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TRANSLATOR'S PREFACE. 

THE following translation was undertaken at the instance 

Archer Hirst, translator of 
l.iW"",'cU'vu edition Author's Preface 

Professor Clausius' the Mechanical 

The former work been so 
written by Professor Clausius, that Dr Hirst's translation has 
been found scarcely anywhere available; and I must there-

I fore accept the full responsibility of the present publication. 

I trust it may be found to supply a want which I have 

reason to believe has been felt, namely, that of a systematic 

connected treatise Thermodynamics, for 
and 

With the it more "V'''I'.no 

purpose, I have the' consent of 
Clausius, three short appendices on points which he had left 
unnoticed, but which still seemed of interest, at any rate 
to English readers. These are, (1) The Thermo-elastic pro-



vi TRANSLATOR'S PREFACE. 

perties of Solids; (2) The application of Thermo-dynamical 
principles to Capillarity; (3) The Continuity of the Liquid 
and Gaseous states of Matter. My best thanks are due to 
Dr John Hopkinson, F.R.S., both for the suggestion of these 
three points, and also for the original and very elegant 
investigation from first principles, contained in the first 
Appendix, and in the commencement of the second. My 
thanks are also due to Lord Rayleigh, F.R.S., E. J. Routh, 
Esq., and Professor James Stuart, for kindly looking through 
the first proof of the translation, and for various valuable 
suggestions made in connection with it. 

WALTER R. BROWNE. 

10, VICTORIA CUAlIBEBS, WZSTllIll'STEB, 

November, 1879. 
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AUTHOR'S PREFACE. 

MANY representations having been made to the author from 
different quarters that the numerous papers CI On the Me
chanical Theory of Heat," which he had published at different 
times during a series of years, were inaccessible to many who, 
from the widespread interest now felt in this theory, were 
anxious to study them, he undertook some years back to 
publish a complete collection of his papers relating to the 
subject. 

As a fresh edition of this book has now become necessary, 
he has determined to give it an entirely new form. The 
Mechanical Theory of Heat, in its present development, furms 
already an extensive and independent branch of science. 
But it is not easy to study such a subject from a series of 
separate papers, which, having been published at different 
times, are unconnected in their form, although they agree 
in their contents. Notes and additions, however freely used 
to explain and supplement tIle papers, do not wholly over
come the difficulty. The author, therefore, thought it best 
so to re-model the papers that they might form a connected 
whole, and enable the work to become a text-book of the 
science. He felt himself the more bound to do this because 
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viii AUTHOR'S PREFACE. 

his long experience as a lecturer on the Mechanical Theory 
of Heat at a Polytechnic School and at several Universities 
had taught him how the subject-matter should be 'arranged 
and represented, so as to render the new view and the new 
method of calculation adopted in this somewhat difficult 
theory the more readily intelligible. This plan also enabled 
him to make use of the investigations of other writers, and 
by that means to give the subject greater completeness and 
finish. These authorities of course have been in every case 
duly recognized by name. During the ten years which have 
elapsed since the first volume of papers appeared, many fresh 
investigations into the Mechanical Theory of Heat have been 
published, and as these have also been discussed, the contents 
of the volume have been considerably increased. 

Therefore in submitting to the public this, the first part 
of his new investigation of the Mechanical Theory of Heat, 
the author feels that, although it owes its origin to the second 
edition of his former volume, still, as it contains so much 
that is fresh, he may in many respects venture to call it a new 
work. 

R. CLAUSIUS. 

BONN, December, ]875. 
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ON THE MECHANICAL THEORY OF HEAT. 

MATHEMATICAL INTRODUCTION. 

ON MECHANICAL WORK, ON ENERGY, AND ON THE 
TREATMENT OF NON-INTEGRABLE DIFFEREN'rIAL 

EQUATIONS. 

§ 1. Definitioo and Measurement 01 Mechanical, Work . 
. Every force tends to give motion to the body on which 

it· acts; but it may be prevented from doing so by other 
opposing forces, 80 that equilibrium results, and the body 
remains at rest. In this case the force performs no work. 
But as soon as the body' moves under the influence of the 
force, Work is performed. 

In order to investigate the subject of Work under the 
simplest possible conditions, we may assume that instead 
of an extended body the force acts upon a single material 
point. If this point, which we may call p, travels in the 
same straight line in which the force tends to move it, 
then the product of the force and the distance moved 
through is the mechanical work which the force performs 
during the motion. If on the other hand the motion of 
the point is in any other direction than the line of action 
of the force, then the work performed is represented by 
the product of the distance moved through, and the com
ponent of the force resolved in the direction of motion. 

This component of force in the line of motion may be 
positive or negative in sign, according as it tends in the 

c. 1 
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2 ON THE MECILUfICAL THEORY OF HEAT. 

same direction in which the motion actually takes place,' 
or in the opposite. The work likewise will be positive in 
the first case, negative in the second. To express the 
difference in words, which is for many reasons convenient, 
recourse may be had to a terminology proposed by the 
writer in a former treatise, and the force may be said to 
do or perform work in the former case, and to destroy work 
in the latter. 

From the foregoing it is obvious that, to express quan
tities of work numerically, we should take as unit that 
quantity of work which is performed by an unit of force 
acting through an unit of distance. In order to obtain a 
scale of measurement easy of application, we must choose, 
as our normal or standard force, some force which is 
thoroughly known and easy of measurement. The force 
usually chosen for this purpose is that of gravity. 

Gravity acts on a given body as a force always tending 
downwards, and which for places not too far apart may be 
taken as absolutely constant. If now we wish to lift a 
weight upwards by means of any force at our disposal, 
we must in doing so overcome the force of gravity; and 
gravity thus gives a measure of the force which we must 
exert for any slow lifting action. Hence we take as our 
unit of work that which must be performed in order to 
lift a unit of weight through a unit of length. The units of 
weight and length to be chosen are of course matter of indif
ference; in applied mechanics they are generally the kilo
gram and the metre respectively, and then the unit of work 
is called a kilogrammetre. Thus to raise a weight of a 
kilograms through a height of b metres ab kilogrammetres 
of work are required; and other quantities of work, in cases 
where gravity does not come directly into play, can also be 
expressed in kilogrammetres, by comparing the forces em
ployed with the Rtandard force of gravity. 

§ 2. Mathemattcal determination of tM Work done hy 
variable components of Force. 

In the foregoing explanation it has been tacitly assumed 
that the active component of force has a constant value 
throughout the whole of the distance traversed. In reality 
this is not usually true for a distance of finite length. On 
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'lIA.THEMATICAL . INTRODUCTION. 3' 

the one'hand the force 'need' not itself be the same' at·diffe-
, rent points of space; and on the other, although the force 

may remain constant througho,ut, yet, if the path be not 
straight but curved/the component of force in the direction 
of motion will still vary. For this reason it is allowable to ex
press work done by a simple product, only when ihe distance' 
traversed is indefinitely small.. ie. fO!.,An element of space. 

Let ds be an element of y:p~~/a.na 8 the ,component in 
the direction of dR'of the force acting on the point p. We 
have then the following ~quation to ,obtain d W, the work 
done during the movement through the indefini~ly small 

,~aceds: ' 
dW=8ds ......................... (I). 

If P be the total resultant force acti~g on the point p, and 
~ the angle which the direction of this resultant makes, with 
the direction of motion at the point under consideration, 
then. 

8=Pcosq" ' 

whence we have, by (It, 
dW = P cos ~ds ..................... (2). 

It is convenient for calculation to employ a system of 
rectangular co-ordinates, and to consider the projections of 
the element of space upon the axes of co-ordinates, and the 
components of force as resolved parallel to those axes. 

For the sake of simplicity we will assume that the motion 
takes place in a plane in which both the initial direction of 
motion and the line of force are situated. We will employ 
rectangular axes of co-ordinates lying in this plane, and will 
call IlJ and '!J the co-ordinates of the moving point p at a 
given time. If the point moves from this position in the 
plane of co-ordinates through an indefinitely small space ds, 
the projections of this motion on the axes will be called d:c 
and dV' and will be positive or negative, according as the 
co-ordmates fD and '!J are increased or diminished by the 
motion. The components of the force P, resolved in the 
directions of the axes, will be called X and Y. Then, if a 
and b are the cosines of the angles which the line of force 
makes with the axes of fC and '!J respectively, we have 

X=aPj Y=bP. 
--1-2- -
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4 ON THE MECHANICAL THEORY OF HEAT. 

Again, it a and fJ are the cosines of the angles which the 
element of space ds makes with the axes, we have 

d:x: - ads ; dy = fJaB.· 

From these equations we obtain 

Xda;+ Ydy= (aa+ bfJ) Pds~ 

But by Analytical Geometry we know that 

aa + bfJ = cos q" 

where q, is the angle between the line of force and the 
element of space: henc~ 

Xdz+ Ydy-cosq,Pds, 

and therefore by equation (2), 

dW =Xtk+ Ydy •.••..••.••.••.••.•••••• (3). 

This being the equation for the work done during an indefi
nitely small motion, we must integrate it to determine the 

. work done during a motion of finite extent. 

§ 3. IntegralMm of the Differentt'al EtJUatilm for Work 
dooe. 

In the integration of a differential equation of the form 
given in equation (3), in which X and Y are functions of tJ: 

and y, and which may therefore be written in the form 

dW = q, (zy) da; +",. (xy) ay •.. ..•.......•. (3a), 

:a distinction has to be drawn, which is of great importance, 
not only for this partiCUlar case, but also for the equations 
which occur later on in the Mechanical Theory of Heat; and 
which will therefore be examined . here at some length, so 
that in future it will be sufficient simply to refer back to the 
present passage. 

According to the nature of the functions tf, (a:y) and 
+' (xy), differential equations of the form (3) fall into two 
classes, which differ widely both as to the treatment which 
they require, and the results to which they lead. To the 
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MATHEMATICAL INTRODUCTION. 

class belong the which the functions 
the following ,",VUCUULVU 

dX dY (iii = dx ••.•.................... (4). 

The second class comprises all cases, in which this condition 
is not fulfilled. 

If the condition fulfilled, the expression 
right-hand side of or (3a) becomes 
integrable; for it is differential of 

of x and '9, in may be treated 
variables, and formed from the 

dF (x!!l = X ilF (x.1f) = y. 
rk ' dy • 

Thus we obtain at once an equation of the form 

w = F (X'!}) + const. .................... (5). 

If condition (4) is not fulfilled, the right-hand side of the 
,orn'''T.',nTl is not integrable it follows that 
OVT',"OO,Q.,n as a function '9, considered as 'llu'o",'"a"'"'' 

For, if W = F (wy), we 

ilF(xy) 
dx 

Y _ dW _ dF(xy) 
- dy ---;ty-' 

, whence it follows that 

dX d'F(xy) 
ilxdy , 

since with a. two independent 
order of differentiation is immaterial, we may put 

cPF(xy) _ d'F(rcy). 
, . dxd!J - ~ydx J 
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whence it follows that ~X~ ~; i.e. condition (4)- is fulfilled 

for the functions X and)r; which is contrary to the assnmp-
tion. . ... . 

In this case then the integration is impossible, so long as 
a: and !I are considered as independent variables. If however 
we assume any fixed relation to hold between these two 
quantities, so that one may be expressed as a function of the 
other, the integration again becomes possible. For if we 
put 

f (xy) = 0 ........................ (6), 

in which f expresses any function whatever, then by means 
of this equation we can eliminate one of the variables and 
its differential from the differential equation. (The general 
form in which equation (6) is given of conrsj:l comprises the 
special case in which one of the. variables is taken as 
cOIlRtant; its differential then becomes zero, and the variable 
itself only appears as part of the COIlRtant coefficient). Sup
posing '!I to be the variable eliminated, the equation (3) 
takes the form dW = 4> (x) dz, which is a simple differential 
equation, and gives on integration an equation of the form 

to = F (a:) + const ..................... (7). 

The two equations (6) and (7) may thus be treated as form
ing together a solution of the differential equation. As the 
form of the function f(a:y) may be anything whatever, it is 
clear that the number of solutions thus to be obtained is 
infinite. 

The form of equation (7) may of course be modified. 
Thus if we had expressed a: in terms of !I by means of equa
tion (6), and then eliminated a: and cIa: from the differential 
eqnation, this latter would then have taken the form 

dW = 4>1 (y) dy, 

and on integrating we should have had an equation 

W =~(!I) +const ...................... (7a). 

This same equation can be obtained from equation (7) by 
substituting '!I for a: in that equation by means of equation (6). 
Or, instead of completely eliminating a: {rom (7), we may 
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prefer F (x) con-
tains x over in different (and if this does 
not hold in the original form of the equation, it can be easily 
introduced into it by writing instead of x an expression such 

11+1 

as (1- a) x + ax, ~, &c.) then it is possible to substitute 
x 

'!I for :l< in some of these expressions, and to let x remain in 
others. The equation then takes the form 

W=F.(x,y) + " .. ".",,(7b), 

which other two as 
special three equa-
tions (7a), (7b), each of which meaning except 
when combined with equation (6), are not different solutions, 
but different expressions for one and the same solution of 
the differentiar equati<?n. 

Instead of equation (6), we may also employ, to integrate 
the differential equation (3), another equation of less simple 
fi)rID, which in addition to the two variables x and y also 
contains which may itself eq uation ; 
the however suffices purpo!;e, 
and restriction we may sum results of this 
section 

When of immediate integrability, expressed 
by (4), fulfilled, then obtain directly an 
integral equation of the form: 

W = F(x, y) + const. .. ".""." .. " ..... (A). 

When this condition is not fulfilled, we must first assume 
some relation between the variables, in order to make inte-
gration and we shall thereby a system of 
two following form 

=0, 
W=F(x,y) + const. " 

in which of the function not only on 
that of the original differential equation, also on that of 
the functionf, which may be assumed at pleasure. 
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§ 4. Geometrical interpretatiO'1l. of the foregoing Tesulf.8, 
and observatioll8 on partial differential coejJicients. 

The important difference between the results in the two 
cases mentioned above is rendered more clear by treating 
them geometrically. In so doing we shall for the sake of 
simplicity assume that the function F (z, '!I) in equation {A) 
is such that it has only a single value for anyone point in 
the plane of co-ordinates. We shall also assume that in the 
moveme.nt of the point p its original and final positions are 
known, and given by the co-ordinates ~O' '!Io' and ~l' '!Il respec
tively. Then in the first case we can find an expression for 
the work done by the effective force during the motion, 
without needing to know the actual path traversed. For it 
is clear, that this work will be expressed, according to con
dition (A), by the difference F(Z,'!l,) -F(zo'!lJ. Thus, while 
the moving point may pass from one position to the other 
by very different paths, the amount of work done by the force 
is wholly independent of these, and is completely known as 
soon as the original and final positions are g'lVen. 

In the second case it is otherwise. In the system of 
equations (B), which belongs to this case, the first equation 
must be treated as the equation to a curve; and (since the 
form of the second depends upon it) the relation between 
them may be geometncally expressed by saying that the 
work done by the effective force during the motion of the 
point p can only be determined, when the whole of the 
curve, on which the point moves, is known. If the original 
and final positions are given, the first equation must indeed 
be so chosen, that the curve which corresponds to it may pass 
through those two points; but the number of such possible 
curves is infinite, and accordingly, in spite of their coinci .. 
dence at their extremities, they will give an infinite number 
of possible quantities of work done during the motion. 

If we assume that the point p describes a closed curve, 80 

that the final and initial positions coincide, and thus the co
ordinates ZI' '!Il have the same value as ZO' '!I., then in the 
first case the total work done is equal to zero: in the second 
case, on the other hand, it need not equal zero, but may have 
any value positive or negative. 

The case here examined also illustrates the fact that a 
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quantity, which cannot be expressed as a function of m and '!I 
(so long as these are taken as independent variables), may 
yet have partial differential coefficients according to a: and '!I. 
which are expressed by determinate functions of those vari
ables. For it. is ma.nifest that, in the strict sense of the 
words. the components.X and Y must be termed the partial 
differential coefficients of the work Waccording to m and '!I: 
since, when m increases by th. 11 remaining constant, the 
work increases by X d:r;; and when '!I increases by dy, m re
maining constant, the work increases 'by Ydy. Now whether 
W be a quantity generally expressible as a function of a: 'and 
'!I, or one which can only be determined on knowing the path 
described by the moving point, we may always employ the 
ordinary notation for the partial differential coefficients of W. 
and write . 

(~) ==x·l ........................... .... (8}. 

(d'!l == Y. J 
Using this notation we may also write the condition (4), the 
fulfilment or non-fulfilment of which causes the distinction 
between the two modes of treating the differential equation. 
in the following form: .. 

~ (~) == ! (~:) .......................... (9). i 

Thus we may say that the distinction which has to be 
drawn in reference to the duan~ W depends on whether 

the difference ;y (d!) - th (ddV ) is equal to zero, or has 

a finite value . 

. § 5. E:dension of the MO'IJe to three dimensiona. 
H the point p be not restricted in its movement to one 

plane, but left free in space, we then obtain for the element 
of work an expression very similar to that given in equation 
(3). Let a, h, c be the cosines of the angles which the direc
tion of the force P, acting on the point. ·makes with three 
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rectangular axes of co-ordinates; then the three components 
:X, Y, Z of this force will be given by the equations 

X =aP, Y=~P, Z=CP. 
Again, let a; fJ, "I be the cosines of the angles, which the 
element of space a8 makes with the axes; then the three 
projections dte, dy, dz of this element on those axes are given 
by the equations ' 

d:x: = ads, ay = fJ ds, az = "Ids. 
Hence we have 

Xa:x:+ Ydy +Zdz= (aa+bfJ+ cry)Piis. 

But if t/> be the angle between the direction of P and a8, 
then 

a:r + bfJ + cry = cos t/>: 

hence X d:c + Y dll * Zdz = cos t/> x Pds. 
Comparing this with equation (2). we obtain' 

dW = Xd:c + Ydy+Zdz .................. (10). 

Thill is the differential equation for determining the work 
done. The quantities X. Y, Z may be any functions what
ever of the co-ordinates te. y. Z; since whatever may be the 
values of these three components at different points in space, 
a resultant force P may always be derived from them. 

In treating this equation. we must first consider the fol-
lowing three conditions: • 

dX dY dY dZ dZ dX 
dy = d:x:' dz = dy' d:x: = dz ............ ~11). 

and must enquire whether or not the functions X. Y, Z 
satisfy them. 

If these three conditions al·~satisfied. then the expression 
on the right-hand side of (11) is the complete differential of 
a function of 11:, '!I. z. in which these may all be treated as 
independent vanables. The integration may therefore be at 
once effected. and we. obtain an equation of the form 

W = F (:x:yz) + COnst. ........................ (12). 
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. If we now conceive the point p to move from a given 
initial position (3:0, '!Io' zo) to a given final position (3:1, '!I .. ZI) 
the work done by the force during the motion will be repre
sented by 

F (3:1, '!II' ZI) - F (3:0, '!Io, Zo)· 

If then we suppose F(:r:, '!I, Z) to be such that it has only a 
single value for anyone point in space, the work will be 
completely determined by the original and final positions; 
and it follows that the work done by the force is always the 
same, whatever path may have been followed by the point 

-in passing from one position to the other. 
If the three conditions (1) are not satisfied, the integra

tion cannot be effected in the same general manner. If, 
'however, the path be known in which the motion takes place, 
~the integration becomes thereby possible. If in this case 
two points are given as the original and final positions, and 
various curves are conceived as drawn between these points, 
along any of which the point p may move, then for each of 
these paths we may obtam a determinate value for the work 
done; but the values corresponding to these different paths 
need not be equal, as in the first case, but on the contrary 
are in general different . 

. § 6. On the Ergal. 
In those cases in which equation (12) holds, or the work 

done can be simply expressed as a function of the co-ordinates, 
this function plays a very important part in our calculations. 
Hamilton gave to it the special name of "force function"; a 
name applicable also to the more general case where, instead 
of a single moving point, any number of such points are 
considered, and where the condition is fulfilled that the work 
done depends only on the position of the points. In the 
later and more extended investigations with regard to the 
quantities which are expressed by this function, it has become 
needful to introduce a special name for the negative value of 
the function, or in other words for that quantity, the sub
traction of which gives the work performed; and Rankine 
proposed for this the term 'potential energy.' This name 
seta forth very clearly the character of the quantity; but it 
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12 . ON THE MECHANICAL THEORY OF lIEAT. 

is somewhat long, and the author has ventured to propose 
in its place the term " ErgaL" . 

Among the cases in which the force acting on a point has 
an Ergal, the most prominent is that in which the force 
originates in attractions or repulsions, exerted on the moving 
point from fixed points, and the value of which depends only 
on the distance; in other words the case in which the force 
may be classed as a. central force. Let us take as centre of 
force a fixed point 71', with co-ordinates E, '1, ~and let p be 
its distance from the moving point p, so that 

p =J(E-a;)v+ ('1-9)"+ ('-zt .... · ...... ·(13). 

Let us express the force which 71' exerts on p by~' (p), in 
which a positive value of the function expresses attraction, 
and a negative value repulsion; we then have for the com
ponents of the force the expressions 

X=~'(P) E-:l:; Y=~'(P) '1-y; Z=~'(P)~-·. 
p p P 

But by (13) Z = - E; a;: hence X = -~' (P) :. and simi

larly for the other two axes. If ~ (P) be a function such 
that 

~ (P) = J~'{p) dp •........•..••••.. (14), 

we may write the last equation thus: 

d~ (p) dp d~ (p) 
X=-liP tk='-?;D ........... (15). 

d~(P) d~(P) 
and similarly Y =-a:u' Z=- (k"' .......... (15a). 

Hence we have 

Xd.t:+ Yd9+Zdz=- [d~(P) tk+ d~(p) dy+ d~(p) dIJ]. 
d:D d!l dz 

But, since in the expression for p given in equation (13) the 
quantities:l:, y, • are the only variables, and ~ (p) may there
fore be treated as a function of those three .quantities, th.e 
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expression in brackets forms a perfect differential, and we 
may write: 

X!k+ YdV+Zdr--d~ (p) ............ (16). 

