Two-dimensional perturbative scalar field theory with polynomial potential and cutting-gluing

Pavel Mnev

University of Notre Dame

Zoom Seminar: Differential Geometry and Mathematical Physics June 12, 2020

Joint work with Santosh Kandel and Konstantin Wernli, arXiv:1912.11202

<ロト <四ト <注入 <注下 <注下 <

Intro	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000		00	00	0000	00	00	00	

Atyiah-Segal's axiomatics of QFT

n-dimensional QFT (in the sense of Atiyah-Segal)

Data:

Axioms:

- Multiplicativity $\mathcal{H}_{\gamma_1 \sqcup \gamma_2} = \mathcal{H}_{\gamma_1} \otimes \mathcal{H}_{\gamma_2}$
- $\label{eq:Gluing: if } \partial \Sigma' = \gamma_1 \sqcup \gamma_2 \text{, } \partial \Sigma'' = \gamma_2 \sqcup \gamma_3 \text{ and } \Sigma = \Sigma' \cup_{\gamma_2} \Sigma'' \text{, then }$

$$Z_{\Sigma} = \langle Z_{\Sigma'}, Z_{\Sigma''} \rangle_{\mathcal{H}_{\gamma_2}}$$

Intro	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000		00	00	0000	00	00	00	

Example: quantum mechanics

Fix ${\mathcal H}$ a Hilbert space, \widehat{H} a self-adjoint operator.

- $\operatorname{pt} \mapsto \mathcal{H}$
- interval of length $t \mapsto Z_t = e^{-\frac{i}{\hbar}\widehat{H}t} \in \operatorname{End}(\mathcal{H}) = \mathcal{H}^*\widehat{\otimes}\mathcal{H}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Intro	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000	0	00	00	0000	00	00	00	0

Atyiah-Segal's axiomatics of QFT: functorial language

Another formulation:

(\mathcal{H},Z) :	Cob_n	\rightarrow	Vect
Ob	$(n-1)$ -manifold γ	\mapsto	\mathcal{H}_γ – vector space
Mor	<i>n</i> -cobordism $\gamma_1 \xrightarrow{\Sigma} \gamma_2$	\mapsto	$Z_{\Sigma}:\mathcal{H}_{\gamma_1} ightarrow\mathcal{H}_{\gamma_2}$ – linear map
0	sewing	\mapsto	composition $Z_{\Sigma} = Z_{\Sigma^{\prime\prime}} \circ Z_{\Sigma^{\prime}}$
\otimes		\mapsto	\otimes

- a functor of symmetric monoidal categories.

Scalar field theory (as a classical field theory)

Action:

$$S_{\Sigma}(\phi) = \int_{\Sigma} \frac{1}{2} d\phi \wedge *d\phi + \frac{m^2}{2} \phi^2 d\operatorname{vol} + p(\phi) d\operatorname{vol}$$

Here:

- Σ 2d surface with a Riemannian metric
- field $\phi \in C^{\infty}(\Sigma)$
- m > 0 mass • $p(\phi) = \sum_{n \ge 3} \frac{p_n}{n!} \phi^n$ – polynomial interaction potential

Critical point equation:

$$\delta S = 0 \quad \Leftrightarrow \quad (\Delta + m^2)\phi + p'(\phi) = 0$$

	Scalar theory	Quantization on a closed surface	Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	Trace anomaly
000	0	•0	00	0000	00	00	00	0

Path integral on a closed surface

For $\boldsymbol{\Sigma}$ closed, the partition function is:

$$Z_{\Sigma} = \int_{C^{\infty}(\Sigma)} \mathcal{D}\phi \, e^{-\frac{1}{\hbar}S_{\Sigma}(\phi)} \, ::= \det^{-\frac{1}{2}}(\Delta + m^2) \sum_{\Gamma} \frac{\hbar^{E-V}}{|\operatorname{Aut}(\Gamma)|} \Phi_{\Gamma}$$

Here:

 $\textcircled{0} \det(\Delta+m^2)=e^{-\zeta'(0)}$ with $\zeta(s)=\sum_\lambda\lambda^{-s}$ – zeta-regularized determinant

