Hy.
@ One has the gluing formula:

72 = <7217722>%

where (,),. is an L? pairing on H., defined similarly to (,)p,
replacing D — 2.

@ Remark: (,),. can be defined using an co-dim integral against
Gaussian measure p,. on D' (7).
Measures up and ;. are equivalent (since D — 25« is small enough),
with Radon-Nikodym derivative £2 = e~z Jy D=2 ()



Functorial gluing
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Functoriality

(H,Z) is a functor of symmetric monoidal categories,

(1,Z) : | Cobg™ — Hilb
Ob collared Riem 1-manifolds — real Hilbert spaces ®R[[/i2]]
Mor Riem 2-cobordisms —  Hilbert-Schmidt operators
o gluing — composition of lin operators
® L = ®

v




Aside: Tadpoles vs RG flow

Petal diagram resummation

7 p(¢) — interaction polynomial, 7 — tadpole

where
i hr
p(¢) = * 3 \pﬁ + % +-o =R:(p)
ht

Properties:
° Rﬁ OR‘Q = RT1+T2
0 7P =7"0if g =Ry _r,(p).
e R.(p) = p, satisfies the RG flow equation

K W
or 2042 )07

. 2_ 2
e Example of a solution: p,(¢) = ez . e%?

multiplicative scaling ‘p(¢)



Aside: Tadpoles vs RG flow cont'd

Application:
ZTP — ZTAPA
where
@ p(¢) some fixed polynomial
@ T = T¢_reg — renormalized tadpole
o A =Gp(x,1) = flo/oAQ dt K (t,z,x) A Tereg + logA - =

— just regularized tadpole (via proper time cut-off)

o pr =R, (p)=R_ logh | o (p) — potential with counterterms
introduced to make Z flnlte at A —

0 B 02
mPA(@ = —53752171\(@

— RG flow equation for the action with counterterms.



Trace anomaly
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Appendix: trace anomaly

@ Trace of classical stress-energy tensor:

-2 4
tr Ty (z) = 7kdetg 5o

@ Trace of quantum stress-energy tensor:

GZOS%*@U" = —m*¢* —p(¢)

2 o
Vdet g do

g—e’g
log Z7,
o=0

(tr T, (@) = h

“Trace anomaly”

trace anomaly

where R(x) is the scalar curvature.
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