The element of work is thus given by the negative differen
tial of ~ (p); whence it follows that ~ (P) is in this ca.se the 

ErgaAl.• • t d f . I .t!_ d' h gaID, IDS ea 0 a sIDg e lU.e POlDt. we may ave any 
number of fixed points 'lT1 • 'IT., 'IT., &c., the distances of which 
from pare Pl' PI' P" &c., and which exert on it forces 
;'(Pl)' 4>'(p'), 4>'(PJ, &c. Then if, as in equation (14), we as
sume ~l(P), ~I(P)' 4>.(P), &c. to be the integrals of the above 
functions, we obtain, exactly as in equation (15), 

X - _ d~l(Pl) _ d4>.{pJ _ d~9(P,) _ 
dJc dJc dJc ••• 

d 
-- d:r:[~I(PJ +~.(PJ +~.(P.)+ •.. ], 

or X=- !X~(p) ................................. (l7). 

Similarly Y==-~X ~(P), z= -! X ~ (P) .•••••••• (17a), 

whence Xtk + YdV + Zd" .. - dI, ~ (P) ••••..••• (18), 

Thus the sum X ~(P) is here the Ergal. 

§ 7. General Eo:tentJion of the foregoing. 

Hitherto we have only considered a 8in~le moving point; 
we will now extend the method to compnse a system com
posed of any number of moving points, which are in part 
acted on by external forces, and in part act mutually on each 
other. 

If this whole system makes an indefinitely small move
ment, the forces acting on anyone point, which forces we 
may conceive as combined into a single resultant, will per
form a quantity of work which may be represented by the 
expression (Xda: + Ydy + Zdz). Hence the sum of all the 
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14 ON THE MECHANICAL THEORY OFlIEAT. 

work done by all the forces acting in the s,stem may be. 
represented by an expression of the form 

I (X~ + Y'lly + Zdz), 

in which the summation extends to all the moving points. 
This complex expression, like the simpler one treated 
above, may have under certain circumstances the important . 
peculiarity that it is the complete differential of some func
tion of the co-ordinates of all the moving points; in which 
case we call this function, taken ne~atively, the Ergal of the 
whole system. It follows from thls that in a finite move-' 
mElnt of the system the total work done is simply equal to 
the difference between the initial and final values of the 
Ergal; and therefore (as.'luming that the function which 
represents the Ergal is such as to have only one value for one 
position of the points) the work done is completely deter
mined by the initial and final positions of the points, without 
its being needful to know the paths, by which these have 
moved from one position to the other. . . 

This state of things, which, it is obvious, simplifies greatly 
the determination of the work done, occurs when all the 
forces acting in the system are central forces, which either 
act upon the moving points from fixed points, or are actions 
between the moving points themselves. 

First, as regards central forces acting from fixed points, 
we have already discussed their effect for a single moving 
point; and this discussion will extend· also to the motion of 
the whole system of points, since the qua.ntity of work done 
in the motion of a number of points is simply equal to the 
sum of the quantities of work done in the motion of each 
several point. We can therefore express the part of the 
Ergal relating to the action of the fixed points, as before, by 
~ tp (P), if we only give such an extension to the summation, 
that it shall comprise not only as many terms as there are 
fixed points, but as many terms as there are combinations of 
one fixed and one moving point. 

N ext as regards the forces acting between the moving 
points themselves, we will for the present consider only two 
points p and p', with co-ordinates /If, y, z, and :t, y', e', 
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respectively. If r be the distance between these points, we 
have 

r::J(z'-a;)1 +C!; - y)'+ (z' -Z)I ......... (19). 

We may denote the force which the points exert on each 
other by I'(r). a positive value being used for attraction, and 
a negative for repulsion. 

Then the components of the force which the point p 
exerts in this mutual action are 

, , . 
f'(r) a; ~ a;, I'(r) y ~ .v, f(r) z ~ II ; 

and the components of the opposite force exerted by p' are 
, , , 

f'(r) a; - a;, f'(r) y- y, !'(r) z - z • 
r r r 

But by (19), differentiating 

dr :c' - :c ar a; - a;' 
da;=--r-; da;'==- -r-; 

80 that the components of force in the direction of a; may 
also be written . 

- I' (r) ~:; - f' (r) :. i . 
and if f (r) be a. function such that 

I(r) == J f' (r) dr ... ............... (20). 

the foregoing may also be written 

-dl(r) -df(r) 
--;tZ ; da;' • 

Similarly the components in the direction of y may be 
written • 

- a/(r}. - df(r). 
dy '-d"il-' 

and those in the direction of • 

-tll(r). -dl(r) 
dz'da" 
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16 ON THE lIEClIA.NICAL THEORY OF HEAT. 

'!'hat part of the total work done in the indefinitely small 
motion of the two points, which is due to the two opposite 
forces arising from their mutual action, may therefore be 
expressed as follows: 

_ [df(r)rk+4f(r)d +df(r)d.+~f(r)d.1{+df(r)d' 
do: dU '!I d. dJ! fIT Y 

. +d~;)dZJ. 

But as r depends only on the six q~antities :1:, !I. II, al, g', II', 

and fer) can therefore be a function of th'ese six quantities 
only. the expression in brackets is a perfect differential, and 
the work done. as far as concerns the mutual action between 
the two points. may be simplyexpreued. by the function 

-df(r). 

In the same :way~ay be. expressed the work due to the 
mutual action of every .other pair of points; and the total 
work done by all the forces which the points exert among 
themselves is expressed by the algebraicalsum 

- df(r) - df(r') - df (r") - ••• ; 

or as it may be otherwise written, 

- d[f(r) + fer') + fer') + ... ] or - dIf(r); 

in which the summation must comprise as many terms as 
there are combinations of moving points, two and two. This 
sum If(r) is then the part of the Ergal relating to the 
mutual and opposite actions of all the moving points. 

If we now finally add the two kinds of forces together, 
we obtain, for the totpl work done in the indefinitely small 
motion of the system of points, the equation 

I(X!k+ Ydg+Zd/l)=-dI~(p)-dI.f(r) 
=-d[I~(P) + If(r)] ........ (21), 

whence it follows that the quantity I~(P) + If(r) is the 
Ergal of the whole of the forces acting together in the system. 

The assumption lying at the root of the foregoing analy
sis. viz. that central forces are the only ones acting, is of 
course only one among all. the assumptions mathematically 
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possible as to the f~rces; but it forms a case of peculiar 
lmportance, inasmuch as all the forces which occur in nature 
may apparently be classed as central forces. 

§ 8. Relation between Work and Via Viva. 

Hitherto we have only considered the forces which act on 
the points, and the change in position of the points them
selves; their masses and their velocities have been left out 
of account. We will now take these also into consideration. 

The equations of motion for a freely moving point of 
mass m are well known to be as follows: 

d'a: iI1y iI1z 
m dt' = X, m dt' = Y, m de" = Z ..•••••.••... (22). 

If we multiply these equations respectively by 

dr.c dy dll 
dt dt, dt dt, dt dt, 

and then add, we obtain 

(tk d':r: d.1J iI1y dz dlz) _( dr.c d.1/ dz) 
m dt dt' + dt dt' + dt dt" dt- X dt + Y dt +Z dt dt ... (23). 

The left-hand side of this equation may be transformed 
into 

m d [(dr.c)1 (dy)' (dz)1 
2dt dt + dt + dt Jdt, 

or, if v be the velocity of the point, 

d (m v'\ 
~ dCt!) dt= \2 J dt=d (m ",). 
2 de dt 2' 

and the equation becomes 

d (i VI) = (X: + y7t + Z:;) dt ............ (2~). 
If, instead of a single freely moving point. a whole system 

of freely moving points is considered, we shall have for every 

C. 2 
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18 ON THE MECHANICAL THEORY OF HEAT. 

point a similar, equation to the above; and by summation 
we shall obtain the following: , 

d~ m I":"~ (X dx ydy. Zdz)d (9 W
) '" "2 v - '" dt + dt + dt t .............. o. 

Now the quantity I ~", is· the vis viva of the whole sy~tem 
of points. If we take a simple expression for the tis viva, 
and put 

T= I ~~ v' ..............•••.••......... (26), 

then the equation becomes 

'dT~I (X~~ + y ~~ +Z~;) dt ..•......•.. (27). 

But the right-band side of this equation is the expression 
for the work done during the time dt. Integrate the equa
tion from an initial time to to. a time t, and call To the vis 
viva at time to: then the resulting equation is 

_ (t, (' d:JJ d.1J dz) '} T- To- Jt I X dt + Y,it + Z dt dt ............ {_8}, 
, 0 . 

the meaning of which ma.y be expressed as follows: 

The Work done during any time by the forces acting upon 
a system is equal to the increase of the Vis Viva of the sYBtem 
during the 8a1~e time. ' 

In this expression a diminution of Vis Viva is of course 
treated as a negative increase. 

It was assumed at the commencement that all the points 
were moving freely. It may, however, happen that the points 
are subject~ to certain constraints in reference to their 
motion. They may be so connected with each other that 
the motion of one point shall in part determine the motion 
of others; or there may be external constraints, as for in
stance, if one of the points is compelled to move in a given 
fixed plane, or on a given fixed curve, whence it will natur-

, * Translator's Note. The 'Vi, {'iva of a particle is here defined as half 
the mass multiplied by the square of the velocity, anll not the Whole mass, 
as was fprmerly the custom. 
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ally follow that all those points, which are in any connection 
with it, will also be to some extent constrained in their 
motion. 

If these 'conditions of constraint C'U1 be expressed by 
equations which contain only the co-ordinates of the points, 
it may be proved, by methods which we will not here con
sider more closely, that the reactions, which are implicitly 
comprised in these conditions, perform no work whatever 
during the motion of the points; and therefore the principle 
given above, as expressing the relation between Vis Viva. and 
Work done, is true for constrained, as well as for free motion. 
It is called the' Principle of tM Equivalence of Work and 
Vis Viva. ' 

§ 9. On Energy. 

In equation (28), the work done in the time from to to t 
is expressed by 

ft (' d:c 'dy nz) t.?" X dt + Y dt + Z dt dt, 

in which t is considered as the only independent variable, 
and the co-ordinates of the points and the components of the 
forces are taken as functions of time only. If these functions 
are known (for which it is requisite that we should know the 
whole course of the motion of all the points), then the inte
gration is always possible, and the work done 'can also be 
determined as a function of the time. 

Cases however occur, as we have seen above, in which it 
is not necessary to express all the quantities as functions of 
one variable, but where the integration may still be effected, 
by writing the differential in the form I (Xdx + Ydy+Zdz), 
and considering the co-ordinates therein as independent vari
ables. For this it is necessary that this expression should 
be a perfectdifi'erential of some function of the co-ordinates, 
or in other words the forces acting on the system must have 
an Ergal. This Ergal, which is the negative value of the 
above function, we will denote by a single letter. The letter 
U is generally chosen for this purpose in works on Me
chanics: but in the Mecha.nical Theory of Heat that letter 
is needed to express another quantity, which will enter as 

9-2 
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largely into the discussion; we will therefore denote the 
Ergal by J. Hence we put: 

I(Xtk + Ydy + Zrls) = - 0. .............. (29), 

whence if Jo be the value of the Ergal at time to, we have: 

J~I(Xtk+ Ydy +Zdz) =t1o-J ............ (30), 

which expresses that the work done in a.ny time is equa.l to 
the decrease in the Ergal. 

If we substitute Jo-J for the integral in equation (28), 
we have: 

T- To=t1o-J or T+ J = To+t1o ......... (31); 

whence we have the following principle: The sum of the Vis 
Viva and of the Ergal remains constant during the motion. 
This sum, which we will denote by the letter U, so that 

U = T + J. ............................. (32), 

is called the Energy of the system; so that the. above prin
ciple may be more shortly expressed by saying: The Energy 
remains constant during the motion. This principle, which in 
recent times has received a much more extended application 
than formerly, and now forms one of the chief foundations of 
the whole structure of physical philosophy, is known by the 
name of The Principle of the Oonservation of Energy. 
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CHAPTER I. 

FIRST MAIN PRINCIPLE OF THE MECHANICAL THEORY OF 
HEAT, OR PRINCIPLE OF THE EQUIVALENCE OF HEAT 

AND WORK. 

§ 1. N atuTe of Heat. 

Until recently it was the generally accepted view that 
Beat was a special substance, which was present in bodies in 
greater or less quantity, and which produced thereby their 
higher or lower temperature; which was also sent forth 
from bodies, and in that case passed with immense speed 
through empty space and through such cavities as ponder
able bodies contain, in the form of what is called radiant 
heat. In later days has arisen the other view that Heat is 
in reality a mode of motion. According to this view, the 
heat found in bodies and determining their temperature is 
treated as being a motion of their ponderable atoms, in 
which motion the ether existing within the bodies may also 
participate; and radiant heat is looked upon as an undulatory 
motion propagated in that ether. 

It is not proposed here to set forth the facts, experiments, 
and inferences, through which men have been brought to 
this altered view on the subject; this would entail a refer
ence here to much which may be better described in its own 
place during the course of the book. The conformity with 
experience of the results deduced from this new theory will 
probably serve better than anything else to establish the 
foundations of the theory itself. 

We will therefore start with the assumption that Heat 
consists in a motion of the ultimate particles of bodies and 
of ether, and that the quantity of heat is a measure of the 
Vis Viva of this motion. The nature of this motion we 
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shall not attempt to determine, but shall merely apply to 
Heat the ptinciple of the equivalence of Vis Viva and Work, 
which applies to motion of every kind; and thus est~blish 
a principle which may be called the first main Principle of 
the M.echanical Theory of Heat. 

§ 2. Positive and negative values of Mechanical Work. 
In § 1 of the Introduction the mechanical work done in 

the movement of a point under the action of a force was 
defined to be The product of the distance moved through and 
of the component of the force resolved in the direction of 
motion. The work is thus positive if the component of 
force in the line of motion lies on the same side of the 
initial point as the element of motion, and negative if it falls 
on the opposite side. From this definition of the positive 
sign of mechanical work follows the . principle of the equiva
lence of Vis Viva and Work, viz. The increase in the Vis' 
Viva is equal to the work done, or equal to the increase in 
total work. 

The question may also be looked at from another point 
of view. If a material point has once .been set in motion, it 
can continue. this movement, on account of its momentum, 
even if the force acting on it tends in a direction opposite to 
that of the motion; though its velocity, and therewith its 
Vis Viva, will of course be diminishing all the time. A 
material point acted on by gravity for tlxample, if it has 
received an upward impulse, can continue to move against 
the force of gravity, although the latter is continually 
diminishing the velocity given by the impulse. In such a 
case the work, if considered as work done by the force, is 
negative. Conversely however we may reckon work as· 
positive in cases where a force is overcome by the momen
tum of a previously acquired motion, as negative in cases 
where the point follows the direction of the force. Applying 
the form of expression introduced in § 1 of the Introduction, 
in which the distinction between the two opposite directions 
of the component of force is indicated by different words, we 
may express the foregoing more simply as follows: we may 
determine that not the work done, but the work destroyed, 
by a force shall be reckoned as positive. 

On this method of denoting work done, the principle of 
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the equivalence of Vis Viva and Work takes the following 
form: The decrease t'n the Vis Viva is equal to the increase in 
the Work done, or The sum of the Vis Viva'arrd Work done is 
constant. This latter form will be found very convenient in 
what follows. 

In the case of such forces as have an Ergal, the meaning' 
of that quantity was defined (in § 6 of the Introduction) ill 
such a manner that we must say, 'The Work done is equal 
to the decrease in the Ergal.' If we use the method of denot
ing work just described, we must say on the contrary, 'The 
work done is equal to the increase in the Ergal;' and if the 
constant occurring as one term of the Ergal be determined 
in a particular way, we may then regard the Ergal as simply 
an expression for the work done. -

§ 3. Expression for the first Fundamental Principle. 

Having fixed as above what is to be the positive sign for 
work done, we may now I!tate as follows the first main 
Principle of the Mechanical Theory of Heat. 

In all cases where work is produced by heat, a quantity of 
heat is consumed proportional to the work done; and inversel:/, 
by the e.xpenditure of the same amOltnt of work the sume 
quantity of heat may be produced. . 

This follows, on the mechanical conception of heat, from 
the equivalence of Vis Viva and Work, and is named The 
Principle of the Equivalence of Heat and Work. . 

If heat is consumed, aud work thereby produced, we may 
say that heat has transformed itself into work; and con
versely, if work is expended and heat thereby produced, we 
may say that work has transformed itself into heat. Using 
this mode of expression, the foregoing principle takes the 
following form : Work may transform itself into heat, and heat 
conversely into work, the quantity of the one bearing alway.s a 
fixed proportion to that of the other. . 

This principle is established by means of many pheno-' \ 
;mena which have been long recognized, and of late years f, ' 

has been confirmed by so many experiments of different 
kinds, that we may accept it, apart from the circumstance of 
its forming a special case of the general mechanical principle 
of the Conservation of Energy, as being a principle directly 
derived from experience and observation. 

Digitized by Coogle 



24 ON THE HECHANICAL THEORY OF HEAT. 

§ 4. Numerical ReZatioo between Heat and Work. 
While the mechanical principle asserts that the changes 

in the Vis Viva and in the corresponding Work done are 
actually equal to each other, the principle which expresses 
the relation between Heat and Work is one of Proportioo 
only. The reason is that heat and work are not measured 
on the same scale. Work is measured by the mechanical 
unit of the kilogrammetre, whilst the unit of heat, chosen 
for convenience of measurement, is That amount of heat 
which is required to raise ooe kilogram of water from 00 to 
10 ( Centigrade). Hence the relation existing between heat 
and work can be one of proportion only, and the numerical· 
value must be specially determined. 

If this numerical value is so chosen as to give the work 
corresponding to an unit of heat, it is called the Mechanical 
Equivalent of Heat; if on the contrary it gives the heat 
corresponding to an unit of work, it is called the Thermal 
Equivalent of Work. We shall denote the former by E, and 

1 
the latter by E' 

The determination of this numerical value is effected in 
different ways. It has sometimes been deduced from already 
existing data, as was first done on correct principles by 
Mayer (whose method will be further explained hereafter), 
although, from the imperfection of the then existing data, his 
result must be admitted not to have been very exact. At 
other times it has been sought to determine the number by 
experiments specially made with that view. To the dis
tinguished English physicist Joule must be assigned the 
credit of having established this value with the greatest cir
cumspection and care. Some of his experiments, as well as 
determinations carried out at a later date by others, will 
more properly find their place after the development of the 
theory; and we will here confine ourselves to stating those of 
Joule's experiments which are the most readily understood. 
and at the same time the most certain as to their results. 

Joule measured, under various circumstances, the heat 
generated by friction, and compared it with the work con
sumed in producing the friction, for which purpose he 
employed descending weights. As accounts of these experi-
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ments are given in many books, they need not here he 
described; and it will suffice to state the results as given in 
his paper, published in the Phil. Trans. for 1850. 

In the first series of exyeriments, a very extensive one, 
water was agitated in a vesse by means of a revolving paddle 
wheel, which was so arranged that the whole quantity of 
water could not be brought into an equal state of rotation 
throughout, but the water, after being set in motion, was 
continuaUy checked by striking against fixed blades, which' 
occasioned numerous eddies, and so produced a large amount 
of friction. The result, expressed in English measures, is 
that in order to prod~ce an amount of heat which will raise 
1 pound of water through 1 degree Fahrenheit, an amount 
of work equal to 772'695 foot-pounds must be consumed. 
In two other series of experiments quicksilver was agitated 
in the same way, and gave a result of 774'083 foot-pounds. 
Lastly, in two series of experiments pieces of cast iron were 
rubbed against each other under quicksilver, by which tbe 
heat given out was absorbed. The result was 774'987 foot
pounds. 

Of all his results Joule considered those given by water 
as the most accurate j and as he thought that even this 
figure should be slightly reduced, to allow for the sound pro
duced by the motion, he finally gave 772 foot-pounds as the 
most probable value for the number sought. 

Transforming this to French measures we obtain the 
result that, To produce the quantity of heat required to raise 1 
kilogramme of water through 1 de,qree Oentigrade, work must be 
consumed to the amount of 423'55 kz·logrammetres. This appears 
to be the most trustworthy value among those hitherto 
determined, and accordingly we shall henceforward use it as 
the mecbanical equivalent of heat, and write 

E = 423·55 .......................... (1). 

In most of our calculations it will be sufficiently accurate 
to use the even number 424. 

§ 5. The Mechanical Unit of Heat. 

Having established the principle of the equivalence of 
Heat and Work, in consequence of which these two may be 
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opposed to each other in the same expression, we are often 
in the position of having to flum up quantities, in which 
heat and work euter as terms to be added together. As, 
however, heat and work are measured in different ways, we 
cannot in such a case say simply that the quantity is the 
sum of the work and the heat, but either that it is the sum 
of the heat and of the heat-equivalent of the work, or the sum 
of the work and of the work-equivalent of the heat. On 
account of this inconvenience Rankine proposed to employ a 
different unit for heat, viz. that amount of heat which is 
equivalent to an unit of work. This unit may be called simply 
the Mechanical Unit of Heat. There is an obstacle to its 
general introduction in the circumstance that the unit of 
heat hitherto used is a quantity which is closely connected 
with the ordinary calorimetric methods (which mainly 
depend on the heating of water), so that the reductions 
l'equired are slight, and rest on measurements of the most 
reliable character; while the mechanical unit, besides need
ing the same reductions, also requires the mechanical 
equivalent of heat to be known, a requirement as yet only 
approximately fulfilled. At the same time, in the theoretical 
development of the Mechanical Theory of Heat, in which the 
relation between heat and work often occurs, the method of 
expressing heat in mechanical units effects such impOrtant 
simplifications, that the author has felt himself bound to 
drop his former objections to this method, on the occasion of 
the present more connected exposition of that theory. Thus 
in what follows, unless the contrary is expressly stated, it will 
be always understood that heat is expressed in mechanical 
units. 

On this system of measurement the above mentioned 
first main Principle of the Mechanical Theory of Heat takes 
a yet more precise form, since we may say that heat and its 
corresponding work are not merely pl'oportional, but equal to 
each other. 

If later on it is desired to convert a quantity of heat 
expressed in mechanical units back again to ordinary heat 
units, all that will be necessary is to divide the number 
given in mechanical units by E, the mechanical equivalent of 
heat. 