Examples: • For S^1 , $\det(\Delta + m^2) = 4 \sinh^2 \pi m R$. • For S^2 , $\det(\Delta + m^2) = e^{\frac{1}{2} - 4\zeta'(-1)} R^{-2(\frac{1}{3} - m^2 R^2)} \cdot \frac{\pi e^{-2m^2 R^2}}{\cos \pi (\frac{1}{4} - m^2 R^2)^{\frac{1}{2}}} \cdot \mathbb{G}(\alpha_1)^2 \mathbb{G}(\alpha_2)^2$

where $\alpha_{1,2}$ – roots of $\alpha^2-\alpha+(mR)^2=0$ and $\mathbb G$ – Barnes' double Gamma function.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Path integral on a closed surface

For $\boldsymbol{\Sigma}$ closed, the partition function is:

$$Z_{\Sigma} = \int_{C^{\infty}(\Sigma)} \mathcal{D}\phi \, e^{-\frac{1}{\hbar}S_{\Sigma}(\phi)} \, ::= \det^{-\frac{1}{2}}(\Delta + m^2) \sum_{\Gamma} \frac{\hbar^{E-V}}{|\operatorname{Aut}(\Gamma)|} \Phi_{\Gamma}$$

Here:

- $\textcircled{0} \det(\Delta+m^2)=e^{-\zeta'(0)}$ with $\zeta(s)=\sum_\lambda\lambda^{-s}$ zeta-regularized determinant
- 2 \hbar formal infinitesimal parameter
- \bigcirc Γ runs over graphs
- Evaluation of a graph:

$$\Phi_{\Gamma} := \int_{\operatorname{Conf}_{V}(\Sigma) \ni (x_{1}, \dots, x_{V})} \prod_{\text{vertices } v} (-p_{\operatorname{val}(v)}) \cdot \prod_{\text{edges } e = (uw)} G(x_{u}, x_{w}) \ d^{2}x_{1} \cdots d^{2}x_{V}$$

where G(x, y) – Green's function for $\Delta + m^2$.

Note: Coefficient of \hbar^k , $k \ge 0$, is a sum of **finitely many** graphs.

Scalar theory	Quantization on a closed surface	Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	Trace anomaly
	00						

Short loops in graphs

Note:

- $G(x,y) \underset{x \to y}{\sim} -\frac{1}{2\pi} \log d(x,y)$. So, integrals in Φ_{Γ} are convergent, except if Γ contains a short loop – G(x,x) needs to be regularized.
- Naive presciption: G(x, x) := 0. Incompatible with gluing.
- Better solution $G(x,x) := \tau(x)$ "tadpole function," a datum of regularization of the theory.

	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000		00	•0	0000	00	00	00	

Qunatization with boundary

Let $\gamma=S^1 \sqcup \cdots \sqcup S^1$ – a circle, or several circles, endowed with Riemannian metric.

Space of states

Naively: $\mathcal{H}_{\gamma} = \operatorname{Fun}(C^{\infty}(\gamma))$. More explicitly:

$$\mathcal{H}_{\gamma} = \left\{ \Psi(\eta) = \sum_{n \ge 0} \int_{\operatorname{Conf}_{n}(\gamma)} \psi_{n}(x_{1}, \dots, x_{n}) \eta(x_{1}) \cdots \eta(x_{n}) dx_{1} \cdots dx_{n} \right\}$$
$$= \bigoplus_{n \ge 0} \mathcal{H}_{\gamma}^{(n)}$$

where

- $\eta \in C^{\infty}(\gamma)$ boundary field
- $\psi_n \in C^{\infty}(\text{Conf}_n(\gamma))$ "*n*-particle wavefunction," assumed to have "admissible singularities" on diagonals:

•
$$\psi_n = O(\log d(x_i, x_j))$$
 if $x_i \to x_j$

• $\psi_n = O(\epsilon^{2-k})$ if $k \ge 3$ points coalesce at mutual distances $O(\epsilon)$.

	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000		00	•0	0000	00	00	00	

Qunatization with boundary

Let $\gamma=S^1 \sqcup \cdots \sqcup S^1$ – a circle, or several circles, endowed with Riemannian metric.