Digitized by Coogle 



A"' ....... ' ''''' OF HEAT 27 

§ level:op11~ent of the first 

Let any body whatever be given, and let its condition as 
to temperature, volume, &c. be assumed to be known. If an 
indefinitely small quantity of heat dQ is imparted to this body, 
the question arises what becomes of it, and what effect it 
produces. It may in part serve to increase the amount of 
heat actually existing in the body; in part also, if in conse-
quence the imparting of this heat the changes its 
condition, that change includes of some 
force, it absorbed in the work If we 
denote heat existing in more briefly 
the Quantity of the body, indefinitely 
small this quantity by we put dL 
for the indefinitely small quantity of done, then we can 
write: 

dQ= dH + dL ........................ (1). 
The forces against which the work is done may be 

divided into two classes: (1) those which the molecules of 
the body exert among-' themselves, and which are therefore 
dependent nature of the body and (2) those 
which external to the body is 
subjected. to these two forces, which 
have to work done into internal 
and external If we denote quantities by 
dJ and may put 

dL=dJ +dW ..................... (2), 

and then the foregoing equation becomes 

dQ = dH + dJ + dW ............... (II). • 

§ 7. W, andH. 

The and external work different 
laws. internal work see that if 
a body, from any initial whatever, goes 
through changes, .and its original 
condition again, then the internal in the whole 
process must cancel itself exactly. For if any definite 
amount, positive or negatiye, of internal work remained over 
at the end, there must have been produced thereby either an 
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equivalent quantity of external work or a change in the 
body's quantity of heat; and as the same process might be 
repeated any number of times it would in the positive case 
be possible to create work or heat out of nothing, and in the 
negative case to get rid of work or heat without obtaining 
any equivalent for it; both of which results will be at once 
admitted to be impossible. If then at every return of the 
body to its original condition the internal work done becomes 
zero, it follows further that in any alteration whatever of the 
body's condition the internal work done can be determined 
from its initial and final conditions, without needing to know 
the way in which it has passed from one to the other. For 
if we suppose the body to be brought successively from the 
first condition to the second in several different ways, but 
always to be brought back to its first condition in exactly 
the same way, then the various quantities of internal work 
done in different ways in the first set of changes must all be 
equivalent to one and the same quantity 9f internal work done 
in the second or return set of changes, which cannot be true 
unless they are all equal to each other. 

We must therefore assume that the internal forces have an 
Ergal, which is a quantity fully determined by the existing 
condition of the body at any time, without its being requisite 
for us to know how it arrived at that condition. Thus the 
internal work done is ascertained by the increment of the 
Ergal, which we will call J; and for an indefinitely small 
change of the body the differential dJ of the Ergal forms the 
expression for the internal work, which agrees with the nota
tion employed in equations 2 and II. 

If we now tum to the external work, we find the state of 
things wholly different. Even when the initial and final 
conditions of the body are given, the external work can take 
very different forms. To show this by an example, let us 
choose for our body a Gas, whose condition is determined by 
its temperature t and volume tJ, and let us denote the initial 
values of these by tl , tJl , and the final values by t" tJ,; let us 
also assume that t > tl , and tJl > tJl • Now if the cbange is 
carried out in the following way, viz. that the gas is first ex
panded, at the temperature tl , from tJl to "" and then is 
heated, at the volume "" from tl to t" then the external 
work will consist in overcoming the external pressure which 
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corresponds to the temperature tJ • On the other hand, if the 
change is carried out in the following way, viz. that the gas 
is first heated, at the volume 'III' from tl to t" and is then ex
panded, at the temperature t i , from 'III to'll" then the ex
ternal work will consist in overcoming the external pressure 
which corresponds to the temperature tv. Since the latter 
pressure is greater than the former, the external work is 
greater in the second case than in the first. Lastly, if we 
suppose expansion and heating to succeed each other in 
stages of any kind, or to take place together according to any 
law, we continually obtain fresh pressures, and therewith an 
endless variety in the quantities of work done with the same 
initial and final conditions. 

Another simple example is as follows. Let us take a 
~iven quantity of a liquid at te~perature t, and transform ~t 
mto saturated vapour of the hIgher temperature tv. ThIS 
change can be carried out either by heating the liquid, as a 
liquid, to t" and then vaporizing it; or by vaporizing it at t, 
and then heating the vapour to tv' compressing it at the 
same time sufficiently to keep it saturated at temperature t,; 
or finally by allowing the vaporization to take place at any 
intermediate temperature. The external work, which again 
shows itself in overcoming the external pressure during the 
alteration of volume, has different values in all these different 
cases. 

The difference in the mode of alteration which, by way 
of example, has heen thus described for two special classes 
of bodies, may be generally expressed by saying that the 
body can pass by different paths from one condition to the 
other. 

Another difference, besides this, may come into play. If a 
body in changing itS condition overcomes an external resist
ance, the latter may either be so great that the full force of 
the body is required to overcome it, or it may be less than this 
amount. Let us again take as example a given quantity of 
a gas, which at a given temperature and volume possesses 
a certain expansive force. If this gas expands, the external 
resistance which it has to overcome in so doing must clearly 
be smaller than the expansive force, or it would not over
come it; but the difference between them may be a8 small as 
we please, and as a limiting case we may assume them to be 
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equal. These may also however be cases in ,which this differ
ence is a finite quantity more or less considerable. If e.g. 
the vessel, in which the gas is at first confined with a given 
force of expansion, is suddenly put in communication with 
some space in which a smaller pressure exists, or with a. 
vessel which is entirely empty, then the gas in its expansion 
overcomes a less external resistance than it has the power of 
overcoming, or in the second case no extern~ resistance at 
all j and it performs in so doing a smaller amount of external 
work than it might perform, or in the second case no externa~ 
work whatsoever. ' 
, In the original case, where pressure and' reaction are at 
each instant equal, the gas may be, compressed back again by 

, exactly the same force which it has overcome in expand,ing. 
, If however the resistance overcome is less than the force of 
\ eXPILnsion, the gas cannot be compressed back again by the 
I same amount of force. The distinction may be expressed by 
\ saying that the expansi.on is reversibk in the first case, and 
not reversible in the' second. 

This mode of expression may be employe~ in other cases, 
where changes of condition take place in the overcoming of 
any kind of resistance, and the distinction just mentioned in 
relation to the external work may be generally described as 
follows: with a given change of cO'TIdition the external work 
may differ in amount, according as the change takes place in 
a reversible or a non-reversible manner. 

§ 8. Energy of the Body. 

In addition to the two differentials dJ and d Tv, which 
depend on the work done, we have on the right-hand side of 
equation (II) a third, which is the differential of H, the total 
heat actually existing in the body, or its quantity of Heat. 
This quantity H bas clearly the property, also mentioned as 
belonging to J, that it is known as soon as the condition of 
the body is given, without needin~ to know the way in which 
the body has arrived at tbat condItion. 

Since the heat existing in the body and tbe internal 
work are on the same footing as regards the above most 
important pl"Operty, and since further, on account of our 
ignorance as to the internal work, we generally do not know 

'te . several amounts of these two quantities but only their 
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suni, the author, in his first Paper on Heat, published in 
1850, combined the two under one d~8ignation. Following 
th~ same system, we will put 

U=H+J .............................. (3), 

which changes equation (II) into 

dQ =dU + .W ....................... (III). 
The function U, first introduced by the author in the above
mentioned paper, has been since adopted by other writers 
on Heat, and as the definition given by him-that starting 
f!"Om any given initial condition it expresses the sum of the 
increment of the heat actually existing and of the heat con .. 
sumed in internal work-is somewhat long, various attempts 
have been made at a shorter designation. Thomson, in his 
paper of 1851-. called it the mechanical energy of a body in 
tL given state: Kirchoff has given it the name' Function of 
Activity' (Wirkungl!function)t: lastly Zeuner, in his 'Grund
zl1ge deY" mechanischen Warmetheorie,' published 1860, has 
called the quantity U, when multiplied by the heat-equi
valent of work, the' Interior Heat' of the body. 

This last name (as remarked in the author's former work 
of 1864) does not seem quite to correspond with the meaning 
of U; since only one part of this quantity stands for heat 
actually existing in the body, i.e. for vis viva of its molecula.r 
motion, while the other part consists of heat which has been 
consumed in doing internal work, and therefore exists as 
heat no longer. In his second editio~ published 1866. Zeu
ner has made the alteration of calling U the Internal Work of 
the body. The author however is unable to accept this name 

- any more than the other, inasmuch as it appears to be just 
as objectionably limited on the other side. Of the othef
two names, that of ~nergy, employed by Thomson, appears 
very approptiate,.since the quantity under consideration cor
responds exactly with that which is denoted by the same 
word in Mechanics. In what follows the quantity U will 
therefore be called the Energy of the body. 

There still remains one special remark to be made with 
reference to the complete determination of the Ergal, and of 

* Tram. Royal Soc. of Edinblirgh, Vol. xx., p. 475. 
t Pogg • .d.nn.Ypl. CIII., p. ~77. 
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the Energy which comprises the Ergal. Since the Ergal 
expresses the work which the internal forces must have per
formed, while the body was passing from any initial condition, 
taken as the starting point, to its condition at the moment 
under consideration, we can only determine completely the 
value of the Ergal for the present condition of the body, 
when we have previously ascertained once for all its initial 
condition. If this has not been done, we must conceive 
the function which expresses the Ergal as still contain
ing an indeterminate constant, which depends on the initial 
condition. It will be obvious that it is ·not always necessary 
actually to write down this constant, but that we may con
ceive it as included in the function, so long as this latter is 
designated by a general symbol. Similarly we must conceive 
another such indeterminate constant as included in the other 
symbol which expresses the Energy of the body. 

§ 9. Equations for Finite changes of condition-Oyclical 
processes. 

If we conceive the equation (III), which relates to an 
indefinitely small change of condition, to be· integrated for 
any given finite change, or for a series of successive finite 
changes, the integral of one term can be determined at once. 
For the energy U, as mentioned above, depends only on the 
condition of the body at the moment, and not on the way in 
which it bas arrived at that condition. If then we put ~ 
and U. for the initial and final values of U, we may write 

f dU= U.- U,. 

Hence the equation obtained by integrating (III) may be 
written: 

f dQ= u.- U, + f dW ..................... (4); 

or if we denote by Qand Wthe two integrals J dQ and JdW 

which occur in this equation, and which represent respect
ively the total heat imparted to the body dunng the change, 
or series of changes, and the external work done, then the 
equation will be 

Q= U.- u, + W ........................... (4a). 
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As a special case, we may assume that the body under
goes a series of changes such that it is finally brought round 
to its initial condition. To such a series the author gave the 
Dame of cyclical proces$. .A13 in this case the initial and 
final conditions of the body are the same, U1 becomes ~qual 
to cr., and their difference to zero. Hence for a cyclical pro
cess equations (4) and (4a) become: 

J dQ == J dW ..... ................. : ...... (5), 

Q== W .............................. (5a). 

Thus in a cyclical process the total heat imparted to the 
body (i.e. the algebraical sum of all the several quantities of 
heat imparted in the course of the cycle, which quantities 
may be partly positive, partly negative) is simply equal to 
the total amount of external work performed. 

§ 10. Total Heat-Latent and Speciftc Heat. 

In former times, when heat was considered to be a sub
stance, and when it was assumed that this substance might 
exist in two different forms, which were distinguished by the 
termsfree and latent, a conception was introduced which was 
often made use of in calculations, and which was called the 
total heat of the body. By this was understood that quantity 
of heat which a body must have taken up in order to pass 
from a given initial condition into its present condition, and 
which is now contained in it, partly as free, partly as latent 
heat. It was supposed that this quantity of heat, if the 
initial condition of the body was known, could be completely 
determined from ita present condition, without taking into 
account the way in which that condition had been reached. . 

Since, however, we have obtained in equation (4a) an 
expression for the quantity of heat received by the body in 
passing from its initial to its final condition, which expression 
contains the external work W, we must conclude that this 
quantity of heat, like the external work, depends not only on: .. -
the initial and final conditions, but also on the way in which 
the body has passed from the one to the other. The conception 
of the total ~eat as a quantity depending only on the present 

~ 3 
Digitized by Coogle 



34 ON THE MECHANICAL THEORY OF HEAT. 

condition of the body is therefore, under the new theory, no 
longer allowable. 

The disappearance of heat during certain special cha.nges 
of condition, e.g. fusion and vaporization, was formerly ex
plained, as indicated above, by supposing this heat to pass 
into a special form, in which it was no longer sensible to our 
touch or to the thermometer, and in which it was therefore 
called Latent Heat. This mode of explanation has also been 
opposed by the author, who has laid down the principle that 
all heat existing in a body is appreciable by the· touch and 
by the thermometer; that the heat which disappears under 
the above changes of condition exists no longer as heat, but 
ha.~ been converted into work; and that the heat which 
makes its appearance under the opposite changes (e.g. solidi
fication and condensation) does not come from any concealed 
source, but is newly produced by work done on the body. 
A~cordingly he has p~posed the term Work-heat as a sub
stitute for Latent heat m general cases. 

This work, into which the heat is converted, and which 
in the opposite class of changes produces heat, may be of two 
kinds, internal or external. If e. g. a liquid is vaporized, the 
cohesion of its molecules must be overcome, and, since the 
vapour occupies a larger space than the liquid, the external 
pressure must be overcome also. In accordance with these 
two divisions of the work we also may divide the total work
heat, and call the divisions the internal and external work
heat respectively. 

That quantity of heat which must be imparted to a body 
in order to heat it simply, without making any change in its 
density, was formerly known under the general name of free . 
heat, or more properly, of heat actually existing in the body; 
a great part of this, however, falls into the same category as 
that which was formerly called latent heat, and for which the 
term work-heat has been propoEed. Forthe heating of a body 
involves as a general rule a change in the arrangement of its 
molecules, which change produces in general an externally 
perceptible alteration of volume, but still may take place 
apart from such alteration. This change of arrangement 
requires a certain amount of work, which may be partly 
internal, partly external; and in doing this, work-heat is 
again consumed. The heat applied to the body thus serves 

~. 
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in part only to increase the heat actually existing, the other 
part serving as work-heat. 

On these principles the author attempted to explain (by 
way of example) the unusually great specific heat of water, 
which is much beyond that either of ice or of steam *: the 
assumption being that of the quantity of heat, which each 
receives from without in' the process of heating, a larger 
portion is consumed in the case of water in diminishing the 
cohesion of the particles, and thus serves as work-heat. 

From the foregoing it is seen to be necessary that, in 
addition to the various specific heats, which shew how much 
heat must be imparted to one unit-weight of a body in order 
to warm it through one degree under different circumstances 
(e.g. the sJilecific heat of a solid or liquid body under ordinary 
atmosphenc pressure, and the specific heat of a gas at con
stant volume or at constant pressure), we must also take into 
consideration another quantity which shews by how much the 
heat actually e:cisting in one unit-weight of a BUbstance (i.e. 
the vis viva of the motion of its ultimate particles) is increased 
when the substance is heated through one degree of temperature. 
This quantity we will name the body's true heat-capacity. 

It would be advantageous to confine this term' heat-capa
city , (even if the word • true' be not prefixed) strictly to the 
heat actually existing in the body; whereas for the total heat 
which must he imparted for the purpose of heating it under 
any given circumstances, and of which work-heat forms a 
part, the expression 'specific heat' might be always em
ployed. As however the term 'heat-capacity' has hitherto • 
been uBually taken to have the same signification as 'specific 
heat' it is still necessary, in order to affix to it the above 
simplified meaning, to add the epithet' true.' 

§ 11. lkpression for the·E:cternal Work in a particular 
case. 

In equation (III) the external work is denoted generally by 
dW: No special assumption is thereby made as to the nature 
of the external forces which act on the body, and on which 
the external work depends. It is, however, worth while to 
consider one special case which occurs frequently in practice, 

• Pogg. ,dnn:. Vol. LXXIX., p. 375, and Collection 01 Memoi1'l, Vol. I., p.23. 
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36 ON THE MECHANICAL THEORY OF HEAT. 

and which leads to a very simple determination ofthe external 
work, viz. the case where the only external force acting on the 
body, or at least the only force which needs to be referred to 
in the determination of the work, is a pressure acting on the 
exterior surface of the body; and in which this pressure (as 
is always the case with liquid and gaseous bodies, provided 
no other forces are acting, and which may be the case even 
with solid bodies) is the same at all points of the surface, 
and everywhere normal to it. In this case there is no need, 
in order to determine the external work, that we should 
consider the body's alterations in form and its expansion in 
particular directions, but only its total alteration in volume. 

As an illustrative case, let us take a cylinder, OJ! shewn 
in Fig. I, closed by an easily moving piston P, and containing 
some expansible substance, e.g. a gas, under a 
pressure per unit-area represented by p. The 

& r 
I 
: 

(to 

section of the cylinder, or the area of the piston, 
we may call a. Then the total pressure which 
acts on the piston, and which must be overcome 
in raising it, is pa. Now if the piston stands 
originally at a height h above the bottom of 
the cylinder, and is then lifted through an 
indefinitely small distance dh, the external work 
performed in the lifting will be expressed by 
the equation 

dW=padh. 

I 
~---,i 

Fig. I. 
But if ~ be the volume of the gas we have 
v = ah, and therefore dv = adh; whence the above equation 
becomes 

dW = pd'IJ ........................ (6). 

This same simple form is assumed by the differential of the 
external work for any form 
of the body, and any kind 
of expansion whatever, as 
may be easily shewn as fol
lows. Let the full line in 
Fig. 2 represent the surface 
of the body in its original 
condition, and the dotted line 
its surface after an indefi-

.....•.. ;:: .. ::-... -. ---:: 
F:g.2. 
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nitely small change of form and volume. Let us consider 
any element do> of the original surface at the point .A. 
Let a normal drawn to this element of surface cut the 
second surface at a distance du from the first, where du 
is taken as positive if the position of the second surface 
is outside the space contained within the original surface, 
and negative if it is inside. Now let us suppose an inde
finite number of such normals to be drawn through every 
point in the perimeter of the surface-element do> to the 
second surface; there will then be marked out an indefi
nitely small prismatic space, which has dO) as its base, and 
du as its height, and whose volume is therefore expressed by 
dfiJdu. This indefinitely small volume forms the part of the 
increase of volume of the body corresponding to the element 
of surface dO). If then we integrate the expression dfiJdu all 
over the surface of the body, we shall obtain the whole 
increase in volume, dv, of the body, and if we agree to 
express integration over the surface by an integral sign with 
suffix 0), we may write 

dv = J.. dudo> ..... : ................ (7). 

Now if, as before, we denote the pressure per unit of 
surface by p, the pressure on the element do> will be pdOJ. 
Therefore the part of the external work, which corresponds 
to the element dO), and is described by saying that the 
element under the action of the external force pdt" is pushed 
outwards at right angles through the distance du, will be 
expressed by the product pdO)du. Integrating this over the 
whole surface, we obtain for the total external work, 

dW = J.. pdudQ). 

As p is equal over the whole surface, the equation may be 
written: 

dW = pI .. dudfiJ, 

or, by equation (7), 
dW =Pdv, 

I 

which is the same as equation (6) given abo~e. 
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38 ON. THE DClUNICAL THEORY OF HEAT. 

Adopting this equation, we may give to equation (III), 
for the case in which the only external force is a un~form 
pressure normal to the surface, the following form : 

dQ = dU + pdv .•......... ~ ......... (IV). 

This last equation, which forms the mathematical expres
sion most in use for the first main principle of the Mechanical 
Theory of Heat, we will in the next place apply to a class of 
bodies, which are distinguished for the simplicity of their 
laws, and for which the equation takes accordingly a pecu
liarly simple form, so that the required calculations can he 
easily performed. 
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CHAPTER II. 

ON PERFECT GASES. 

§ 1. The GaseoIU condition of bodies. 

Among the laws which characterize bodies in the gaseous 
condition the foremost place must be given to those of 
Mariotte and Gay Lussac, wbich may be expressed together 
in a single equation as follows. Given a unit-weight of a 

. gas, which at freezing temperature, and under any standard 
pressure Po (e.g. that of the atmosphere) has the volume vo; 
then if p and '11 be its pressure and volume at any tempera
ture t (in Centigrade measure) the. following equation will 
hold: 

pv = PQVO (1 + at) ..................... (1), 

wherein the quantity a, which is usually termed the coeffi
cient of expansion, although it really relates to the change 
of pressure as well as the change of volume, has one and the 
same value for every kind of gas. 

Regnault has indeed recently proved by careful experi
ment that tbese laws are not strictly accurate; but the 
deviations are for permanent gases very small, and become of 
importance only for gases which are capable of condensation. 
It seems to follow that the laws are the more nearly exact, 
the further a gas is removed, as to pressure and temperature, 
from its point of condensation. Since for permanent gases 
under ordinary conditions the exactness of the law is already 
so great, tbat mr most purposes of research it may be taken 
as perfect, we may imagine for every gas an ultimate condi
tion, in which the exactness is really perfect; and in what 
follows we will assume this ideal condition to be actually 
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40 ON THE MECHANICAL THEOIW OF BEAT. 

rEached, calling for brevity's sake all gases, 'in which this is 
assumed to hold, Perfect Oases . 

.Ai!, however the quantity a, according to Regnault's deter
minations, is not absolutely the same for all the gases which 
have been examined, and has also somewhat different values 
for one and the same gas under different conditions, the 
question arises, what value we are to assign to Gl in the case 
of perfect gases, in which such differences can no longer 
appear. Here we must refer to the values of Gl which have 
been found to be correct for various permanent gases. By 
experiments made on the system of increasing the pressure 
while keeping the volume constant, Regnault found the fol
lowing numbers to be correct for various per~anent gases: 

Atmospheric Air ......... 0'003665. 
Hydrogen •................. 0'003667. 
Nitrogen .................. 0·003668. 
Carbonic Oxide ......... 0'003667. 

The differences here are so small, that it is of little im
portance what choice we make; but as it was w~th atmo
spheric air that Regnault made the greatest number of 
experiments, and as Magnus was led in his researches to a 
precisely similar result, it appears most fitting to select the 
number 0'003665. 

Regnault, however, by experiments made on the other 
system of keeping the pressure constant and increasing the 
volume, has obtained a somewhat different value for a in the 
case of atmospheric air, viz. 0'003670. He has furthe,r 
observed that rarefied air gives a somewhat smaller, and com
pressed air a somewhat larger, coefficient of expansion than 
air of ordinary density. This latter circumstance has led 
some physicists to the conclusion that, as rarefied air is nearer 
to the perfect gaseous condition than air of ordinary density, 
we ought to assume for perfect gases a smaller value than 
0'003665. Against this it may be urged, that Regnault 
observed no such dependence of the coefficient of expansion 
on the density in the case of hydrogen, but after increasing 
the density threefold obtained exactly the same value as 
before; and that he also found that hydrogen, in its devia
tion from the laws of Mariotte and Oay Luesac, acts altogether 
differently, and for the most part in exactly the opposite 
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way, from atmospheric air. In these circumstances the 
author considers that additional weight is given to the re
sult taken above from the figure for atmospheric air; 
since it will hardly be questioned that hydrogen is at least 
as near" as atmospheric air to the condition of a perfect gas, 
and therefore in drawing conclusions relative to that condi
tion the behaviour of the one is as much to be noted as that 
of the other. 

It appears therefore to be the best course (so long as 
fresh observations have not furnished a more satisfactory start
ing point for wider conclusions) to adhere to the figure which. 
under the pressure of one atmosphere. has been found to 
agree almost exactly for atmospheric air and for hydrogen; 
and thus to write: 

ex == 0'003665 == m ..................... (2). 

If we denote the reciprocal! by a we may also write the 
ex 

equation thus; 

pv _ Po". (a + t) ..................... (3). 
a 

And if for brevity we put: 

B_Povo .......................... (4). 
a 

T-a+t ........................ (5). 

we then obtain the equation in the form 

pv-BT ......................... (6). 

B is here a constant which depends on the nature of the gas 
ana is inversely proportional to its specific gravity·. T 
represents the temperature, provided this is measured not 
from the freezing point. but from a zero point lying a degrees 
lower. The temperature thus measured from - a we shall 
term the Absolute Temperature. a name which will be more 

• Por R iB proportional to the volume of a unit of weight of the gaa at 
II&anc1ard preBll1lle and iemperature; and is therefore inveraely proportional 
to tile weight of a unit of volume. i.e. to the Bpecific gravity. (TranalatoT.) 
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42 ON THE MECHANICAL THEORY OF HEA.T. 

fully explained further on. Taking the value of tl given 
in equation (2) we obtain 

a ==-=273. 1 I ~_ :73 +~ ...................... (7). 

§ 2. Approximate Principle as to Heat absorbed by Gases. 
In an experiment of Gay Lussac's, a vessel filled with air 

was put in communication with an exhausted receiver of 
equal size, so that half the air from the one passed over into 
the other. On measuring the temperature of each half, and 
comparing it with the original temperature, he found that 
the air which had passed over had become heated, and the 
air which remained behind had become cooled, to exactly the 
same degree; so that the mean temperatllre was the same 
after the expansion as before. He thus proved that in this 
kind of expansion, in which 'no external work was done, no 
loss of heat took place. Jou]e, and after bim Regnault, 
carried out similar experiments with greater care, and both 
were led to the same result. 

The principle here involved may also be deduced, without 
reference to special eXl?eriments, from certain properties of 
gases otherwise ascertained, and its accuracy may thus be 
checked. Oases shew so marked a regularity in their beha
viour (especially in the relation between volume, pressure. 
and temperature, expressed by the law of Mariotte and Gay 
Lussac), that we are thereby led to the supposition that 
the mutual action between the molecules, which goes on in 
the interior of solid and liquid bodies, is absent in the case 
of gases; so that heat, which in theformer cases has to over
come the internal resistances, as well as the external pressure, 
in order to produce expansion, in the case of gases has to do 
with external pressure alone. If this be so, then, if a gas 
expands at constant temperature, only so much heat can 
thereby be absorbed as is required for doing the external 
work. Again, we cannot suppose that the total amount of 
heat actually existing in the body is greater after it has 
expanded at constant temperature than before. On these 
assumptions we obtain the following principle: a permanent 
gas, if it ezpand8 at a con8tant temperature, absorbs only 
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so muck 'heat as is required for the mernal work which it 
performs in so doing. 

We cannot of course give to this principle any greater 
validity than that of the principles from which it springs, 
but must rather suppose that for any given gas it is true t() 
the same extent only in which the law of Mariotte and Gay 
Lussac is true. It is only for perfect gases that its absolute 
accuracy may be assumed. It is on this understanding that 
the author brought this principle into application, combined 
it as an approximate assumption with the two main princi
ples of the Mechanical Theory of Heat, and used it for 
establishing more extended conclusions. 

More recently Mr, now Sir William Thomson, who at first 
did not agree with one of the conclusions so deduced, under
tQok in conjunction with Joule to test experimentally the 
accuracy of the principle -; and for this purpose instituted 
with great care a series of skilfully conceived experiments, 
which, on account of their importance, will be more fully and 
exactly discussed further on. These have completely con
firmed the truth not only of the general principle, but also of 
the remark added by the author as to its degree of exactness. 
In the permanent gases on which they experimented, viz. 
atmospheric air and hydrogen, the principle was found so 
nearly exact that the deviations might for the purpose of 
most calculations be neglected; while in the non-permanent 
gas selected for experiment (Carbonic Acid) somewhat greater 
deviations were observed, exactly as might have been ex
pected from the behaviour of that gas in other respects. 

After this we may with the less scruple apply the princi
ple, as being exact for actually existing gases in the same 
degree as the law of Mariotte and Gay Lussac, and absolutely 
exact in the case of perfect gases. . 

§ 3. On the Form which the Equation expressing the 
first main Principle assumes, in the case of perfect gases. 

We now return to equation (IV), viz. : 

dQ = dU + pdv, 
in order to apply it to the case of a perfect gas, of which we 
assume as before one unit of weight to be given. 

11 PhiZ. Tram. 1853; 1854, 1862. 

Digitized by Coogle .. 



44 ON THE MECHANICAL THEORY OF HEAT. 

The condition of the gas is completely determined, when 
its temperature and volume are known; or it may be deter
mined by its temperature and pressure, or by its volume and 
pressure. We will at present choose the first-named quan
tities, temperature and volume, to determine the condition, 
and accordingly treat T and v as the independent variables, 
on which all other quantities relating to the condition of the 
gas depend. If then we regard the energy U of the gas as 
being also a function of these two variables, we may write 

dU=~dT+~dv. ('. ~:~'lJ..~ ) 

whence equation (IV) becomes 

dU (dU) dQ = d7,dT+ dv + P dv ......•...... (8). 

This equation, which in the above form holds not only 
for a gas. but for any body whose condition is determined 
by its temperature and volume, may be considerably simpli
fied for gaseous bodies. on account of their peculiar proper
ties. 

The quantity of heat. which a gas must absorb in ex
panding at constant temperature through a volume dv. is 

generally denoted by ~~ dv. .AJJ by the approximate assump

tion of the last Section this heat is equal to the work done 
in the expansion, which is expressed by pdv, we have the 
equation: 

dQ 
dv dv=pdv, 

dQ 
or dv =p. 

But from equation (8) 

dQ =dU + . 
dv dv p. 

hence from the last two equations we obtain 

dU 
dv = 0 ........................... (9). 
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Hence we conclude that in a perfect gas the energy U is 
independent of the volume, and can only be a function of 
the temperature. 

If in equ;tion (8) we put ~~ = 0, and substitute for 

~~ the symbol a., it becomes 

dQ=-O.dT+ pdv ..................... (10). 

From the form of this equation we see that O. denotes 
the Specific Heat of the Gas at constant volume, since O.dT 
expresses the quantity of heat which must be imparted to 
the gas in order to heat it from T to T + dT, when dv is 

equal to zero. As this Specific Heat = ~~, i.e. is the differ

ential coefficient with respect to temperature of a function of 
the temperature only, it can itself also be only a function of 
temperature. 

In equation (10) all the three quantities T, v, and pare T 
found; but since by equation (6) pv = Rt, it is easy to 
eliminate one of them; and by eliminating each in succession 
we obtain three different forms of the equation. 

Eliminating p we obtain, 
RT 

dQ = O.dT+ -dv ................. (II). 
v 

Again, to eliminate v we put v = RT; whence we have 
p 

dv=!!. dT-RT d-n. 
p p. r 

If we substitute this value of dv in equation (10), and 
then combine the two terms of the equation which contain 
dT, we obtain 

dQ = (a. +R) dT- RT dp ............. (12). 
P 

Lastly, to eliminate T, we obtain from equation (6), by 
differentiation, 

dT - vdp+pdv 
- R • 
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Substituting in equation (10) 

dQ == ~ vdp + G. ~ R pdv ... ........•. (13) . 
• 

§ 4. Deductiom atl to the two Specific Heats, arid 
tramformation of the foregoing equations. 

In the same way as we see from equation (10) that the 
quantity G., which appears as factor of dT, denotes the 
specific heat at constant tempera.ture, we may see from 
equation (12) that the factor of dT in that equation, viz. 
O. + R, expresses the Specific Heat at ccmstant pr688Ure. If 
therefore we denote this Specific Heat by G. we may put 

0, "'" O. + R ....................... (14), 

which equation gives the relation between the two Specific 
Heats. 

Since R is a constant, and 0., as shewn above, is a func
tion of temperature only, it follows from equation (B) that 
Gp also can only be a function of temperature. 

When the author first drew in this manner from the 
Mechanical Theory of Heat the conclusion that the two 
Specific Heats of a permanent gas must be independent of 
its density, or in other words of the pressure to which it is 
subjected, and could depend only on its temperature; and 
when he added the further remark that they were thus in all 
probability constant; he found himself in opposition to the 
then prevailing views on the subject. At that time it was 
considered to be established from the experiments of Suer
mann, and from those of de la Roche and Berard, that the 
specific heat of a gas depended on the pressure; and the 
Cll"cumstance that the new theory led to an opposite conclu
sion produced mistrust of the theory itself, and was used by 
A. von Holtzmann as a weapon of attack against it. 

Some years later, however, followed the first publication 
of the splendid experiments of Regnault on the specific 
heat of gases·, in which the influence of pressure and teDl
perature on the specific heat was made a subject of special 

• Compte. RendUl, Vol. UXTI., 1868; &110 Relation de. ezplrinlce •• 
Vol. n. 
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investigation. Regnault tested atmospheric air at pressures 
from 1 to 12 atmospheres, and hydrogen at from 1 to 9 at
mospheres, but could detect no difference in their specific 
beats. He tested them also at different temperatures, viz. 
between - 300 and + 10", between 0" and 100°, and between 
0' and 200·; and here also he found the specific heat always 
the same *. The result of his experiments may thus be ex
pressed by saying that, within the limits of pressure and 
temperature to which his obllervations extended, the specific 
beat of permanent gases was found to be constant. 

It is true that these direct explanatory researches were 
confined to the specific heat at constant pressure; but there 
will be little scruple raised as to assuming th~ same to be 
correct for the other specific heat, which by equation (14) 
differs from the former only by the constant R. Accordingly 
in what follows we shall treat the two specific heats, at least 
for perfect gases, as being constant quantities. 

By help of equation (14) we may transform the three 
equations (11), (12) and (13), which express the first main 
principle of the Mechanical Theory of Heat as applied to 
gases, in such a way that they may contain. instead of the 
Specific Heat at constant volume, the Specific Heat at con
stant density; which may perhaps appear more suitable, since 
the latter, as being determined by direct observation, ou~ht 
to be used more frequently than the former. The resultmg 
equations are: 

dQ - (0, - R) dT + ~T d'l 
dQ = O"dT- ~T dp J ............... (15). 

O-R a 
dQ= ~'Udp+ iPd'IJ 

Lastly, we may introduce both Specific Heats into the 
equations, and eliminate R, by which means the resulting 

• The numbers obtained for atmospherio air (ReT. du Ea:p. Vol. IL, p.10S) 
are as follows in ordiuary heat units: 

between - 8oo and + 1oo 
tI 00 " 1000 

tI OO.. 2()80 
which may be taken as prac~ica1ly the same. 

'0'28771, 
0'28741. 
0'28751. 
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equations become symmetrical as to p and v, as follows: 

, '( , 
, l""~' 

T 
dQ=~T+ (O,,-O.>vdv 

.~ I" T 
dQ=Ol'dT+ (O.-O,,)-dp 

p 

dQ - O. d 0" d -o_cvP+a_a Pv 
,. p. 

.... ~ ...... (16). 

In the above equations the specific heats are expressed 
in mechanical units. If we wish to express t~em in ordinary 
heat units, we have only to divide these values by the 
Mechanical Equivalent of Heat. Thus if we denote the 
specific heats, as expressed in ordinary heat units, by c. and 
c,,' we may put 

O. 
c.= E' 0" = !J! ................... (17). 

Applying these equations to equation (14), and dividing 
by E, we have 

R c,,= c.+ E ............................ (18). 

§ 5. Relatioo between the two Specific Heats, and its 
applicatioo to calculate the Mechanical Equivalent of Heat. 

If a system of Sound-waves spreads itself through any gas, 
e.g. atmospheric air, the gas becomes in turn condensed and 
rarefied; and the velocity with- which the sound spreads 
depends, as was seen by Newton, on the nature of the changes 
of pressure produced by these changes of density. For very 
small changes of density and pressure the relation between 
the two is expressed by the differential coefficient of the 
pressure with respect to the density, or (if the density, i.e. the 
weight of a unit of volume, is denoted by p) by the differential 

coefficient ~~. Applying this principle we obtain for the 

velocity of sound, which we will call u, the following equa-
tion ' 

GP 1 II == 'V gdp ........ ~ ............... (19), 

in which 9 represents the.accelerating force of gravity. 
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Now in order to determine the value of the differential 

coefficient 0.: Newton used the law of Mariotte·, according to 

which press!:re and density are proportional to each other. 

He therefore put ~ == constant, whence by differentiation: 
p 

and therefore 

whence (19) becomes 

pdp ~ pap == 0, 
p 

:: =~ ............................ (20); 

U=~ ........................ (21). 
, p 

The velocity calculated by this formula did not however agree 
with experiment, and the reason of this divergence, after it 
had been long sought for in vain, was at last discovered by 
Laplace. 

The law of Mariotte in fact holds only if the change of 
density takes place at constant temperature. But In sound 
vibrations this is not the case, since in every condensation 
a heating of the air takes place, and in e\'ery rarefaction a 
cooling. Accordingly at each condensation the pressure is 
increased, and at each rarefaction diminished, to a greater 
extent than accords with Mariotte's law. The question now 

arises how, under these circumstances, can the value of : 

be determined. ' 
Since the condensations and rarefactions follow each other 

with great rapidity, the exchange of heat that can take place 
during each short period between the condensed and rarefied 
parts of the gas must be very small Neglecting this, we 
have to do with a change of density, in which the quantity of 
gas under consideration receives no heat and gives forth none; 
and we may thus, in applying to this case the differential equa-

• ~ This law is commonly known :n Engla~d as • Boyle'd law,' as being 
Oliginally due to Boyle. (7'rallBlator.) 
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tiona of the last section, put dQ = O. Hence. e. g. from the last 
of equations (16), we obtain: 

O. _.3 ~....l 0 o _ 0 Vttp + 0 _ 0 ~JJ - , 
1'. •• 

or O;vdp + O,pafJ - o. 
Now, since the volume t1 of one unit of weight is the re

ciprocal of the density, we may put '11 == !, and therefore 
p 

-dp . beco dv == -.- ; whence the equatIOn mes 
p 

o ap_O pdp ==0 
• p p p' , 

dp_ O"p . d- c - .......................... (22). 
p .p 

or 

This value of the Differential Coefficient ~; differs from that 

deduced from Mariotte's law, and given in (20), by containing 
as factor the ratio of the two Specific Heats. If for simplicity 
we put 

le=~ •.......•.....•.••...•.••. (23), 
• 

the last equation becomes 
dp p 
dp =lep ......................... (24). 

Substituting this value of Z in equation (19), we get instead 

of (21) 

,,== J leg~ ..................... (25). 

From this equation the velocity of sound" can be calculated 
if le is known; or, on the other hand, if the velocity of sound 
is known by experiment, we can apply the equation to calcu- I 

late le, chullging it firs~ into the form 
_"Ip 

k- gp .......................... (26). 
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The velocity of sound in air h8.8 been several times deter
mined with great care by various physicists, whose results 
agree with each other very closely. According to the experi
ments of Bravais and Martens* the velocity at freezing tem
perature is 332'4 m. per second (1090'6 feet). We will in
sert this value in equa.tion (26). We may also give 9 its 
recognized value 9'809 m. (32'2 feet). To determine the 

quotient e we may give the pressure p any value we please, 

but we ~ust then assign to 'the density p the value corre
sponding to that pressure. We will assume p to be the 
pressure of 1 atmosphere. This must be expressed in the 
formula by the amount of weight supported per unit of 
surface. As this weight is equal to that of a column of 
quicksilver, whose we is 1 sq. m. and height 760 mm., and 
which therefore h8.8 a volume of 760 cubic decimetres. and as, 
according to Regnault, the Specific Weight of quicksilver at 
00, as'compared with water at 4°, is 13'096, we obtain 

p=l atmosphere = 760 x 13'596 = 10333 kg. per sq. metre. 

Lastly,! is the weight of a cubic metre of air under the 
88SUme pressure of 1 atmosphere and at temperature 0°. 
which, according to Regnault, is 1'2932 kg. Substituting 
these values in equation (26) we obtain 

k (332'4)1 x 1'293~ = 1'410 
9'809 x 10333 . 

Having thus determined the quantity k for atmospheric 
air, we can now use equation (18) to calculate the quantity E, 
ie, the Mechanical Equivalent of Heat, as was first done by 
Mayer. For we have from (18) 

R 
E=--; 

c,-c. 

and, if we again denote by k the quotient ~, which is the 
c. 

• ...{nn. de Chim. IU •• 18, 5; and Pogg • ...{nn. Vol. LXVI., p. 851. 
4-2 
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same as ~, and accordingly substitute ): for c., we have 
• 

leB 
E = (Ie -1) c, ...................... (27). 

Here we may substitute for Ie its value 1'410 just found, 
and for cp its value as given by Regnault, 0'2375. It then 

remains to determine R, or Po"o. To do this, let us again 
a 

take Po as the pressure of 1 atmosphere, which, as seen above, 
is equal to 10333, and we then have for "0 the volume in 
cubic metres of 1 kg. of air under the above pressure of 
1 atmosphere and at temperature 0°, which according to 
Regnault is 0'7733. Lastly we have already assumed the 
value of a to be 273. The value of R for atmospheric air 
will therefore be given by the equation 

R= 103332;:'7733 =29'27. 

Substituting these vruues for Ie, c" and R in equation (27) 
we obtain 

1'410 x 29'27 
E 0.410 x 0.2375 = 423·8. 

This figure agrees very closely with that determined by 
Joule from the friction of water, viz. 423·55. In fact it 
must be admitted that the agreement is more close than, 
considering the degree of uncertainty as to the data used in 
the calculation, we could have had any right to expect; 80 

t.hat chance must have assisted in some degree to produce it. 
In any case, however, the agreement forms a striking con
firmation of the equations deduced for permanent gases. 

§ 6. 
Ga8es. 

Various Form:ulm relating to the Specific Heats of 

If in equation (18), p. 48, we consider the quantity E as 
known, we may apply that equation to calculate the specific 
heat at constant volume from that at constant pressure, which 
is known from experiment. This application is of special 
importance, because the method of deducing the ratio of the 
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two specific heats from the velocity of sound is only prac
ticable in the case of the very few gases for which that 
velocity ha.'i been experimentally determined. For all others,. 
equation (18) offers the only means as yet discovered of 
calculating the specific heat at constant volume from that 
at constant pressure. 

It must here be observed th~t equation (18) is exactly 
true only for perfect gases, although it gives at least approxi
mate rc.emlts for other gases. The circumstance has also to 
be considered, that the determination of the specific heat of 
a gas at constant pressure is the more difficult, and therefore 
the value determined the less reliable, in proportion as the 
gas is less permanent in its character, and thus diverges 
more widely in its behaviour from the laws of a perfect gas ; 
therefore, as there is no need to seek in our calculations a 
greater accuracy than the experimental values themselves 
can possibly possess, we may treat the mode of calculation 
employed as sufficiently complete for our purpose. 

Accordingly we begin by putting equation (18) in the form 

R 
c. = CJ' - E .. ..•.............• .•• (28). 

Here for E we shall use the value 423'55. R is determined 
by equation (4) 

R=PotJo 
a ' 

where Po'IJo are the pressure and volume at the temperature of 
freezing. Should it be difficult to make observations on the 
gas at this temperature (as is the case with many va pours) 
we may also, by equation (6), give R the value 

R=l'p ......................... (29), 

where P, v, and P are any three corresponding values of 
pressure, volume, and absolute temperature. 

This quantity R, as already observed. is only so far depen
dent on the nature of the gas, that it is inversely proportional 
to its specific gravity. For if we denote by v' the volume 
of a unit of weight of air at temperature T and pressure P, 

Digitized by Coogle ... 



54 THE MECHANICAL THEORY OF HEAT. 

and by R' corresponding value of R, we 
I 

DI_E 
.n - T' 

Combining this with equation (29), 

But !, the ratio of the volumes of equal weights of the two 
v 

gases, and is therefore the reciprocal of the ratio of the 
weights of equal volumes, which ratio called the Specific 
Gravity of the gas, as compared with common air. If we 
call this specific gravity the last eq~ation becomes 

R' 
R=([ ........................ (30). 

Substituting this value of R in (28) we obtain 

R' 
o. = 0" - ••••••••••••••••••••• (31). 

The quantity here denoted R', i.e. the value R 
atmospheric air, has been already determined in § 5 to be 
equal to 29'27. Hence "»",".n,, ... 

J( 29'27 
]!J= 423'55 = 0'0691, 

whence the equation, which serves to determine the Specific 
Heat at constant volume, takes this simple form: 

0'0691 
o. op - -d-" .. , ........ (32). 

If in the next place apply this equation the case of 
for which d = 1, and for the Rake of distinction denote by 
Rccented the two specific heats for air, we the 
following equation: 

0' = O'l' - 0"0691 •................. (33), 

.,.. r: ",CY 
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and substituting for c'l' its value according to Regnault, 
which is 0·2375, we obtain the result 

c'.== 0·2375 - 0-0691 ==0·1684 ......•.. (3~)·. 

For the other gases the equation may be given in the 
following form: . 

c. == cl'd - ~·0691 •..•.•...•........ (35), 

which, as will be seen later, is specially convenient for the 
application of the values given by Regnault for specific 
heaU! at constant pressure. 