Space of states

Naively: $\mathcal{H}_{\gamma} = \operatorname{Fun}(C^{\infty}(\gamma))$. More explicitly:

$$\mathcal{H}_{\gamma} = \left\{ \Psi(\eta) = \sum_{n \ge 0} \int_{\operatorname{Conf}_{n}(\gamma)} \psi_{n}(x_{1}, \dots, x_{n}) \eta(x_{1}) \cdots \eta(x_{n}) dx_{1} \cdots dx_{n} \right\}$$
$$= \bigoplus_{n \ge 0} \mathcal{H}_{\gamma}^{(n)}$$

where

- $\eta \in C^{\infty}(\gamma)$ boundary field
- $\psi_n \in C^{\infty}(\operatorname{Conf}_n(\gamma))^{S_n}[[\hbar^{1/2}]]$ "*n*-particle wavefunction," assumed to have "admissible singularities" on diagonals:

•
$$\psi_n = O(\log d(x_i, x_j))$$
 if $x_i \to x_j$.

• $\psi_n = O(\epsilon^{2-k})$ if $k \ge 3$ points coalesce at mutual distances $O(\epsilon)$.

Partition function for a surface Σ with boundary $\gamma:$

$$Z_{\Sigma}(\eta) = \int_{\phi|_{\gamma}=\sqrt{\hbar}\eta} \mathcal{D}\phi \ e^{-\frac{1}{\hbar}S_{\Sigma}(\phi)}$$

$$:= e^{-\frac{1}{2}\int_{\gamma}\eta D_{\Sigma}(\eta)} \det^{-\frac{1}{2}}(\Delta + m^2) \sum_{\Gamma} \frac{\hbar^{E-V-\frac{n}{2}}}{|\operatorname{Aut}(\Gamma)|} \Phi_{\Gamma}(\eta)$$

Here:

• Γ runs over graphs with 1-valent boundary vertices allowed; no $\gamma - \gamma$ edges; $n = \#\gamma$ -vertices, V = #bulk vertices.

Partition function for a surface Σ with boundary $\gamma:$

$$Z_{\Sigma}(\eta) = \int_{\phi|_{\gamma}=\sqrt{\hbar}\eta} \mathcal{D}\phi \ e^{-\frac{1}{\hbar}S_{\Sigma}(\phi)}$$

$$:= e^{-\frac{1}{2}\int_{\gamma}\eta D_{\Sigma}(\eta)} \det^{-\frac{1}{2}}(\Delta + m^2) \sum_{\Gamma} \frac{\hbar^{E-V-\frac{n}{2}}}{|\operatorname{Aut}(\Gamma)|} \Phi_{\Gamma}(\eta)$$

Here:

- Γ runs over graphs with 1-valent boundary vertices allowed; no $\gamma \gamma$ edges; $n = \#\gamma$ -vertices, V = #bulk vertices.
- Feynman rules for $\Phi_{\Gamma}(\eta)$: boundary vertices $\rightarrow \eta(x_i)$ bulk vertices $\rightarrow -p_{val(v)}$ bulk-bulk edges $\rightarrow G(y_{\alpha}, y_{\beta})$ - Green's fun. with Dirichlet b.c. on γ bulk-boundary edges $\rightarrow \frac{\partial}{\partial n(x_i)}G(x_i, y_{\alpha})$ - normal derivative of Green's fun. Take a product of decorations and integrate over $y_{\alpha} \in \Sigma$, $x_i \in \gamma$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Partition function for a surface Σ with boundary $\gamma:$

$$Z_{\Sigma}(\eta) = \int_{\phi|_{\gamma}=\sqrt{\hbar}\eta} \mathcal{D}\phi \ e^{-\frac{1}{\hbar}S_{\Sigma}(\phi)}$$

$$:= e^{-\frac{1}{2}\int_{\gamma}\eta D_{\Sigma}(\eta)} \det^{-\frac{1}{2}}(\Delta + m^2) \sum_{\Gamma} \frac{\hbar^{E-V-\frac{n}{2}}}{|\operatorname{Aut}(\Gamma)|} \Phi_{\Gamma}(\eta)$$

Here:

- Γ runs over graphs with 1-valent boundary vertices allowed; no $\gamma \gamma$ edges; $n = \#\gamma$ -vertices, V = #bulk vertices.
- Feynman rules for $\Phi_{\Gamma}(\eta)$:

$$\Phi_{\Gamma}(\eta) = \int_{\operatorname{Conf}_{n}(\gamma)} dx_{1} \cdots dx_{n} \prod_{i} \eta(x_{i}) \cdot \int_{\operatorname{Conf}_{V}(\Sigma)} d^{2}y_{1} \cdots d^{2}y_{V} \cdot \\ \cdot \prod_{\alpha} (-p_{\operatorname{val}(v_{\alpha})}) \cdot \prod_{(\alpha\beta)\in E} G(y_{\alpha}, y_{\beta}) \cdot \prod_{(i\alpha)\in E} \frac{\partial}{\partial n(x_{i})} G(x_{i}, y_{\alpha})$$

Partition function for a surface Σ with boundary $\gamma:$

$$Z_{\Sigma}(\eta) = \int_{\phi|_{\gamma}=\sqrt{\hbar}\eta} \mathcal{D}\phi \ e^{-\frac{1}{\hbar}S_{\Sigma}(\phi)}$$

$$:= e^{-\frac{1}{2}\int_{\gamma}\eta D_{\Sigma}(\eta)} \det^{-\frac{1}{2}}(\Delta + m^2) \sum_{\Gamma} \frac{\hbar^{E-V-\frac{n}{2}}}{|\operatorname{Aut}(\Gamma)|} \Phi_{\Gamma}(\eta)$$

Here:

- Γ runs over graphs with 1-valent boundary vertices allowed; no $\gamma \gamma$ edges; $n = \#\gamma$ -vertices, V = #bulk vertices.
- $\det(\Delta+m^2)$ zeta-regularized determinant of $\Delta+m^2$ with Dirichlet b.c.

•
$$D_{\Sigma}: \underset{\in C^{\infty}(\gamma)}{\eta} \mapsto \phi_{\eta} \mapsto \partial_{n}\phi_{\eta}|_{\gamma}$$
 - Dirichlet-to-Neumann operator.
 ϕ_{η} - a solution of $(\Delta + m^{2})\phi = 0$ with b.c. $\phi|_{\gamma} = \eta$.
 $\boxed{Z_{\Sigma}(\eta) \in \mathcal{H}_{\gamma}}$ (slightly cheating here)

Intro 000	Scalar theory O	Quantization on a closed surface	Quantization with boundaries 00	Gluing •000	Tadpoles 00	Functorial gluing 00	RG flow OO	
Gl	uing							

Let $\Sigma = \Sigma_1 \cup_{\gamma} \Sigma_2$ a closed surface.

Gluing I. Formal gluing: we expect

$$Z_{\Sigma} = " \int_{C^{\infty}(\gamma)} \mathcal{D}\eta \ Z_{\Sigma_1}(\eta) Z_{\Sigma_2}(\eta) "$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- "Fubini theorem for path integrals."

Gluing II. Introduce
$$Z_{\Sigma_i} = \det_{\Sigma_i}^2 (\Delta + m^2) \sum_{\Gamma} \cdots$$
, such the $Z_{\Sigma_i} = e^{-\frac{1}{2} \int_{\gamma} \eta D_{\Sigma_i}(\eta)} \widehat{Z}_{\Sigma_i}$.
Also, introduce an L^2 pairing $\langle, \rangle_D : \mathcal{H}_{\gamma} \otimes \mathcal{H}_{\gamma} \to \mathbb{R}$,

$$\langle \underbrace{\Psi_1}_{\in \mathcal{H}_{\gamma}^{(n)}}, \underbrace{\Psi_2}_{\in \mathcal{H}_{\gamma}^{(m)}} \rangle_D = \sum_{\xi} \int_{\operatorname{Conf}_{n+m}(\gamma)} \psi_1(x_1, \dots, x_n) \, \psi_2(x_{n+1}, \dots, x_{n+m}) \cdot \\ \\ \cdot \prod_{(i,j) \in \xi} D^{-1}(x_i, x_j) \cdot \det^{-\frac{1}{2}}(D)$$

Here:

- $D = D_{\Sigma_1} + D_{\Sigma_2}$,
- ξ runs over perfect matching on a set of n+m elements

Theorem A

$$Z_{\Sigma} = \langle \widehat{Z}_{\Sigma_1}(\eta), \widehat{Z}_{\Sigma_2}(\eta) \rangle_D$$

R.h.s. is a rewriting of " $\int_{C^{\infty}(\gamma)} \mathcal{D}\eta \ e^{-\frac{1}{2}\int_{\gamma} \eta D(\eta)} \widehat{Z}_{\Sigma_1}(\eta) \ \widehat{Z}_{\Sigma_2}(\eta)$ " by Wick's lemma.

Idea of proof of Theorem A

Burghelea-Friedlander-Kappeler gluing formula for zeta-regularized determinants:

$$\det_{\Sigma}(\Delta + m^2) = \det_{\Sigma_1}(\Delta + m^2) \cdot \det_{\Sigma_2}(\Delta + m^2) \cdot \det_{\gamma} D$$

• Gluing of Green's functions. For $x, y \in \Sigma_1$:

$$G_{\Sigma}(x,y) = G_{\Sigma_{1}}(x,y) + \int_{\gamma} du \int_{\gamma} dv \frac{\partial}{\partial n(u)} G_{\Sigma_{1}}(x,u) D^{-1}(u,v) \frac{\partial}{\partial n(v)} G_{\Sigma_{1}}(v,y)$$

$$(x) = \int_{y}^{x} \int_{y}^{u} \int_{v}^{u} \int_{v}^{u}$$

For $x \in \Sigma_1, y \in \Sigma_2$:

$$G_{\Sigma}(x,y) = \int_{\gamma} du \int_{\gamma} dv \frac{\partial}{\partial n(u)} G_{\Sigma_{1}}(x,u) D^{-1}(u,v) \frac{\partial}{\partial n(v)} G_{\Sigma_{2}}(v,y)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000	0	00	00	0000	00	00	00	0

Idea of proof of Theorem A, cont'd

Here

0

- u, c ("uncut", "cut") terms in the gluing formula for Green's functions.
- 1, 2 restrict integration to Σ_1, Σ_2 .

Intro 000	Scalar theory O	Quantization on a closed surface	Quantization with boundaries	Gluing 0000	Tadpoles ●O	Functorial gluing 00	RG flow OO	
Та	dpoles	5						

In fact, $Z_{\Sigma}(\eta) = Z_{\Sigma}^{\tau}(\eta)$, with $\tau \in C^{\infty}(\Sigma)$ – a tadpole function assigned to Then $Z_{\Sigma}^{\tau} = \langle \widehat{Z}_{\Sigma_1}^{\tau_1}, \widehat{Z}_{\Sigma_2}^{\tau_2} \rangle_D$ with $\tau = \tau_1 * \tau_2$ glued tadpole:

$$\tau(x) \underset{x \in \Sigma_1}{=} \tau_1(x) + \left(x \underbrace{} \right)$$

In particular, for $\tau_1 = 0, \tau_2 = 0, \tau_1 * \tau_2 \neq 0$! So, assigning $\tau = 0$ for all surfaces is incompatible with gluing.

	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000	0	00	00	0000	00	00	00	0

A natural choice compatible with gluing.

Zeta-regularized tadpole

$$\tau(x) = \tau_{\zeta - \mathrm{reg}}(x) = \lim_{s \to 1} \left(\int_0^\infty dt \, t^{s-1} K(t, x, x) - \frac{1}{4\pi(s-1)} \right)$$

with K(t, x, y) the heat kernel for $\Delta + m^2$.

Another choice:

$$\tau_{\text{split}}(x) = \lim_{y \to x} \left(G(x, y) + \frac{1}{2\pi} \log d(x, y) \right) \qquad = \tau_{\zeta - \text{reg}}(x) + \frac{\log 2 - \gamma}{2\pi}$$

One might ask an additional compatibility condition:

$$\int \mathcal{D}\phi \ e^{-\frac{1}{\hbar}\int_{\Sigma}\frac{1}{2}d\phi\wedge *d\phi + \frac{m^2}{2}\phi^2 d\operatorname{vol} + \frac{\alpha}{2}\phi^2 d\operatorname{vol}}$$
$$= \left(1 - \frac{1}{2}\int_{\Sigma}\alpha(x)\tau(x)d^2x + O(\alpha^2)\right) \cdot \det^{-\frac{1}{2}}(\Delta + m^2)$$
$$= \det^{-\frac{1}{2}}(\Delta + m^2 + \alpha)$$

This fixes the tadpole uniquely: $\tau = \tau_{\zeta-\text{reg}}$.