The specific heats denoted by Cl' and c. relate to a unit 
of weight of the gas, and have for unit the ordinary unit of 
heat, i.e. the quantity of heat required to raise a unit of 
weight of water from the temperature 0' to 1°. We may 
thus say that the gas, in relation to the heat which it 
requires to raise its temperature either at constant pressure 
or constant volume, is referred as regards weight to the 
standard of water. 

With gases however it is 4esirable to refer to the 
standard of air as regards volume; i.e. so to determine the 
specific heat, as to compare the quantity of heat, which 
the gas requires to raise its temperature through 1°, with the 
quantity of heat which an equal volume of air, taken at the 
same temperature and pressure, requires to raise its tempe
rature to the same extent. We may use this kind of 
comparison in the case of both the specific heats, inasmuch 
as we assume in the one case that both the gas under con
sideration and the atmospheric air are heated at constant 
pressure, and in the other that they are both heated at 
constant volume. The spe~fic heats thus determined may 
be denoted by "II' and/:Y y, 

As we denote by tI ilie volume which a unit weight of gas I ., 

8.'l8umes at a given pressure and temperature, the quantity of 
heat, which a unit-volume of the gas absorbs at constant 

pressure in being heated through 1', will be expressed by ~l!, 
tI 

• It will be seen ihat co' and c,: ful1il the condition found above for 

perfect gases; 2=1·410. (7'ra7l8lator.) 
c. 
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, 
or in the case of atmospheric air by ;. The specific hea.t 

, ~ 'Y" is found by dividing the former quantity by the latter, or, 
. 1-.J! ' .. 
f". ( b' , 

~#'! 'Y" = S! X ':if-I';' C:, x !.. = c:' d .......... (36). 
~ '/} cl' C" tI C" 

f' 
Similarly 'Y. = ~. d ..................... (37). 

c. 

In the first of these two equations we may give to c'" its 
value as found by Regnault, 0'2375; the equation then 
becomes 

'Y1' = 0'~;5 ..................... (38). 

In the second we may put for c'., according to (34), the 
value 0'1684, and for c. the expression given in (35); whence 
we have 

c"d-0'0691 (30 ) 
'Y. = 0'1684 .................. OJ. 

§ 7. Numerical Oalculation of the Specific He~ ~ con
stant Volume. 

The fonnulm developed in the last section have been 
applied by the author to calculate from the values which 
Regnault has determined by his researches for the Specific 
Heat at constant Pressure of a large number of gases and 
vapours, the corresponding values of the Specific Heat at 
constant Volume. In so doing he has in some sort recal
culated one of the two series of numbers given by Regnault 
himself; who has expressed the Specific Heat at constant 
Pressure in two different ways, and has brought together the 
resulting numbers in two series, one of which is superscribed 
• en poids,' and the other • en volume.' The first series con

.tains the values which result, if the gases in question are 
compared weight by weight with water, in relation to the 
quantity of heat required to warm them through 1°; in other 
words, the values of the quantities denoted above by cpo The 
numbers in the second series are simply obtained from those 
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'in the first by multiplying them by the corresponding specific 
gravity, i. e. they are the values of the product cpd. 

These latter numbers were no doubt those most easily 
calculated from the observed values of cp ; but their signi
fication is somewhat complicated. With them the quan
tity of heat has for its unit the ordinary unit of heat, whilst 
the volume to which they refer is that which a unit-weight 
of atmospheric air assumes, when under the same tempera
ture and pressure as the gas under consideration. The tedious
ness of the verbal description thus required makes the 
numbers troublesome to understand and to apply; moreover 
this mode of expressing the Specific Heat of gases has been 
used, so far as the author knows, by no previous writer. In 
considering gases with reference to volume, it has in all other 
cases been customary to compare the quantity of heat, which 
a given gas requires to raise Its temperature through 1°, with 
the quantity of heat which an equal volume of atmospheric 
air requires under the same conditions for the same purpose, 
or, as briefly expressed above, by comparing the gas, 'Volume 
If»" 'Vol'llll1/.6, with air. The numbers thus obtained are re
markable for their simplicity, and allow the laws which 
hold as to the specific heats of the gas to be treated with 
special clearness. 

It will therefore, the author believes, be found an ad
vantage that he has calculated, from the values given by 
&gnault under the headin~ 'en volume' for the product 
c,d, the values of the quantity "II" defined above. All that 
was required for this, by (38), was to divide the values of cpd 
by 0·2375. 

He has further calculated the values of c. and "I.; calcula
tions which by equations (35) and (39) could be very simply 
performed, by taking from the values of the product cpd the 
number 0·0691, and dividing the remainder by d, or by 
0·1684, respectively. 

The numerical values thus calculated are brought together 
in the annexed table, in which the different columns have the 
following signification: 

Column I. 'gives the name of the gas. 

Column II. gives the Chemical composition, and this 
expressed in such a way that the diminution of volume pro-
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duced by the combination can be immediately observed. For 
in each case those volumes of the simple gas are given, which 
must combine in order to give Two Volumes of the compound 
gas. Thus we assume for Carbon, as a gas, such an hypothe
tical volume as we must assume, in order to say that one 
volume of Carbon unites with one volume of Oxygen to make 
Carbonic Oxide, or with two volumes to make Carbonic 
acid. .Again, when, e.g. Alcohol is denoted in the Table by 
C.HeO, this means that two volumes of the hypothetical car
bOn gas, six volumes of Hydrogen, and one volume of Oxygen, 
make up together two volumes of Alcoholic vapour. For 
sulphur-gas the specific gravity used to determine its volume 
is that found by Sainte-Claire Deville and Troost for very 
high temperatures, viz. 2·23. In the five last combinations 
in the Table, which contain Silicon, Phosphorus, Arsenic, 
Titanium, and Tin, these simple elements are denoted by 
their ordinary chemical signs, without reference to their 
volumes in the gaseous condition, because the gaseous 
volumes of these elements are partly still unknown, partly 
hampered with certain irregularities not yet thoroughly cleared 
up. 

Column III. gives the Density of the gas, using the values 
given by Regnault. 

Column IV. gives the Specific Heat at constant Pressure 
as compared, weight for weight, with water, or in other words 
referred to a unit-weight of the gas and expressed in ordinary 
units of heat. These are the numbers given by Regnault. 
under the heading c en poids.' 

Column V. gives the Specific Heat at constant Pressure 
compared, volume for volume, with air, calculated by divid
ing by 0·2375 the numbers given by Regnault under the 
heading c en volume.' 

Column VI. gives the Specific Heat at constant Volume 
compared, weight for weight, with water, calculated by equa.
tion (35). 

Column VII. gives the Specific Heat at constant Volume 
compared, volume for volume, with air, calculated byequa.tion 
(39). 
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I. lL m. IV. I V. VI. I VII. 

Specifto heat at oem· Speoifto heat at oem-

Chemical 
atant PreIIaure aantVolume 

Name ot tbe Gal. Oompoei- Denaity. 
oom~ oom= iiOD. weig t tor compared weig t for compared 

volumefbr volumefbr 
waitt volume wiilght volume wit withAil'. with ..nthAil'. Water. Water. 

---

Atmospberio Air ...... 1 0'2375 1 0'1684 1 
Oxygen ••................ 0, 1'1056 0'21751 1'013 0'1561 1'018 
Nitrogen ...•............. ~ 0'9'113 0'24380 0'997 ().ol727 0'996 
Hydrogen ............... I 0-0692 3-40900 0'993 2'411 0'990 
Chlorine •......•......... Cis 2'4502 0'12099 1'248 0'0928 1'350 
Bromine •...•............ ~rl> 6'4772 0'05562 1'280 0'0429 1'395 
Nitrio Oxide ............ 1'0384 0'2317 1'018 0'1662 1'018 
Carbonic Oxide ......... CO 011673 0'2450 0'998 0'1736 0'997 
Hydrochloric Acid •...• HCI 1'2596 0'1862 0'982 0'1804 0'976 
Carbonic Acid •......•.. gOd 

1'6201 0'2169 1-89 0'172 1-65 
Nitrio Acid •...•......... 1'5241 0'2262 1-46 0'181 1-64 
Steam •.................. H'O 0'6219 0'4805 1-26 0'370 1'36 
Sulphuric Aoid •........ sf> 2'2113 0'1544 1-44 0'123 1'62 
Hydro·sulphurio Aoid. ~~A 1'1747 0'2432 1'20 0'184 1-29 
Carbonio di-sulphide • 2-6258 0'1569 1'74 0'131 2'04 
Carburetted Hydrogen elf 0'5627 0'6929 1'38 0'468 1'64 
Chloroform •............ CHba 4'1244 0'1567 2'72 0'140 8'43 
Olefiant Gas ••.........• g.H4 011672 004040 1-75 0'359 2'06 
Ammonia ............... Ha 0'5894 0'6084 1'26 0'391 1-87 
Benzine .................. C.~ 2'6942 0'3754 4-26 0'350 6'60 
Oil of Turpentine ...... Cl}i 18 4'6978 0'5061 10'01 0'491 18'71 
Wood Spirit ............ C 0 1'1055 0'4580 2'18 0'395 2'60 
Alcohol. .................. c.illo 1'6890 0'4534 8'03 0'410 3'87 
Ether ..................... C,H1OO 2'5578 0'4797 6'16 0'453 6'87 
Ethyl Sulphide ......... C,H1OS 8-1101 0'4008 0'26 0'379 6'99 
Ethyl Chloride ......... CIHI Cl 2'2269 0'2738 2'67 0'243 3'21 
Ethyl Bromide ......... C.HIBr 8'7068 0'1896 2'96 0'171 8'76 
Dutch Liquid •.. , •...... CI H4CJ. 3'4174 0'2293 8'30 0'209 4'24 
Aceton .................... Ca H 8 0 2"0036 0'4125 3'48 0'378 4-60 
Butyrio Aoid ............ C#HsO. 3"0400 0'4008 6-13 0'378 6'82 
Tri-ohloride of Silioon SlOl. 6'8833 0'1322 8'27 0'120 4'21 

~~=~~.~~.~~~~J PCla 4'7464 0'1347 2'69 0'120 8'39 

Tri-chlorideof Arseuic AsOla 6"2667 0'1122 2'96 0'101 3'77 

Te:!i:~~~~ .. ~~.~~~1 TiCl4 6'6402 0'1290 8'61 0'119 4'67 

Tetra-chloride of Tin. SnCl, 811664 0'0939 8'64 0'086 4-59 
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§ 8. Integration of the n/iferential Equations which ex
press the first main Principle in the case of Gases. 

The differential equations deduced in sections 3 and 4, which 
in various forms express the first main principle of the Mechani
cal Theory of Heat in the case of gases, are not immediately 
integrable, as can be seen by inspection; and must therefore 
be treated after the method developed in § 3 of the Introduc
tion. In other words, the integration becomes possible as 
soon as we subject the variables occurring in the equation to 
some one condition, thus determining the path of the change 
of condition of the body. We shall here give only two very 
simple exa.mples of the process, the results of which are 
important for our further investigations. 

Example 1. The gas changes its volume at Constant 
Pressure, and the quantity of heat required for such change. is 
known. 

In this case we select from the above equations one which 
contains p and v as independent variables, e.g. the last of 
Equations (15), which is 

dQ - O,,-R d 0" d --rvp+ RP v. 

As the pressure p is to be constant, we put p = PI' and 
dp = 0; the equation then becomes 

dQ = !Jl p,dv, 

which gives on integration (if we call v, the original value 
of v) 

a 
Q = j[P, (v -'11,) ............... (40). 

. Example 2. The gas changes its volume at Constant 
Temperature, and the quantity of heat required for such 
change is known. 

In this case we select an equation which contains T and v 
as independent variables, e.g. Equation (11), which is 

RT 
dQ =O.dT+-dv. 

t1 
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As T is to be. constant, we put P == PI' and dP == 0; whence 
we have 

dQ==R~ dv, 
v 

Integrating, 
v 

Q=RPllog - ..................... (41). 
VI 

Hence is derived the Principle tha.t if a Gas cl"o,nges its 
volume without change of temperature, the quantities of heat 
absorbed or given off form an arithmetical senes, white the 
volumes form a geometrical sera·ea. 

Again, if we put for R its value prt , we have 
1 

" Q == Pl'/}llog ; ...................... (42). 
t 

If we suppose this equation to refer, not directly to a unit 
weight of the gas, but to a quantity of it such that at pressure 
p it assumes a. volume '/}l' and then suppose that this volume 
changes under constant temperature to v, then the equation 
contains nothing which depends on the special nature of the 
gas. Therefore the quantity of heat absorbed is independent 
of the nature of the gas. Further, it does not depend on the 
temperature, but only on the pressure, being proportional to 
the original pressure. 

Another application of the differential equations deduced 
in sections 3 and 4 consists in making some assumption as 
to the heat to be imparted to the gas during its change 
of condition, and then enquiring what course the change of 
condition will take under such circumstances. The simplest 
and at the same time most important assumption of this kind 
is that no lteat whatever is imparted to or talcen from the gas 
during ita change of condition. For this purpose we may 
imagine the gas confined in a vessel impermeable to heat, or 
that the change is so rapid that no appreciable heat can pass 
to or from the gas in the time. 
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On this assumption we must put dQ = O. Let us do 
this for the three Equations (16). Then the first of these 
becomes 

a.dT+ (a":",, a.) T dv=O. 
v 

Dividing by T x a., and as before' denoting ~ by k, we have 
• 

dT dv 
p+(k-l)-;= O. 

Integrating, 
log T+ (lc -1) log'll = Const. 

or Ttrl == Const. 

If TI , VI are the ori~inal values of T, v, we may eliminate the 
Constant, and obtain 

T (fJ )t-I TI == -: ........................ (43). 

If this equation be applied for example to atmospheric air, 
then, writing k-l'410, we can easily calculate the change of 
temperature which corresponds to any given change of 
volume. If e.g. we assume a certain quantity of air to he 
taken at freezing temperature and at any pressure whatever, 
and to be compressed, either in a vessel impermeable to 
heat, or with great rapidity, to half its volume, then TI - 273 

(absolute temperature) and VI == 2; hence the equation he-
'll 

comes 

whence 

-~ - 2'''"0 _ 1'329 273- , 

T == 273 x 1'329 == 363, 

or if t be the temperature measured in degrees above freezing 
point, 

t .. T-273-900. 

If a similar calculation is made for the compression of the 
gas to t and -fer of its original volume, results are obtained, 
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which, combined with the former, are presented in the follow-
ing Table. . 

Valll80t 

" 1 1 1 

"1 
2 i 10 

------
P 

I'S29 1-766 2'670 273 
--

T 363 482 702 

-- --
t 9()D 209' 4290 

Again, if in the second of equations (16) we put dQ = 0, 
we get: 

O,dT + (0. - O,.)! dp = O. 
P 

This equation is of the same form as the last, except that 
p is in the place of 11, and that 0" and O ... have their places 
interchanged. Hence in exactly the same way we shall 
obtain, 

T = (:&)1-1 

T,. \p , 

(T. )1: (p )1:-1 . whence \Tj:: =- pI ..................... (44). 

Finally the last of Equations (16), if d Q be put - 0, passes 
into the form already treated in § 5: 

O. d O'wvl 0 
V _011:P+ 0 _0.rw1J - ; 

I' • . II • 

which may be written 

~+lcd11 = 0 
P 11 ' 

and gives on integration 

.1!. = (~)"' ........................ (45). 
PI 11 
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§ 9. Determination of the External Wark done during 
the change of volume of a gaa. . 

There is one quantity connected with the expansion of a 
gas which still requires to be specially considered, viz. the 
External Work done in the process. The element of this 
work, as determined in Equation (6), Ch. I, is 

dW=pa'll. 

This work may be very clearly set forth by a graphic 
representation. We will adopt a rectangular system of co-or
dinates,. in which the abscissa represents the volume'll, and the 
ordinate the pressure p. Ifwe now suppose p to be expressed 
as a function of'll, say P = f ('1.1), then this equation is the 
equation to a curve, whose ordinates express the values of p 
corresponding to the different values of tI, and which for 
brevity we will call the Pressure-curve. In Fig. 3 let rs be 
this curve, so that, if oe repre- . 
sent the volume v existing at 
a certain instant, the ordinate 
ef drawn at e will represent 
the pressure at the same in
stant. If further eg represent 
an indefinitely small element 
of volume d'll, and the ordinate 
gh is drawn at g, then we shall 
have an indefinitely small para-

p 

lellogram efhg, whose area re- ", _______ a.--------'eg 
presents the external work f 
done in an indefinitely small Fig. 3. 

d • 

o 

expansion of the body; and 
which differs from the product pd'll only by an indefinitely 
small quantity of the second order, which may be neglected. 
The same holds for any other indefinitely small expansion; 
and hence in the case of a finite expansion (say from the 
volume 'Ill' represented by the abscissa 00, to that of tI" repre
sented by the abscissa oc) the external work, for Which we 
have the equation 

W-/¢'II ...................... (46), 
". 
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is represented by the quadrangular figure abdc, which is 
bounded by the difference of abscissre aG, the ordinates ab 
and cd, and the portion of the pressure-curve bd. . 

In order actually to perfonn the integration in equation 
(46) we must know the fu~ction of'IJ which expresses the 
pressure p. On this point we will select as examples the cases 
already treated in § 8. 

First, let us assume that the Pressure p is constant. 
Then the curve of pressure is a straight line parallel to the 
axis of :c, and abdc is a rectangle (see Fig. 4) w:hose area is 

ll------Ifl 

d 

a c O'~-----~e-----~----

Fig. 4. Fig. 5. 

equal to the product of ac and abo In this case then we 
obtain from (46), denoting the constant pressure by Pl' 

W = PI ('lJ1 - 'lJ1) ..................... (47). 

Secondly, let us assume that the Temperature remains 
constant during the expansion of the gas. Then the law of 
Mariotte holds for the relation between pressure and volume, 
and is expressed by the equation 

pv=const. 

From. the fonn of this equation we see tha.t the curve of 
pressure is an equilateral hyperbola (Fig. 5) ha.ving the axes 
of co-ordinates as asymptotes. A pressure-curve of this kind, 
which involves the special condition that the temperature is 
constant, is usually called an Isothennal Curve. 

To effect the integration in this case we may write for p 
C. 5 
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the value 'Pt"J, where P1'IJJ, is any value obtained fi)r the con

" stant in the above equation; we then get from (46): 

jfl1dv " W ==Pl'111 - == Pl"llog J .•....•..••.. (48). 
fI, 11 'Ill 

We observe that thili\ value of W coincides with that gi-ven 
in equation (42) for Q; the reason for this being that the gas, 
while expa1lding at constant temperature, absorbs only 110 

mnch heat as is required for the external work. 
Joule has employed the equation (48) in one of his deter

minations of the Mechanical Equivalent of Heat. For this 
purpose he forced atmospheric air into a strong receiver, up 
to ten or twenty times .its nonnal density. The receiver and 
pump were meantime kept under water, so that all the heat 
which was developed in pumping could be measured in the 
water. The apparatus is represented in Fig. 6, in which R is 
the receiver, and a the pump. 'The vessel G, as will be 
easily understood, was used for the drying of the air, and the 
vessel wit~ the spiral tube served to give to the air, before its 
entrance mto the pump, an exactly known temperature. 
From the total quantity of heat given in the calorimeter 
Joule subtracted the part due to the friction of the pump, 
the amount of which he detennined by working the pum}) 
for exactly the same length of time, and under the same 
mean pressure, but without allowing the entrance of air, and 
then observing the heat produced. The remainder, after this 
was subtracted, he took as being the quantity of heat de
veloFed by the compression of the air; and this he compared 
with the work required for the compression as given by equa
tion (48). By this means he obtained as the mean of two 
series of experiments the value of 444 kilogrammetres as the 
Mecllanical Equi,'alent of Heat. . 

This value, it must be admitted, does not agree very well 
with the value 424 obtained by the friction of water; the 
reason of which is probal>ly to be found in the far larger 
sources of error attending experiments on air. Neverthele ... ~ 
at that time, when the fact that the work required to r 
developing a given quantity of heat was equal under all cir
cumstances was not yet placed on a finn basis, the agreement 
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or the values found by such wholly different methods was 
close enough to aid considerably in the establishment of the 
principle. 

As a third case of determination of work done, we may 
a.\mme that the gas changes its volume within an envelope 

impermeable to heat; or, which cernes to the same thing. 
that the change of volume t akes place too rapidly to allow ('1' 
the passing of any appreciable quantity of heat to or from the 
body during the time. 
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In this case the relation between pressure and volume is 
given by equation (45), viz.: 

P = (~)I:. 
PI 11 

The curve of pressure corresponding to this equation 
(Fig. 7) falls more steeply than that delineated in Fig. 5. 
Rankine has given to this 
special cla..<\S of pressure- \ 
curves, which correspond to 
the case of expansion within b 
an envelope impermeable to 
heat, the name of Adia.batic 
curves (from 8w.!3ai."ew, to 
pass through). On the 
other hand Gibbs (Tra'TI8. 
OO'TInecticut Academy, vol. 
II. p. 309) has proposed to 
name them Isentropiccurves, 
because in this kind of ex- Ur.-----:!-a----~--
pansion theEntropy,aquan- Fig. 7. 
tity which will be discussed further on, remains constant. This 
latter form of nomenclature is the one which the author pro
poses to adopt, since it is both usual and advantageous to 
designate curves of this kind according to that quantity 
which remains oonstant during the action that takes place. 

To effect the integration in this case, we may put, accoru
ing to the above equation, 

whence (46) becomes 

1 
P = Pl ll/' x Vi j 

or W = ::::'1 [1 - (~) 1:-] ............... (~9). 
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CHAPTER III. 

SECOND MAIN PRINCIPLE OF THE MECHANICAL THEORY 
OF HEAT. 

§ 1. Description of a special form of Oyolioal Prooess. 

In order to prove and to make intelligible the second 
Principle of the Mechanical Theory of Heat, we shall com
mence by following out in all its parts, and graphically repre
senting in the manner already described, one special form 
of cyclical process. For the latter purpose we will assume 
that the condition of the variable body is determined by its 
volume v and its pressure p, and will employ, as before, a 
rectangular system of co-ordinates, in which the abscisS<e 
represent volumes, and the ordinates pressures. Any point 
on the plane of co-ordinates will then correspond to a certain 
condition of the bo,~ ~ which its volume and pressure have 
the same ~~th~ abscissa and ordinate of the point. 
Further, every variation of the body's condition will be 
represented by a line, whose extreme points determine the 
initial and final condition of the body, and whose form shews 
the way in which the pressure and volume have simul
taneously varied. 

In Fig. 8 let the initial condition of the body, at which 
the cyclical process commences, be given by the point a, so 
that the abscissa oe = VI and the ordinate ea = PI represent 
the initial volume and pressure respectively. By means of 
these two quantities the initial temperature, which we will 
call Tl , is also fixed. 
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Now let the body in the first place expand, while retain
ing the same temperature TI • If no heat were imparted to it 

• 

o 

}'lg.8. 

during expansion, it would necessarily become cooler: we 
will therefore assume that it is put in communication with a 
body K, acting as a reservoir of heat, which body has the 
same temperature TI , and does not appreciably vary from this 
during the cyclical process. From this body the variable 
body is supposed to draw during the expansion just sufficient 
heat to keep itself also at the temperature TI • 

The curve, which during this expansion expresses the 
change of pressure, is part of an isothermal curve. In order 
that we may ~ve definite forms to the graphic repre
sentations of thIS curve, and of others yet to be described, 
we will, without limiting the investigation itself to any 
particular bodies, draw the figure as it would appear in the 
case of a perfect gas. Then the isothermal curve, as ex
plained above, will be an equilateral hyperbola; and, if the 
expansion take place from the volume 08 = til to the volume 
0/= ~, we shall obtain the part ab of such an equilateral 
hyperbola. 

When the volume ~ has been reached, let us suppose the 
body ~ to be withdrawn, and let the variable body be left 
to continue its expansion by itself, without any heat being 
imparted to it. The temperature must then fall, and we 
obtain as curve of pressure an isentropic curve, which descends 
more steeply than the isothermal curve. Let this expansion 
continue till the volume VI is reached, giving us the portion 
of an isentropic curve be. Tbe lower temperature thus 
attained we may call 1~. 
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From henceforward let the body be compressed, so as to 
tiling it ba.ck to its original volume. Let the compression 
first take place at the constant temperature T., for which 
purpose we may suppose that the body is connected with a 
body K" at temperature Tit acting as a reservoir of heat, and 
that it gives up to K. just so much heat as suffices to keep 
itself also at temperature T.. The pressure-curve correspond
ing to this compression is again an isothermal curve, and in 
the special case of a perfect gas is another equilateral hyper
bola, of which we obtain the pc.lrtion cd during the reduction 
of volume to ok = tI.. . . 

Finally, let the last compression, which brings the varia
ble body back to its initIal volume, take place without 
the presence oC the body K" so that the temperature rises. 
and the pressure follows the line of an isentropic curve. 
We will assume that the volume ok = tI., up to which the 
compression went on according to the first mode, is so chosen. 
that the compression which begins from this volume and 
continues to volume oe = VI is just sufficient to rai.,e the 
temperature again from T •. to Tl • If then the initial tem
perature is thus regained at the same time as the initial 
volume, the pressure must also return to its initial value, and 
the last curve of pressure must therefore exactly hit the 
point a. When the body is thus brou~ht back again to the 
original condition, expressed by the pomt a, the cyclical pro
cess is complete. 

§ 2 .. &suIt of the C!Jclical Pf"(X;SS8. 

During the two expansions which take place in the course 
tIC the cyclical process the ex-

a ternal pressure must be over
come, and therefore external 
work DUlst be performed; 
whereas conversely during the 
compressions external work 

c is absorbed t.o perform them. 
These quantities of work are 

e h f given directly by the figure, 
:E" 9 which is here reproduced. 

19, • The work performed during 
the expa.nsion ab is rcrresented by the quadrangle eabf, and 
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that perfonned during tIle expansion be by the quadrangle 
fleg. Again, the work absorbed for the compression cd is 
represented by the quadrangle gedh, and that absorbed for 
the compression da by the quadrangle hdae. The two latter 
quantities, on account of the lower temperature which obtains 
during the compression, are smaller than the two fonner; 
and, if we subtract them from these, there remains an over
plus of external work perfonned, which is represented by the 
quadrangle abed, and which we will call W. 

To the external work thus gained must correspond, ac
cording to equation (5a) of Chapter I., a quantity Q, equal to 
it in value, which is required for its production. Now the 
variable body, during the first expansion, expressed by ab, 
which took place in connection with the body Kp received 
from this latter a certain quantity of heat, which we may call 
Q1 j and again during the first compression, expressed by.ed, 
which took place in connection: with the body K., it im
parted to this latter a certain quan tity of heat, which may be 
called Qt' During the second expansion be and the second 
compression da the hody neither imparted nor received heat. 
Now, since in the course ofthewhole cyclical process a certain 
quantity of heat Q is absorbed in work, it follows that the 
quantity of heat Ql' received by the variable body, is larger 
than the quantity of heat Q. which it gives out, so that the 
difference Ql- Q. is equal to Q. 

We may accordingly put 

Q1 = Q.+ Q .......................... (1), 

and can then distinguish in the quantity of heat Ql' which 
the variable body has drawn from the body K " two parts, of . 
which one Q is converted into work, whilst the other Q, is 
given back as heat into the body x.. Since in all the other 
relations of the body' the original condition is restored at the 
end of the cyclical process, and accordingly every variation 
which takes place at one part of the process is counter
balanced by an equal and opposite variation which takes 
place at some other part of the process, we may finally de
scribe the result of the cyclical process in the following tenns: 
The one quantity of !teat Q, derived from the body K. is trans
formed into work, and the other quantit.'! Q. has pasaed ot~· 
from the /totter bod!! Kl into tlte colder K •. 
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The whole of the cyclical process just described may also 
be supposed to take place in the reverse order. If we again. 
begin with the conditions represented by the point a, in 
which the variable body has the volume 'VI and the tempera
ture T" we may suppose that it first expands, without any 
heat being imparted to it, to the volume 'VI' thus describing 
the curve ad, in which its temperature sinks from Tl to TI ; 

that it is then connected with the body K., and expands at 
constant temperature T. from 'VI to V.' describing the curve 
dc, during which it draws heat from the body X.; that it 
then, without parting with its heat, is compressed from fT, to 
~,describingthe curve cb, during which its temperature nses 

from T. to Tl ; finally that it is connected with the body K I , 

at the constant te:mperature Tl , and whilst imparting its heat 
to ~ is again compressed from VI to the initial volume 'V" 

describing the curve ba. 
In this reversed process the quantities of work represented 

by the quadrangles eadh and hdcg are work performed or 
positive, those represented by gcbf and fbae are work absorbed 
or negative. The latter amount is larger than the former, and 
the remainder, as represented by the quadrangle abed, is in 
this case work absorbed. 

In addition the variable body has drawn the quantity of 
heat QI from the body K., and has given out to the body Kl 
the quantity of heat Ql = Q. + Q. Of the two parts of which 
Ql consists, the one Q corresponds to the work absorbed, and 
is generated from it, whilst the other QI has passed over as 
heat from the body K. to the body ~. Hence the result of 
the cyclical process may here be described as follows: the 
quantity of heat Q is generated out of work, and is given off 
to the body K l , and the quantity of heat Q. has passed over 
from the colder body K. to the hotter body K l • 

§ 3. O!Jclical process in the case of a body composed 
partly of liquid, partly of vapour. 

In the foregoing sections, although in describing the 
cyclical process we made no assumptions limiting the nature 
of the variable body, yet the graphic representation of the 
process was made to correspond to the case of a perfect gas. 
It is perhaps as well therefore to examine the cyclical process 
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over again in the case of a body of a different kind, in order to 
see how its appearance may vary with the nature of the body 
operated on. . We will select for this examination a body 
which has not all its molecules in one and the same state in 
all its parts, but consists partly of liquid, partly of vapour at 
the maximum density. 

Let us suppose a liquid contained in an expansible en
velope, but only filling a part of it, and leaving the remainder 
free for vapour having the maximum density corresponding 
to the existing temperature Tt • The combined volumes of 

. liquid and vapour are represented in Fig. 10 by the abscissa 
OB, and the pressure of the 
vapour by the ordinate ea. 
Now suppose the envelope to 
yield to the pressure and en
large. while at the same time 
the liquid and vapour are 
connected with a bod.v K. of 
constant temperature Pt' .As 
the volume increases, more 

a b 

1\ .\0 

• e h I 
liquid becomes vaporised, but Fig 10 
the heat consumed in the . . 
vaporisation is continually replaced from the body K., so that 
the temperature, and with it the pressure of the vapour, 
remains unaltered. The isothermal curve corresponding to 
this expansion is therefore a straight line parallel to the 
abscissa. When the combined volume has increased in this 
way from OB to ~f, a quantity of external work has been 
thereby performed, which is represented by the rectangle 
eabj. Now wit.hdraw the body Kt' and let the envelope 
enlarge still further, without any passage of heat inwards or 
outwards. Then there will be partly an expansion of the 
vapour already existing, partly a generation of new vapour j 
in consequence the temperature will fall, and the pressure 
with it. Let this go on until the temperature has changed 
from T. to T" at which time the volume og has been 
attained. The fall of pressure, which has taken place during 
this expansion, will be represented by the isentropic curve 
be, and the externaJ work performed by fbi'!!. 

Now let the envelope be compressed. so as to brina' the 
liquid and ",apour back again to their original combined 
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volume oe j and let this compression take place, partly in con
nection with the body XI' of constant temperature T., to which 
all the heat produced by condensation of vapour passes over, 
so that the temperature T. remains unaltered: partly apart 
from this body, so that the temperature rises. Let it also be 
arranged, that the first compression shall extend only so far 
(to ok) as that the decrease of volume he then remaining may 
be just sufficient to raise the temperature again from T to T • 
During this first compression the pressure remains unJtereJ, 
at the value gc; the external work thus absorbed is therefore 
represented by the rectangle gcdA During the last compres
sion the pressure increases, and is represented by the 
isentropic curve da, which must end exa.ctlyat the point a, 
since with the original temperature PI we must also have the 
original preSsure ea. The external work absorbed in this 
last operation is represented by hdae. 

At the end of the operation the liquid and vapour are 
again in their original condition, and the cyclical process is 
complete. The surplus of the positive above the negative 
external work, or the external work W which has been gained 
on the whole in the course of the process, is represented as 
before by the quadrangle abed. To this work must correspond 
the absorption of an equivalent quantity of heat Q; and if we 
denote by QI the heat imparted during the expansion, and by 
Q. the heat given out during the contraction, we may put 
Q1 = Q + Q., and the final result of the cyclical process is 
again expressed by saying, that the quantity of heat Q is 
converted into work, and the quantity Q. has passed over from 
the hotter body'~ to the colder K •. 

T·his cyclical process may also be carried out in the reverse 
direction, and then the quantity of heat Q will be generated out 
of work, and given off to the body KII while the quantity QI 

will pass over from the colder body K. to the hotter ~. 
In a similar manner cyclical processes of tbis kind may 

be carried out with other variable bodies, and graphically 
represented by two isothermal and two isentropic lines; in 
which cases, while the form of the curves depends on the 
nature of the body, the result of the process is always of the 
same kind, viz. that one quantity of heat is converted into 
work, or generated out of work, and that another quantity 
passes over from a hotter to a colder body, or vice versa.. 
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The question now arises, Whether the quantity of heat 
converted into work, or generated out of work, stands in a 

,~ generally constant proportion to the quantity which passes over 
I from the hotter to the colder body, or vice vers4 i ()'r whether 
'- the proportion existing between them varies according to the 
\ nature of the variable body, which is the medium of the 

transfer. 

§ 4. Camo1!s view as to the work performed during a 
Oyclical Process. 

Caroot, who was the first to remark that in the produc
tion of mechanical work heat passes from a hotter into a 
colder body, and that conversely in the consumption of 
mechanical work heat can be brought from a colder into a 
hotter body, and who also conceived the simple cyclical process 
above described (which was first represented graphically by 
Clapeyron), took a special view of his own as to the funda
mental connection of these processes *. 

In his time the doctrine was still generally prevalent that 
heat was a special kind of matter, which might exist within 

. a body in grQater or lesser quantity, and thereby occasion 
differences of temperature. In accordance with this doctrine 
it was supposed that heat might change the character of its 
distribution, in passing from one body into another, and 

; further that it could exist in different conditions, which were 
: denominated respectively 'free' and 'latent'; but that the 

whole quantity of heat existing in the universe could neither 
be increased nor diminished, inasmuch as matter can neither 
be created nor destroyed. 

Caroot shared these views, and accordin~ly treated it as 
self-evident that the quantities of heat, whICh the variable 
body in the course of the cyclical process receives from and 
gives out to the surrounding space, are equal to each other, 
and consequently cancel each other. Be lays this down very 
distinctly in § 27 of his work, where he says: "we shall 
assume that the quantities of heat absorbed and emitted in 
these different transformations compensate each other exactly. 
This fact has never been held in doubt; admitted at first with
out reBection, it has since been verified in ~any instances by 

• lIl'jltzio'M 1147 fa puil'Gnce motrfce du feu. Pacis, 1824. 
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experiments with the calorimeter. To deny it would be to sub
vert the whole theory of heat, which rests on it as its basis." 

Now since on this assumption the quantity of heat exist
ing in the body was the same after the cyclical process as 
before it, and yet a certain amount of work had been achieved, 
Camot sought to explain this latter fact from the circum
stance of the heat falling from a higher to a lower tempera
ture. He drew a comparison between till:! descending passage 
of heat (which is especially striking in the steam-engine, 
",here the fire gives off heat to the boiler, and conversely the 
cold water of the condenser absorbs, heat) and the falling of 
water from a higher to a lower level, by means of which a 
machine can be set in motion, and work done. Accordingly 
in § 28, after making use of the expression' fall of water,' he 
applies the corresponding expression 'fall of caloric' to the 
sinking of heat from a higher to a lower temperature. 

Starting from these premises, he laid down the principle 
that the quantity of work done must bear a certain constant 
relation to the 'passage of heat,' i. e. the quantity of heat 
passing over at the time, and to the temperature of the bodies 
between which it passes; and that this relation is indepel).- ; 
dent of the nature of the substance which serves as a " 
medium for the performance of work and passage of heat. 
His proof of the necessary existence of this constant relation I 

rests on the principle "That it is impossible to create moving , 
force out of nothing," or in other words, "That perpetual 
motion is an impossibility." ....... ," : 

This mode of dealing with the question does not accord I' ,
with our present views, inasmuch as we rather assumetnat 
i1rlIie"proQuction of work a corresponding quantity of heat 
is consumed, and that in consequence the quantity of heat 
given out to the surrounding space during the cyclical process 
is less than that received from it. Now if for the production 
of work heat is consumed, then, whether at the same time 
with this consumption of heat there takes place the passage 
of another quantity of heat from a hotter to a colder body, 
or not, at least there is no ground whatever for saying that 
the work is created out of nothing. Accordingly not only 
must the principle enunciated by Camot receive some modifi
cation, but a different basis of proof from that used by him 
must be discovered. 
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§ 5. 1l'ew Fundamental Principle concerning Heat. 
Yarious considerations as to the conditions and nature of 

heat had led the author to the conviction that the tendency 
of heat to pass from a warmer to a colder body, and thereby 
equalize existing differences of temperature (as prominently 
shewn in the phenomena of conduction and ordinary radia
tion), was so intimately bound up with its whole constitution 
that it must have a predominant influence under all conceiv
able circumstances. He thereupon propounded the following 
as a fundamental principle: .. Heat cannot, of itself, pass from 
a colder to a hotter body." 

The words' of itself,"here llsed for the sake of brevity, 
require, in order to be completely understood, a further ex
planation, as given in various parts of the author's papers. 
In the first place they express the fact that heat can never, 
through conduction or radiation, accumulate itself in the 
warmer body at the cost of the colder. This, which was 
already known as respects direct radiation, must thus be 
further extended to cases in which by refraction or reflection 
the course of the ray is diverted and a concentration of rays 
thereby produced. In the second place the principle must 
be applicable to processes which are a combination of several 
different steps, such as e.g. cyclical processes of the kind 
described above. It is true that by such a process (as we 
have seen by going through the original cycle in the reverse 
direction) heat may be carried over from a colder into a 
hotter body: our principle however declares that simul
taneously with this passage of heat from a colder to a hotter 
body there must either take place an opposite passage of heat 
from a hotter to a colder body, or else some change or other 
which has the special property that it is not reversible, except 
under the condition that it occasions, whether directly or 
indirectly, such an opposite passage of heat. This simul
taneous passage of heat in the opposite direction, or this 
special change entailing an opposite passage of heat, is then 
to be treated as a compensation for the passage of heat from 
the colder to the warmer body; and if we apply this concep
tion we may replace the words" of itself" by "without com
pensation," and then enunciate the principle as follows: 
• " A passage of heat from a colder to a hotter body cannot 
take place without compensation." 
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This proposition, laid down as a Fundamental Principle 
by the author, ha.~ met with much opposition; but, having 
repeatedly had occasion to defend it, he has always been able 
to shew that the objections raised were due to the fact that 
the phenomena, in which it was believed that an uncompen
sated passage of he~t from a colder to a hotter body was to 
be found, had not been correctly understood. 'l'o state these 
objections and their answers at this place would interrupt too 
seriously the course of the present treatise. In the discus
sions which follow, the principle, which, as the author believes, 
is acknowledged at present by most physicists as being correct, 
will be simply used as a fundamental principle j but the 
author proposes to return to it further on, and then to consider 
more closely the points of discussion which have been raised 
upon it. 

§ 6. Proof that the relation between the quantity of heat 
carried over, and that converted into work, is independent of 
the nature of the matter which f01'm8 the medium of the 
change. . 

Assuming the foregoing principle to be correct, it may be 
proved that between the quantity of heat Q, which in a cyclical 
process-of the kind described above is transformed into work 
(or, where the process is in the reverse order, generated by 
work), and the quantity of heat Q" which is transferred at the 
same time from a hotter to a colder body Cor vice versa), there 
exists -a relation independent of the nature of the variable 
body which acts as the medium of the transformation and 
transfer; and thus that, if several cyclical processes are per
formed, with the same reservoirs of heat KI and K I , but with 

different variable bodies, the ratio 3. will be the same fur 

all. If we suppose the processes so arranged, according to 
their magnitude, that the quantity of heat Q, which is trans
formed into work, has in all of them a constant value, then 
we have only to consider the magnitude of the quantity of 
heat Q. which is transferred, and the principle which is to be 
proved takes the following form: "If where two different 
variable bodies are used, the quantity of heat Q transformed 
into work is the same, then the quantity of heat Qt' which 
is transferred, will also be the same." . 

Digitized by Coogle 



80 ON THE MECHANICAL THEORY OF HEAT. 

Let there, if possible, be two bodies a and a' (e.g. the 
perfect gas and the combined mass of liquid and vapour, 
described above) for which the values of Q are equal, but 
those of the transferred quantities of heat are different, and 
let these different values be called Q, and Q', respectively: 
Q', being the greater of the two. Now let us in the first 
place subject the body a to a cyclical process, such that the 
quantity of heat Q is transformed into work, and the quantity 
QI is transferred from KI to K,. Next let us subject C' to a 
cyclical process of the reverse description, so that the quantity 
of heat Q is generated out of work, and the quantity Q'. is 
transferred from K. to K I • Then the above two changes, 
from heat into work, and work into heat, will cancel each 
other j since we may suppose that when in the first process 
the heat Q has been taken from the body KI and transformed 
into work, this same work is expended in the second process in 
producing the heat Q, which is then returned to the same body 
K I • In all other respects also the bodies will have returned, 
at the end of the two operations, to their original condition, 
with one exception only. The quantity of he~t Q'., trans
ferred from K, to K I • has been assumed to be greater than. 
the quantity Q. transferred from KI to KI • Hence these two 
do not cancel each other, but there remains at the end a 
quantity of heat, represented by the difference Q'I- Q., which 
has passed oVElr from KI to K I • Hence a passage of heat will 
have taken place from a colder to a warmer body without any 
other compensating change. But this contradicts the funda
mental principle. Hence the assumption that Q'I is greater 
than Q, must be false. 

Again, if we make the opposite assumption, that Q', is 
less than Q" we may suppose the body C',to undergo the 
cyclical process in the first, and a in the reverse direction. 
We then arrive similarly at the result tha.t a quantity of heat 
Q,- Q', has passed from the colder body K. to the hotter K I , 

which is again contrary to the principle. 
~ince then Q', can be neitlier greater nor less than Q. it 

must be equal to Q.; which was to be proved. 
We will now give to the result thus obtained the mathe

ma.tical form most convenient for our subsequent reasoning. 

Since the quotient Z. is independent of the nature of the 

Digitized by Coogle 



SECOND MAIN PRINCIPLE. 81 

variable body, it can only depend on th~ temperature of the 
two bodies Kl and K., which act as heat reservoirs. The 
same will of course be true of the sum . 

1 + Q = Q.+ Q=~ 
QI fJ. Q. ~ 

This last ratio, which is that between the whole heat received 
.and the heat transferred, we shall select for further considera
tion; and shall express the result obtained in this section as 

follows: "the ratio gl can only depend on the temperatures 

T, and Pl." This leads to the equation: 

~1 = 4> ( PI T.) .......... ; .......... (2), 
v. • 

in which </J (~T.) is BOme function of the two temperatures, 
which is independent of the nature of the variable body. 

§ 7; Determination of the Functioo 4> (PI TI ). 

The circumstance that the function given in equation (2) 
is independent of the nature of the variable body, offers a 
ready means of determining this function, since as soon as we 
have found it&. form for any single body it is ~nown for all 
bodies whatsoever. 

Of all classes of bodies the perfect gases are best adapted 
for such a determination, since their laws are the most accu
rately known. We will therefore consider the case of a Fer
feet gas subjected to a cyclical process, similar to that graphi
cally expressed in Fig. 8, § 1 ; which figure may be here repro
duced (Fig. 11), inasmuch as.a perfect gas was there taken as 

. a.n ex.a.mple of the varia.ble 
body. In this process the 
gas takes up a quantity of 
heat Q during its expansion 
ab, and gives out a quantity 
of heat Qg during its com
pression cd. These quanti
ties we shall ca.lculate, and 

e 

o e h f then compare with each 
Fig. 11. other.. 