・ロト・雪ト・ヨト・ヨー シック

Intro	Scalar theory	Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	Trace anomaly
					••		

Gluing revisited

Drawback of Gluing II: non-functoriality. Pairing \langle, \rangle_D depends on Σ_1, Σ_2 . Cannot use it to define a functor $\operatorname{Cob}_2^{\operatorname{Riem}} \to \operatorname{Hilb}$.

Gluing III.

• Fact: D_{Σ} is "very close" to the operator $\varkappa = \sqrt{\Delta + m^2}|_{\gamma}$. In fact: $s = D_{\Sigma} - \varkappa$ is a pseudodifferential operador of order ≤ -2 .

Examples:

	λ_n	$\lambda_n - \omega_n$
disk	$m rac{I'_n(mR)}{I_n(mR)}$	$-\frac{m^2 R}{2}n^{-2} + O(n^{-3})$
hemisphere	$\frac{\frac{2}{R} \frac{\Gamma(\frac{n+1+\alpha_1}{2})\Gamma(\frac{n+1+\alpha_2}{2})}{\Gamma(\frac{n+\alpha_1}{2})\Gamma(\frac{n+\alpha_2}{2})}}{\alpha^2 - \alpha + (mR)^2 = 0}$	$-\frac{m^2 R}{4}n^{-3} + O(n^{-4})$
cylinder	$\omega_n \coth H\omega_n$	$O(n^{-\infty})$

Scalar theory	Quantization on a closed surface	Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	Trace anomaly
					••		

Gluing revisited

Drawback of Gluing II: non-functoriality. Pairing \langle, \rangle_D depends on Σ_1, Σ_2 . Cannot use it to define a functor $\operatorname{Cob}_2^{\operatorname{Riem}} \to \operatorname{Hilb}$.

Gluing III.

- Fact: D_{Σ} is "very close" to the operator $\varkappa = \sqrt{\Delta + m^2}|_{\gamma}$. In fact: $s = D_{\Sigma} \varkappa$ is a pseudodifferential operador of order ≤ -2 .
- Let $\overline{Z}_{\Sigma}(\eta) \in e^{\frac{1}{2}\int_{\gamma}\eta\varkappa(\eta)}Z_{\Sigma}(\eta) \in \mathcal{H}_{\gamma}.$
- One has the gluing formula:

$$\overline{Z}_{\Sigma} = \langle \overline{Z}_{\Sigma_1}, \overline{Z}_{\Sigma_2} \rangle_{\varkappa}$$

where $\langle, \rangle_{\varkappa}$ is an L^2 pairing on \mathcal{H}_{γ} defined similarly to \langle, \rangle_D , replacing $D \to 2\varkappa$.

• **Remark:** $\langle, \rangle_{\varkappa}$ can be defined using an ∞ -dim integral against Gaussian measure μ_{\varkappa} on $\mathcal{D}'(\gamma)$. Measures μ_D and μ_{\varkappa} are equivalent (since $D - 2\varkappa$ is small enough), with Radon-Nikodym derivative $\frac{\mu_D}{\mu_{\varkappa}} = e^{-\frac{1}{2}\int_{\gamma}\eta(D-2\varkappa)(\eta)}$

Intro	Scalar theory	Quantization on a closed surface	Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	Trace anomaly
000		00	00	0000	00	00	00	

Functoriality

Theorem B

 $(\mathcal{H},\overline{Z})$ is a functor of symmetric monoidal categories,

$(\mathcal{H},\overline{Z})$:	$\operatorname{Cob}_2^{\operatorname{Riem}}$	\rightarrow	Hilb
Ob	collared Riem 1-manifolds	\mapsto	real Hilbert spaces $\otimes \mathbb{R}[[\hbar^{\frac{1}{2}}]]$
Mor	Riem 2-cobordisms	\mapsto	Hilbert-Schmidt operators
0	gluing	\mapsto	composition of lin operators
\otimes	Ц	\mapsto	$\hat{\otimes}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scalar theory	Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
					00	