For thIS purpose we must 
first tum our attention to the volumes represented by the 

c. 
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abscissre oe, ok, of, 0.'1, 'and denoted by "1' "., VI' Vt~ in 'order 
that we may ascertain the relation between them. Now the 
volumes 'lit'll, (represented by oe, ok) form the limits of that 
change of volume to which the isentropic curve ad refers, 
and which may be considered at pleasure as an expansion or 
a compression. ~uch 8. change of volume, during which the 
gas neither takes in nor gives out any heat, has been trea.ted 
'of in § 8 of the last chapter, in which we arrived at the fo1. 
lowing equation (43), p. 62: 

T (vt-t 
2~ = ti ' 

whe~ P and '!1 are the temperature and volume at any point 
in the curve. Substituting for these in the present case the 
final values PI and'll., we have: . 

T )t-I ~ = (~ ..................... ~ .. (3). 

In" exactly the same way we obtain for the change of voIilme 
represented by the isentropic curve be (of which the initial 
and final temperatures are also PIPJ: 

~== (~1)t-S ....................... (4). 
I • 

Combining these two equations we obtain: 

,Vv.I=!I, or VI = V ................... (5). 
I ". "I 'II. 

We must now tum to the change of volume represented 
by the isothermal curve ab, which takes place at the constant 
temperature PI' and between the limits of volume VI and VI' 
The quantity of heat received or given oft' during such a 
change of volume has been determined in § 8 of the last 
chapter, and by the equation (41) there given, p. 61, We 
may put in the present case : 

QI = RT,log v. ..................... (6). 
VI 
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, Similarly for the change of volume represented by ~e iso
thermal curve dc, which takes place at temperature T. between 
the limits of volUme v. and V., we have: 

Q. = RT.log VI ............ , .... ... (7). 
v" 

From these two equations we obtain by division: 

t.j, _ i' ........................... (8), 
~ . 

since by (5) V, _ ~ 
v~ tI.· 

The function occurring in equation (2) is now determined, 
since to bring this equation into unison with the last equation 
(8) we must have: 

4> (~TJ = ~ ...................... (9) • 
• 

We' can now use in place 'Of equation (2) the more deter
minate equation (8), which may also be written as follows: 

~,~~-O ..................... (10). , . 
The form of this equa.tion may be yet further changed, by 

affixing positive and negative signs to Q,. Q.. Hitherto these 
have been trea.ted as absolute quantities. and the distinction 
that the one represents heat taken in. the other heat given 
out, has been always expressed in words. Let us now for 
convenience agree to spea.k of heat taken in only. and to 
treat heat given out as a negative quantity of heat taken in. 
If accordingly we say that the variable body has taken in 
during the cyclical process the quantities of heat Q, and QI' 
We must here conceive Q, as a nega.tive quantity. i. e. the same 
quantity which has hitherto been expressed by - Q.. On 
this aupposition equation (10) becomes: 

~+ ~.=O ..................... (ll}. 
I • 
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§ 8. Oyclical processes of a more complicated character. 

Hitherto we have confined ourselves to cyclical processes 
in which the taking in of quantities of heat, positive or 
negative, takes place at two temperatures only. Such pro. 
cesses we shall in future call for brevitis sake Simple 
Cyclical Processes. But it is now time to treat of cyclical 
processes, in which the taking in of positive and negative 
quantities of heat takes place at more than two temperaa 
tures. 

We may first consider a cyclical process with heat taken 
in at three temperatures. This is represented graphically by 
the figure abcdefa (Fig. 12), which, as in the former cases, 
consists of isentropic and isothermal curves only. These 
curves are again drawn, by way of· example, in the form 
which they would take in the case of a perfect gas, but this 

• 

I) 

Fig. 12. 

is not essential. The curve ab represents an expansion at 
constant temperature T1 ; be an expansion without taking in 
heat, during which the temperature falls from Tl to T.; cd 
an expansion at constant temperature T,; de an expansion 
without taking in heat, during which the temperature falls 
from T, to T.; ef a compression at co~ YJplperature T.; 
and lastly fa a compression without(tlking' ill) heat, during 
wbich ~he temperature rises from Ta to Tt , and which brings 
back the variable body to its exact original volume. In the 
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expansions ab and cd the variable body takes in positive 
quantities of heat Ql., and QI' and in the compression el the 
negative quantity of heat Q.. It now remains to, find a rela
tion between these three quantities. 

For this purpose let us suppose the isentropic curve hI: 
produced in the dotted line eg. The whole process is thereby 
divided into two Simple Processes abgla and etkgc. In the 
first the body starts from the condition a and returns to the 
same again. In the second we may suppose a body of the 
same nature to start from the condition e, and to return to 
the same again. The negative quantity of heat Q., which is 
taken in during the compression ef, we ma., suppose divided 
into two parts q. and qa', of which the first IS taken in during 
the compression gf, and the second during the compression 
.6!J. We can now form the two equations, corresponding 'to 
equation (11), which will hold for the two simple processes. 
These equations are, for the process abgja, 

QI + q,-o 
T P-' I , 

and for the process cdegc 

QI +9,' _ 0 
T. T. . 

. Adding these equations we obtain 

or, since 

Q1 + Q. + q. + q,' = 0 . 
TIT. T. ' 

q.+q.'= Q., 

~+~j+ ~·=O ....................... (12}. 
I I • 

In exactly the same ~ay we may treat a process in which 
hea.t is taken in at four temperatures, as represented by the 
annexed figure alJcdefgha, Fig. 13, which again consists solely 
of isentropic and isothermal lines. The expansions ab and cd. 
and the compresSions el and gh. take place at temperatures 
T •• T,• T., T,. and during these times the quantities of heat 
Ql' Q •• Q., Q, are taken in respectively j the two former being 
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positive, and the two latter negative. Produce the isentropic' 
curves be and /g in the dotted lines ci and gk respectively. 
Then the whore process is subdivided into three Simple Pro-

. cesses akgha, kbifk, and edeic, which may be supposed to be. 

a 

e 

n 

Fig. IS. 

carried out with three exactly similar bodies. We may sup
pose the quantity of heat Qt' taken in during the expansion ab, 
to be divided into two parts qt and q:, corresponding to ex
pansions ak and kb j and the negative quantity Q~ taken in 
during the compression ef, to be likewise divided mto fb and q., corresponding to compressions if and ci. Then we can 
form the following equations for the three simple processes: 
First, for akgha 

Secondly, for kbifk 

Thirdly, for edeic 

%+~=o. 
• I 
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Adding, we obtain 

ql + q,' + 9. + q. + qa' + Q4 == 0 
T, T. T. T4 ' 

~ + ~+ ~.+ ~'=O ................... (13). 
, • • 4' 

or 

In exactly the same way any other cyclical process, which 
can be represented by a figure consisting solely of isentropic 
and isothermal lines, and which has any given number of 
temperatures at which heat is taken in, may be made to yiel j 
an equation of the same form, viz. . 

Q,+ Q,+ Q,+Q4+' -0 T l' T T ...... - • 
, • I , 

or generally 

I~=O ......................... (14). 

§ 9. Cyclical Pro_es, in. whick toJcing in. oj Heat and 
change oj Temperature take place aimu.ltan.eously. 

We have lastly to consider su,ch cyclical processes as are 
represented by figures not consisting solely of isentropie and 
isothermal lines, but altogether general in form. 

The mode of treatment is as follows. Let point a in 

Fig. 14. 

Fig. 14 represent any given c()ndition of the varia.ble body; 
let pq be an arc of the isothennal curve which passes through 
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a, rs an arc of the isentropic curve which passes through the . 
same point. N~w let the body underga a variation which is 
expressed by a pressure-curve not coinciding with either of 
the above, but taking some other course such as be or de. 
Then we may consider such a variation as made up of a very 
great number of very small variations, in which we have 
alternately change of temperature without taking in of heat, 
and taking in of heat without change of temperature. This 
series of successive variations }Vill be represented by a dis
continuous line, made up of alternate elements of isothermal 
and isentropic curves, as drawn in Fig. 15, along the course of 

h 

c 

O~ ____________________________________ _ 

Fig.1G. 

be and de. The smaller the elements of which the dis
continuous curve is made up, the more closely will it coincide 
with the continuous line, and if these are indefinitely small 
the coincidence will be indefinitely close. In this case it can 
only m.ake an indefinitely small difference, in relation to the 
quantities of heat taken in and their temperatures, if we 
8ubsti~te for the variation represented by-the continuous line 
the indefinitely large number of alternatmg variations, which 
are represented by the discontinuous line. 

We are now in a position to consider a complete cyclical 
process, in which the taking in of heat is simultaneous with 
changes of temperature, and which may be represented 
graphically by curves of any form whatever, or merely by a 
single continuous and closed curve, such as is drawn in 
Fig. 16. The area. of this closed curve represents the ex-
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ternal work consumed. Let it be divided into indefinitely 
thin strips bX means of adjacent isentropical curves, as shewn 
by the dotted lines in Fig. 16. Let us suppose these curves 
joined at the top and bottom by indefinitely small elements 

o·~-------------------------------------
Fig.lG. 

of isothermal lines, which cut the given curve, so that 
throughout its length we have a broken line, which is every
where in indefinitely close coincidence with it. By the above 
reasoning we may substitute for the process represented by 
the continuous line the other process represented by the 
broken line, without producing any perceptible alteration in 
the quantities of heat taken in, or in their temperatures. Fur
ther, we may again substitute for the process represented by 
the broken line an indefinitely great number of Simple Pro
cesses, which will be represented by the indefinitely small 
quadrangular strips, made up each of two adjacent isentropic 
curves, and two indefinitely small elements of isothermal 
curves. If then for each one of these last processes we form 
an equation similar to (11), in which the two quantities 
of heat are indefinitely small, and can therefore be denoted by 
differentials of Q; and if all these equations be finally added 
together; we shall then obtain an equation of the same form 
as (14), but in which the sign of summation is replaced by the 
sign of Integration, thus: 

Ii = 0 ................ ; ....... (15). 
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This equatIon, which waS fii.st published by the author in 
1854 (Pogg . .Ann. vol. 93, p. 500), forms a very convenient 
expression for the second main Principle of the Mechanical 
Theory of Heat, as far as it. relates to reversible processes. 
This Principle may be expressed in words as follows: If in a 
reversible Oyclical. Proces8 every element of heat taken in 
(positive or negative) be ditJided by the ab80lute temperature 
at which it is taken in, and the differential 80 formed be inte
grated for the whole cour8e of the prOC688, the integral 80 ob
tained is equal to zero. 

If the integral Jd~, corresponding to any given su~ssion 
of variations of a body, be always equal to zero provided the 
body returns finally to its original condition, whateveJ; the 
intervening conditions may be, then it follows that the ex-

pression under the integral sign, viz. d$, must be the ~rfect 
differential of a quantity, which depends only on the present 
condition of the body, and is alto~ether independent of the 
way in which it has been brought Into that condition. If we 
denote this quantity by S, we may put 

~dQ d'C! 
T == ~. 

or dQ=- TdS ...................... (VI). 

an equation which forms another expression, very convenient 
in the case of certain investigations, for the second main 
principle of the Mechanical Theory of Heat. 
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CHAPTER IV. 

THE SECOND MAIN PRINCIPLE UNDER ANOTHER FORM, OR' 
PRINCIPLE OF THE EQUIVALENCE OF TRANSFORMATIONS. 

§ 1. On the two different kinds of Transformn.tions. 

In the last chapter it was shewn that in a Simple Cyclical 
Process two variations in respect to heat take place, viz. that 
a certain quantity of heat is converted into work (or getlerated 
out of work), and another quantity of heat passes from a. 
hotter into a colder body (or vice versa). It was found fur .. ; 
ther that between the quantity of heat transformed in~ 
work (or generated out of work) and the quantity of neat 
transferred, there must be a definite relation, which is 
independent of the nature of the variable body, and therefore 
can only depend on the temperatures of the two bodies which 
serve as reservoirs of heat. 

For the former of these two variations we have already 
employed the word "transformation," inasmuch as we said, 
when work was expended and heat thereby produced, or 
conversely when heat was expended and work thereby pro
duced, tha.t the one had been "transformed" into the other. 
We may use the word" transformation" to express the second 
variation also (which consists in the passage of heat from one 
body into another, which may be colder or hotter than 
the first), inasmuch as we may say that heat of one tem
pera.ture "transforms" itself into heat of another tempera
ture. 

On this principle we may describe the result of a simple 
cyclical process in the following terms: Two transformations 
are produced, a transformation from heat into work (or vice 
versA) and a transformation from heat of a higher tempera-
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ture to heat of a lower (or vice. versA). The relation between 
these two transforma.tions is therefore that which is to be ex
pressed by the second Main Principle. 

Now, in the first place, as concerns the transformation of 
heat at one temperature to heat at another, it is evident at 
once that the two temperatures, between which the trans
formation takes place, must come under consideration. But 
the further question !lOW arises, whether in the trans
formation from work into heat, or from heat into work, the 
temperature of the particular quantity of heat concerned 
plays an essential part, or whether in this transformation the 
particular temperature is matter of indifference. 

If we seek to deduce the answer to this question from the 
consideration of a Simple Cyclical Process, as described above, 
we find that it is too limited for our purpose. For since in 
this process there are only two bodies which act as heat 
reservoirs, it is tacitly assumed that the heat which is trans
formed into work is derived from (or conversely the heat 
generated out of work is taken in by) one or other of these 
same .two bodies, between which the transference of heat also 
takes place. Hence a definite assumption is made from the 
beginning as to the temperature of the heat transformed into 
work (or conversely generated out of work), viz. that it I 
coincides with one of the two temperatures at which the 
transference of heat takes place; and this limitation prevents 
us from learning what influence it would have on the relation 
between the two transfomations if the first· mentioned tem
perature were to alter, while the two latter remained un
altered. 

To ascertain this influence, we may revert to, those 
more complicated cyclical processes, which have also been 
described in the last chapter, § 8, and to the equations 
derived from them. But in order to give a clearer and simpler 
view of the question it is better to consider a single process 
specially chosen for this investigation, and by its help to 
bring out the second Main Principle anew ill an altered 
form. 

§ 2. On a Cyclical ProClJlJll of special form. 
Let us again take a variable body, whose condition is 

completely determined by its volume and pressure. so that 
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we can represent its variations graphicaJly in the manner 
already described. . We will O1lce more by way of example 
construct the figure in the form it assumes for a perfect gas, 
but without making in the investigation itself any limiting 
assumption whatever as to the nature of the body. 

Let the body be, first taken in the condition defined by 
the point a in Fig. 17, its volume being given by the abscissa 

Fig. 17. 

ok, and its pressure by the ordinate ha. Let T be the tem
perature corresponding to these two quantities, and deter
mined by them. We will now subject the body to the follow
ing successive variations: 

(1) The temperature T of the gas is changed to T1 , 

which we will suppose less than T. This may be done by 
enclosing the gas within a non-conducting envelope, so tha.t 
it can neither take in nor give out heat, and then allowing it 
to expand. The decrease of pressure caused by the simul
taneous increase of volume and fall of temperature will be 
represented by the isentropic curve ab; so that, when the 
temperature of the gas has reached T" its volume and 
pressure have become oi and ib respectively. 

(2) The variable body is placed in communication with 
a body ~ of temperature T" and then allowed to expand still 
further, but so that all the heat lost in expansion is restored by 
K1• With respect to the latter it is assumed that, on account of 
its magnitude or from some other cause, its temperature is not 
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perceptibly altered by this giving out of heat, and may there
fore be taken as constant. Hence the variable body will also 
preserve during its expansion the same constant temperature 
. Tl , and its diminution of pressure will be represented by an 
isothermal curve be. Let the quantity of heat thus given oft' 
by Kl be called Ql' 

(3) The variable body is di~onneeted from ~ and 
allowed to expand still further, without being able either to 
take in or give out heat, until its temperature has fallen from 
Tl to T.. Let this diminution of pressure be represented by 
the isentropic curve cd. ; 

(4) The variable body is placed in commulllieation with 
a body XI' of constant temperature TI , and is then com
pressed, parting with all the heat· generated by the com
pression to K I • This compres!jion goes on ;until KI has 
received the same quantity!>! heat Ql' ks :was formerly 
abstracted from ~. . In this' case the' pressure ; increases ac-
cording to the isothermal curve de. . 

(5) The variable body is disconnected from K., and 
compressed, without being able to take in or give out heat, 
until its temperature has risen from T. to its original value 
T, the pressure increasing .according to the isentropic curve 
ef. The volume on, to which the body is brought by this 
.process; is less than the origi~ volum.e ok, since the pressure 
.to be overcome, and consequently the external work to be 
transformed into heat, is less during the compression de 
than during the expansion be; 80 that, in order to restore 
:the same quantity of heat Q .. , the compression must be con
tinued further than would have been necessary merely to 
annul the expansion. 

(6) The variable body is placed in communication with a 
body K of constant temperature T, and allowed to expand to its 
original volume ok, the heat lost in expansion being restored 
from K. Let Q be the quantity of heat thus required. If 
the body attains the original volume ok at the original tem
perature T, then the pressure must also revert to its original 
value, and the isothermal curve, which represents this last 
expansion, will therefore terminate exactly in the point a. 

The above six variations make up together a Cyclical Pro
cess, since the variable body is finally restored exactly to its 
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priginal condition. Of the three bodies, K, K". Ki, which in 
the whole process only come under consideration in 80 far as 
they serve as soUrces or reservoirs of heat, the t~ fitst have 
at the end lost the 9.~antities of heat Q, QI respectively. 
whilst the last has gamed the quantity of heat QI; this may 
be expressed by saying that QI has passed from KI to K" while Q has disappeared altogether. This last quantity of 
heat must, by the first fundamental principle, have been 
transformed into external. work. This gain of external work 
is due to the fact that in this cyclical process the pressure 
during expansion is greater than during compression, and 
therefore the positive work greater than the negative; its 
amount is represented, as is easily seen, by the area of the 
closed curve a1xxlefa. If we call this work W, we hav~ 
by equation (680) of Chapter I. 

Q= w. 
: It is easily seen that the above Cyclical Process embraces 
as a special case the process treated of at the commencement 
of Chapter III., and represented in Fig. 8. For if we make 
the special assumption that the temperature T of the body K 
·is equal to the temperature Tlof the body K I • we may then 
do away with K !iltogether, and use K" instead. The result 
of the process will tnen be that one part of the heat given 
out by tbebody KI has been transformed into worIl, and the 
other part has been transferred to t.he body K., just as was the 
caae in the process above mentioned. 

The whole of this cyclical process may also be carried 
~ut in the reverse order. The first step will then be to 
connect the variable body with K, and to produce, instead 
of the final expansion fa of the former case, an initial 
compression af: and similarly the ex~sions fe and ed, 
and the compressions dc, ab, and ba will be produced one 
after another, under exactly the same circumstances as the 
.converse variations in the former case. It is obvious that 
the quantities of heat Q and QI will now be taken in 
by the bodies K and K" respectively, and the quantity 
of heat QI will be given out by the body KI. At the same 
time the negative work is now greater than the positive, 80 

that the area of the closed figure now represents a loBS of 
work. The result, of the revefsed process is therefore that 
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the quantity of heat Ql has been transferred from K to K;, 
and that the quantity of heat Q has been generat;l out of 
work and given to the body X. 

§ 3. On EquivaJen,t TransjoNlUJJ,ifYTUJ. 
In order to learn the mutual dependence of the two 

simultaneous transformations above described, viz. the trans
ference of QI' and the conversion into work of Q, we shall 
first assume that the temperatures of the three reservoirs of 
heat remain the same, but that the cyclical processes, through 
which the transformations are effected, are different. This 
may be either because different variable bodies are subjected 
to similar variations, or because the same body is subjected to 
any other cyclical process whatever, subject only to the con
dition that the three bodies K, Xl and K are the only bodies 
which receive or give out heat, and ;Iso that of the two 
latter the one receives just as much as the other gives out. 
These different processes may either be reversible, as in the 
case considered, or non-reversible; and the law which governs 
the transformations will vary accordingly. However the 
modification which the law undergoes for non-reversible pro
cesses can be easily applied at a later period, and hence for 
the present we will confine ourselves to the consideration of 
reversible processes. 

For all such it follows n'Om the Principle laid down in the 
last chapter (p. 78) that the quantity of heat QI' tr~nsferred 
from KI to K,., must stand in a constant relation to the 
quantity Q transformed into work. For let us suppose that 
there were two such processes, in which, while Q was the 
same in both, Q was different: then we might successively 
execute that in which QI was the smaller in the direct order, 
and the other in the reverse. In this case the quantity of 
heat Q, which in the first process would have been trans
formed into work, would in the second process be transformed 
again into heat and given back to the body X; and in other 
respects also everything would at the conclusion be restored 
to Its original condition, with this single exception that the 
quantity of heat transferred from KI to KI in the second p~ 
cess, would be greater than the quantity transferred from K, 
to X. in the first process. Thus on the whole we have a 
transfer of heat from the colder body X. to the hotter Xl ~ 

Digitized by Coogle 



· THE 1l:QUIV AlLENCE OF TRANSFORMATIONS. 97 

with nothing to compensate for it. As this contra4icts the, 
fundamental principle, it follows that the above supposition 
cannot be true; in other words Q must always stand in the 
same ratio to Ql' , 

Of the two transformations in a. reversible process such 
as the above, either can replace the other, provided this latter. 
be taken in the reverse direction: in other words, if a. trans
formation of the one kind has taken place, this can be again 
reversed, and a transformation of the' other kind substituted in 
its pl8.ce, without the occurrence of any other permanent 
change. For example, let a quantity of heat Q be in any w..ay 
generated out of work, and taken in by the body K; then by 
the cyclical process above described it can be again withdrawn 
from the body K, and transformed back into work, but in so 
doing a. quantity of heat Qi will be transferred from the body 
~ to the body K.. Again, if the quantity of heat Ql has 
previously passed from Xl to K ll, it can by performing the 
nbove process in the reverse order be transferred back again. 
to ~, whilst at the same time the quantity of heat Q, at the 
temperature of the body K, will be generated out of work. 

It is thus seeD. that these two kinds of transformation 
ma.y be treated as processes of the same nature; and two 
such transformations, which may mutually replace each other 
In the way indicated, will be henceforth called "Equivalent 
Transformations." 

§ 4. Equivalence-Valttes of the Transformations. 