Aside: Tadpoles vs RG flow

Petal diagram resummation

$$Z^{ au,p} = Z^{0,\widetilde{p}}$$
, $p(\phi)$ – interaction polynomial, au – tadpole

where

Properties:

•
$$\mathcal{R}_{\tau_1} \circ \mathcal{R}_{\tau_2} = \mathcal{R}_{\tau_1 + \tau_2}$$

• $Z^{\tau_1, p} = Z^{\tau_2, q}$ if $q = \mathcal{R}_{\tau_1 - \tau_2}(p)$.
• $\mathcal{R}_{\tau}(p) = p_{\tau}$ satisfies the RG flow equation
 $\left(\frac{\partial}{\partial \tau} - \frac{\hbar}{2}\frac{\partial^2}{\partial \phi^2}\right)p_{\tau} = 0$
• Example of a solution: $p_{\tau}(\phi) = \underbrace{e^{\frac{\hbar^2}{2}\tau\alpha^2}}_{\text{multiplicative scaling}} \cdot \underbrace{e^{\alpha\phi}}_{\overline{p}(\phi)}$.

	Scalar theory		Quantization with boundaries	Gluing	Tadpoles	Functorial gluing	RG flow	
000	0	00	00	0000	00	00	00	0

Aside: Tadpoles vs RG flow cont'd

Application:

$$Z^{\tau,p} = Z^{\tau_{\Lambda},p_{\Lambda}}$$

where

- $p(\phi)$ some fixed polynomial
- $\tau = \tau_{\zeta-\mathrm{reg}}$ renormalized tadpole
- $\tau_{\Lambda} = G_{\Lambda}(x, x) = \int_{1/\Lambda^2}^{\infty} dt \, K(t, x, x) \underset{\Lambda \to \infty}{\approx} \tau_{\zeta \text{reg}} + \frac{\log \Lambda}{2\pi} \frac{\gamma}{4\pi}$ - just *regularized* tadpole (via proper time cut-off)
- $p_{\Lambda} = \mathcal{R}_{\tau \tau_{\Lambda}}(p) = \mathcal{R}_{-\frac{\log \Lambda}{2\pi} + \frac{\gamma}{4\pi}}(p)$ potential with counterterms introduced to make Z finite at $\Lambda \to \infty$

$$\frac{\partial}{\partial \log \Lambda} p_{\Lambda}(\phi) = -\frac{\hbar}{4\pi} \frac{\partial^2}{\partial \phi^2} p_{\Lambda}(\phi)$$

- RG flow equation for the action with counterterms.

Intro 000	Scalar theory O	Quantization on a closed surface OO	Quantization with boundaries	Gluing 0000	Tadpoles 00	Functorial gluing 00	RG flow OO	Trace anomaly
Ap	pendi	x: trace anom	naly					

• Trace of classical stress-energy tensor:

$$\operatorname{tr} T_{cl}(x) = \frac{-2}{\sqrt{\det g}} \frac{\delta}{\delta \sigma} \Big|_{\sigma=0} S_{\Sigma}^{g \to e^{\sigma}g} = -m^2 \phi^2 - p(\phi)$$

• Trace of quantum stress-energy tensor:

$$\langle \operatorname{tr} T_q(x) \rangle = \hbar \frac{2}{\sqrt{\det g}} \frac{\delta}{\delta \sigma} \Big|_{\sigma=0} \log Z_{\Sigma}^{g \to e^{\sigma}g}$$

"Trace anomaly"

$$\langle \operatorname{tr} T_q(x) \rangle = \left\langle \operatorname{tr} T_{cl}(x) + \underbrace{\frac{\hbar}{4\pi} \left(\frac{R(x)}{6} - m^2 - \frac{\partial^2}{\partial \phi^2} p(\phi) \right)}_{\text{trace anomaly}} \right\rangle$$

where R(x) is the scalar curvature.