We have now to find the law according to which the 
above transformations must be expressed mathematically, so 
that the equivalence of the two may appear from the equality 
of their values. The mathematical value of a transformation 
may be termed, thus determined, its "Equivalence-Value." 

We must first settle the order in which each transforma
tion is to be taken as positive: this may be chosen arbi
trarily for one of the two classes, but it will then be fixed 
for the other, since clearly we must regard II, transformation 
in the httter class as positive, if it is equivalent to a positive 
transformation in the former. In all that follows we shall 
consider the transformation of Work into Heat, and therefore 
the passage of heat from a higher to a lower temperature, as 
being po~1iive quantities. It will be seen later why this - . 

Q. 
... 
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choice as to the positive and negative sign is preferable to 
the opposite. 
. With regard to the magni~ude of the equivalence-value, 
it is at once seen that the value of a change from work into 
heat must be proportional to the quantity of heat generated, 
and that beyond this it can only depend on its temperature. 
We may therefore express generally the ~uivalence-value of 
the generation out of work of the quantity of heat Q, of 
temperature T, by the formula Q xJ(T), where J(T) is a 
function of temperature which is the same for all cases. If Q 
is neW'tive in this formula, what is expressed is that the 
quantity of heat Q has been transformed, not out of work 
into heat, but out of heat into work. 

Similarly the value of the passage of a quantity of heat Q 
from the temperature T. to the temperature T. must be propor
tional to the quantity of heat which passes, and beyond this 
can only depend on the two temperatures. We may therefore 
express it generally by the formula Q x F (Tl' T.), in which 
F (T,: T.) is a function of the two temperatures, also constant 
for aJl cases, and which we cannot at present determine more 
closely; but of which it is clear from the commencement 
that, if the two temperatures are interchanged, it must change 
its sign, without changing its numerica.l value. We may 
therefore write, 

F(T., TJ=-F(Tl' T.) ............... (1). 

In order to compare these two expressions with each other, 
we have the condition that in every reversible process of the 
kind given above the two transformations that take place 
must be equal in magnitude but of opposite sign, so that 
their algebraiea.l sum is zero. Thus if we choose for a mo
ment the ,articular process fully described above (§ 2), the 
quantity 0 heat Q, at temperature T, is then transformed 
into work, giving as its equivalence-value - Q xf(T); and 
the quantity of 'heat Q1 passes from temperature Tl to T •. 
thus giving as its equi-valence-value Q1 X F (Tl' T.). There
fore the following equation must hold : 

- Q xf(T) + Q1 x F(T" T,) =0 ........... (2). 

Let us now s~ppose a similar process performed in the 
reverse order, and under the conditions that the bodies K. 
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and K" and the quantity of heat QJ.. ~hich passes between 
them, remain the sa.me, but that for the body K of tempera
ture T is substituted another body K' of temperature T': 
and let us call the heat generated out of .work in this case Q'. 
Then, corresponding to the former equation, we have the 
following : 

Q' xf(T'} + Ql x F(T., Tl ) =0 ......... (3). 

Adding (2) and (3) and substituting from (1) we obtain, 

- Q xf(T) + CI xf(T') = 0 ............ (4). 

Now let us consider, as is clearly allowable, that these two 
successive processes make up together a single process; then 

. in this latter the two transferences of heat between Kl and 
XI will cancel each other and disappear from the result; we 
have therefore only left the transformation into work of the 
quantity of heat Q, given off by K, and the generation out 
of work of the quantity of heat CI taken in by X'. These 
two transformations, which are of the same kind, can however 
be so broken up and re-arranged as to appear in the light 
of transformations of different kinds. For if we simply hold 
fast to the main fact, that the one body K has lost the 
quantity of heat Q, and the other K' gained the quantity CI, 
then the heat equivalent to the smaller of these two 9..uanti
ties may be considered as having been transferred directly 
from K to X', and it is only the difference between the two 
which remains to be considered as a transformation of work 
into heat or vice versa.. For example, let the temperature T 
be higher than T; then the transference of heat on the 
above view is from a hotter to a colder body, and is therefore 
positive. Accordingly the other transforma.tion must be 
negative, i.e. a transformation from heat into work: whence it 
follows that the quantity of heat Q given off by K is greater 
than the quantity Q' taken in by X'. Thus if we divide Q 
into its two component parts (j and Q - fl, then the first of 
these will have passed over from K to K', and the second is 
the quantity of heat transformed into work. 

On this view the two processes appear as combined into a 
single process of the same kind; for the circUlnstance that 
the heat transformed into work is not derived from a third 
body, but from one or other of the same two bodies, between 

Digitized by~gIe 



100 ON THE lIECHANICAL THEORY OF HEAT. 

which the transference of heat takes place, makes no 
essential difference in the result. The temperature of the 
heat transformed into work is optional, and can therefore have 
the same value as the temperature of one of the two bodies; 
in which case the third body is no longer required. Accord
ingly for the two quantities of heat Q' and Q - Q' there must 
be an equation of the same form as (2), namely: 

- Q - Q' xf(T) + Q' x F (T, T) = O. 

Eliminating Q by means of equation (4) and then striking 
out Q', we obtain 
, Fo/')=f(T)-f(T) .................. (5). 

As the temperatures T and T' are any whatever, the function 
\~f two temper~tur~s F (TT), which holds f~r the second. kind 

. jof transformation, IS thus shewn to agree wIth the functIOn of 
one temperature I (T), which holds for the first kind. 

For the latter function we will for brevity use a simpler 
symbol. For this it is convenient, for a reason which will be 
apparent later on, to express by the new symbol not the 
fUl)ction itself, but its reciprocal. We will therefore put 

1 1 
or = I(T) or I(T) = T .................. (6). 

so that or,is now the unknown function of temperature which 
enters into the Equivalence-value. If special values of this 
function have to be written down, corresponding to tempera
tures T1 , T., etc., or T', T', etc., then this can be done by 
simply using the indices or accents for or itself. Thus equa
tion (5) will become 

F(T, T')=;-!. 
or or 

Hence the second Main Principle of the Mechanical 
Theory of Heat, which in this form may perhaps be called 
the principle of the Equivalence of Transformations, can be 
expressed in the following terms: 

"If we caJl two transformations which may cancel each other 
without requiring any other permanent change to take place 
Equivalent Transformations, then the generation out of work 
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of the quantity of heat Q of temperature T has the equivalence

value 2; and the transference of the quantity of heat Q from 
T . 

temperature PI to temperature T. has the Equivalence-value 

in which T is a function of temperature independent of the 
kind of"P!ocess by which the transformation is accomplished." 

§ .5. Oombined 'Value oj all the trantljormatiun8 which 
take place in a Bingle Oyclical ProcB8B. 

If we write the last expression of the foregoing section 

in the form Q - Q, we see that the passage of the quantity 
7'. 7'1 

of heat Q from temperature T to T. has the same equiva
lence-value as a double transtormatlOn of the first kind, 
viz. the transformation of the quantity Q from heat of tem
perature TI into work, and again out of work into heat of 
temperature TI • The examination of the question how far 
this external agreement has its actual foundation in the 
nature of the process would here be out of place; but in any 
case we may,. in the mathematical determination of the 
:&tuivalence-Value, treat every transference of heat, in what
ever way it may have taken place, as a combination of two 
opposite transformations of the first kind. 

By this rule it is easy for any Cyclical Process however 
complicated, in which any number of transformations of both 
kinds take place, to deduce the mathematical expression 
which represents the combined value of all these trans
formations. For this purpose, when a quantity of heat is 
given off by a heat reservoir, we have no need first to 
enquire what portion of it is transformed into work, and 
what becomes of the remainder; but may instead reckon 
every quantity of heat given off by the heat reservoirs which 
occur in the cyclical process as being wholly transformed into 
work, and every quantity of heat taken in as being generated 
out of work. Thus if we assume that the bodies KlJ Jr., K a, 
etc. of temperatures TI , TI , Ta, etc. occur as heat reservoirs,and 
if Qu Q., Q" etc. are the quantities of heat given off during 
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the Cyclical Process (in which we will now consider quanti
ties of heat taken in as negative quantities of hea.t given 
out-), then the combined vah,le of all the transformations. 
which we may call N, will be represented as follows: 

N=- QI_ QI_ QS-etc.! 
TI T. Ta 

or using the sign of summation, 
Q 

N==- ~ - ........................ (7). 
'T 

It is here supposed that the temperatures of the bodies 
Xl' K" K a, etc. are constant, or at least so nearly so that 
their variations may be neglected. If however the tempera
ture of anyone of the bodies varies so much, either through 
the taking in of the quantity of heat Q itself, or through any 
other cause, that this variation must be taken into account. 
then we must, for every element of heat dQ which is taken 
in, use the temperature which the body has at the moment 
of its being taken in. This naturally leads to an integration. 
If for the sake of generalit}' we assume this to hold for all 
the bodies, then the foregomg equation takes the following 
form: . 

N = - JdT
Q ........ ................ (8), 

in which the integral is to be taken for all the quantities of 
heat given oft' by the different bodies. 

§ 6. Proof that in a reverlnole OyclicaJ Process the total 
mlue of all the transforrrwJ;ions must be equnl to nothing. 

If the Cyclical Process under consideration is reversible, 
then, however complicated it may be, it can be proved 
that the transformations which occur in it must cancel each 
other, 80 that their algebraical sum is equal to nothing. 

• This choice of positive and negative signs for the quanUti81 of heat 
B8f888 with that which we made in the last chapter, where we considered .. 
quantity of heat taken in by the variable body as posiUve, and a quantiiy 
given out by it as negative; for a quantity given out by a heat reeervoir ia 
$&ken in by the variable body. and viee versa. 
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, For let us suppose that this is not the case. i.e. tha.t this 
al"aebraicaJ. sum has some other value; then let us imagine 
the following process applied. Let a.ll the transformations 
which take place be divided into two parts, of which the first 
has its algebraica.l sum equal to nothing, and the second is 
mad~ up of transformations a.ll having the same sign. Let 
the transferma.tions of the first di vision be separated out into 
pairs,ea.ch composed of two transformations of equal magnitude. 
but opposite signs. If a.ll the heat reservoirs are of constant 
temperature, so that in the Cyclica.l Process there is only a 
finite number of definite temperatures, then the number of 
pairs which have to be formed will be also finite; but should the 
temperatures of the heat reservoirs vary continuously, so that 
the number of temperatures is indefinitely great, and therefore 
the quantities of heat given oft' and taken in must be dis
tributed in indefinitely sma.ll elements, then the number of 
pairs which have to be formed will be .indefinitely large. 
This however, by our principle, makes no difference. The 
two transformations of each pair are now capable of being done 
backwards by one or two Cyclica.l Processes of the fonn 
described in § 2. 

Thus in the first place let the two given transfcJrmations 
be of different kinds, e.g. let the quantity of heat Q of tem
perature T be transfonned into work, and the quantity of 
heat Ql be transferred from a body ~ of temperature Tl to 
a body XI of temperature T.. The !lymbols Q and Q1 are 
here supposed to represent the absolute values of the quanti
ties. Let it be also assumed that th~ magnitudes of the two 
quantities stand in such relation to each other that the follow
ing equation, corresponding to equation (2). will hold, viz. 

- g + Ql (~ - !-) = O. 
'T T. 'Tl 

Then let us suppose the Cyclical Process to be performed in 
the reverse order, whereby the quantity of heat Q. of tem
perature T, is generated out of work, and another quantity 
of heat is transferred from the body KI to the body K l • This 
latter quantity must then be exactly equal to the quantity QI' 
given m the above equation, and the given transformations 
have thus been performed backwards. 

Again let there be one transformation from work into 
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heat and ()ne from heat into work, e.g. let the quantity of 
heat Q of temperature T be generated out of work, and 
the quantity of heat q of temperature T' be transformed 
into work, and let these two stand in such relation to each 
other that we may put 

Then let us suppose in the first place that the same process 8.8 

last described has been performed, whereby the quantity of 
heat Q ()f temperature T has been transformed into work, and 
another quantity Ql has been transferred ·from a body ~ to 
another body K I • Next let us suppose a second process per
formed in the reverse direction, in which the last-named 
quantity Ql is transferred back again from 1(" to ~, and a 
quantity of heat of tem~rature T is at the same time gene
rated out of work. 'This transformation from work into heat 
must, independently of sign, be equivalent to the former 
transformation from heat into work, since they are both equi
valent to one and the same transference of heat. The quantity 
of heat of temperature T, generated out of work, must there
fore be exactly as great as the quantity Q' found in the above 
equation, and the given transformations have thus been made 
backwards. . 

Finally, let there be two transferences of heat, e.g. the 
quantity of heat Q transfen·ed from a body ~ of tempera
ture Tl to a body KI of temperature Tt , and the quantity 
Q'J> from a body K't of temperature Td' to a body K'I of tem
perature T'l' and let these be so relate that we may put 

Q1 - - - + Q I ,. - -, = o. (1 1) '(1 1) 
1"t 1"1 1" I 1" . 

Then let us suppose two Cyclical Processes performed, in one 
of which the quantity QI 18 transferred from KI to ~. and 
the quantity Q of temperature T thereby generated out of 
work, whilst in the second the same quantity Q is again 
transformed into work, and thereby another quantity of heat 
transferred from K'I to K't' This second quantity must then 
be exactly equal to the given quantity Q/Jt and the two 
given transferences of heat have thus been done backwards. 
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When by operations of this kind all the transformations 
of the first division have been done backwards, there then 
remain the transformations, all of the like sign, of the second 
division, and no others whatever. Now first, if these trans
formations are negative then they can only be transformations 
from heat into work and transferences from a lower to a higher 
temperature; and of these the transformations of the first 
kind may be replaced by transformations of the second kind. 
For if a quantity of heat Q of temperature T is transformed 
into work, then we have only to perform in reverse order the 
cyclical process described in § 2, in which the quantity of 
heat Q of temperature T is generated out of work, and at the 
same time another quantity Ql is transferred from a body KI 
of temperature TI to another body ~ of the.higher tempera
ture Tp Thereby the given transformation from heat into 
work is done backwards, and replaced by the transference of 
heat from K, to K". By the application of this method, we 
shall at last have nothmg left except transferences of heat 
from a lower to a higher temperature which are not com
pensated in any way. As this contradicts our fundamental 
principle, the supposition that the transformations of the 
second division are negative must be incorrect. 

Secondly, if these transformations were positive, then 
since the cyclical process under consideration is reversible, 
the whole process might be performed in reverse order; 
in which case all the transformations which occur in it 
would take the opposite sign, and every transformation of 
the second division would become negative. We are thus 
brought back to the case already considered, which has been 
found to contradict the fundamental principle. 

As then the transformations of the second division can 
neither be positive nor negative they cannot exist at all; llolld 
the first division, whose algebraical sum is zero, must em
brace all the transformations which occur in the cyclical 
process. We may therefore write N';" 0 in equation (8), and 
thereby we obtain as the analytical expression of the Seoond 
Main Principle of the Mechanical Theory of Heat forreversi
ble processes the equation 

. Jd'TQ = 0 ....... , ............... (VII). 
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§ 7. On' tM Temperatures of tM variOUB quantities of 
Heat, and tM Entropy o/ths Body. 

In the development of Equation VII. the temperatures of 
the quantities of heat treated of were determined by those of 
the heat reservoirs from which they came, or into which they 
passed. But let us now consider a cyclical process, which is 
such that a body pas.qes through a series of changes of 
condition and at last returns to its original state. This 
variable body, if placed in connection with the heat reservoir 
to receive or ~ve off heat, must have the same temperature 
as the reservoll'; for it is only in this case that the heat can 
pass as readily from the reservoir to the body as in the reverse 
direction, and if the process is reversible it is requisite that 
this should be the case. This condition cannot indeed be 
exactly fulfilled, since between equal temperatures there can in 
general be no passage of heat whatever j but we may at least 
assume it to be so nearly fulfilled that the small remaining 
differences of temperature may be neglected. 

In this case it is obviously the same thing whether we 
consider the ~mperature of a quantity of heat which is being 
transferred as being equal to that of the reservoir or of the 
variable body, since these are practically the same. If how
ever we choose the latter and suppose that in forming Equa
tion VII. every element of heat Q is taken of that tem
perature which the variable body possesses at the moment it 
18 taken in, then we can now ascribe to the heat reservoirs 
any other temperatures we please, without thereby making 

any alteration in the e~ression r~ . With this assumption 

as to the temperatures we may consider Equation VII. as 
holding, without troubling ourselves as to whence the heat 
comes which the variable body takes in, or where that;, goes 
which it gives off, provided the process is on the whole a re
versible one. 

The expression dQ • if it be understood in the sense just 
'T 

given, is the differential of a quantity which depends on the 
condition of the body, and at the same time is fully deter
mined as soon as the condition of the body at the moment 
is known, without our needing .to know the path by which 
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the body bas arrived at that condition; for it is only in this case 
that the integral will always become equal to zero as often as 
the body after any given variations returns to its original con
dition. In another paper-, after introducing a further de
velopment of the equivalence of transformations, the author 
proposed to call this quantity, after the Greek word TPO'lf'~, 
Transformation, the Entropy of the body. The complete 
explanation of this name and the proof that it correctly 
expresses the conditions of the quantity under consideration 
can indeed only be given at a later period, after the develop
ment just mentioned has been treated of; but for the sake 
of convenience we shall use the name henceforward. 

If we denote the Entropy of the body by B we may put 

t!q==dB, 
T 

or otherwise 
dQ == TdB •••••••...........• (VITI). 

§ 8. On the Temperature Fwn.ction T. 

To determine the temperature function T we will apply the 
same method as in Chapter III § 7, p. 81, to determine the 
function ~ (Tu T J. For, as the function T is independent of 
the nature of the variable body used in the cyclical process, we 
may, in order to determine its form, choose any body we 
please to be subjected to the process. We will therefore 
again choose a perfect gas, and, as in the above-mentioned 
section, suppose a simple process performed, in which the gas 
takes in heat only at one temperature T, and gives it out 
only at another T1• The two quantities of heat which are 
taken in and given out in this case, and whose absolute 
values we may call Q and Qu stand by equation (8) of the 
last chapter, p. 83, in the following relation to each other: 

QQ == ~ ........................... (9). 
1 1 

On the other. hand, if we apply Equation VII. to this 
simple cyclical process, whilst at the same time we treat the 

• Pog. ...... Vol. CUT. P. 1190. 
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giving' out of the quantity of heat Q as equivalent to the . 
taking in of the negative quantity - Q. we have the follow
ing equation : 

or 

9. _ Qt == O. or QQ _!. ............... (10). 
'I" '1"1 1 '1"1 

From equations (9) and (10) we obtain 

'I" T 
~=Tl' 

'1"= i T ........................... (11). 
1 

If we now take T as being any' temperature whatever and Tl 
as some given temperature. we may write the last equation 
thus: 

T = T x Const ...................... (12), 

and the temperature function T is thus reduced to a constant 
factor. 

What value we ascribe to the constant factor is indiffe
rent, since it may be struck out of Equation VII. and thus 
has no influence on any calculations performed by means of 
the equation. We will therefore choose the simplest value, 
viz. unity. and write the foregoing equation 

'1"= T ........................... (13). 

The temperature function is now nothing more than the 
absolute temperature itself. 

Since the foregoing determination of the function 'I" rests 
on the equations deduced for the case of gases, one of the 
foundations on which this determination rests will be the 
approximate assumption made in the treatment of gases, 
viz. that a perfect gas. if it expand at constant temperature, 
absorbs only just so much heat as is required for the 
external work thereby llerformed. Should anyone on this 
account have any hesitatIOn in regarding thia determination 
as perfectly satisfactory, he may in Equations VII. and VIII. 
regard 'I" as the symbol for the temperature funotion as yet 
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undetermined. and use the equations in that form. Any such 
hesitation would not. in the author's opinion, be justifiable. 
and in what follows T will always be used in the place of T. 

Equations VII. and VIII. will then be written in the following 
forms, which have already been given under Equntions V. 
and VI. of the last chapter. viz. 

., Jdl=O. 

dQ=TdS. 
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CHAPTER V. 

FORMATION OF THE TWO FUNDAMENTAL EQUATIONS. 

§ 1. DiaCUBBion of the Variables which determine the 
Oondition of the Body. . 

In the general treatment of the subject hitherto adopted 
we have succeeded in expressing the two main principles of 

• the Mechanical Theory of Heat by two very simple equations 
numbered III. and VI. (pp. 31 and 90). 

dQ=dU+dW .................. (III), 

dQ = Td8 ......................... (VI). 

We will now throw these equations into altered forms 
which make them more convenient for our further calcula
tions. 

Both equations relate to an indefinitely small alteration 
of condition in the body, and in the latter it is further 
assumed that this alteration is atl'ected in such a way as to 
be reversible. For the truth of the first equation this assump
tion is not necessary: we will however make it, and in the 
following calculation will assume, a." hitherto, that we have 
only to do with reversible variations. 

We suppose the condition of the body under considera
tion to be determined by the values of certain magnitudes, 
and for the present we will assume that two such magnitudes 
are sufficient. The cases which occur most frequently are 
those in which the condition of the body is determined by its 
temperature and volume, or by its temperature and pressure, 
or lastly by its volume and pressure. We will not however 
tie ourselves to any particular magnitudes, but will at first 
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assume that the condition of the body is determined by any 
two magnitudes which may be called a: and y j and these mag- , 
nitudes we shall treat as the independent variables of our ,. 
calculations. In special cases we are of course always free to 
take one or both of these variables as representing elther one 
or two of the above-named magnitudes, Temperature, Volume 
and Pressure. 

If the magnitudes te and y determine the condition of 
the body, we can in the above equations treat the Energy U 
and the Entropy 8 as being functions of the variables. In 
the same way the temperature T, whenever it does not itself 
form one of these variables, may be considered as a function 
of the two variables. The magnitudes W and Q on the con
trary, as remarked above, cannot be determined 80 simply, 
but must be treated in another fashion. 

The differential coefficients of these magnitudes we .hall 
denote as follows: 

dW 
fk -m; 

dQ --M' dx ' 

dW 
dy '"" n .................. (I), 

dQ dy-N .................. (2). 

These differential coefficients are definite functions of a: 
and y. For suppose the variable te is changed into a: + b 
while y remains constant, and that this alteration of condi
tion in the body is such as to be reversible, then we are 
dealing with a complete~ determinate process, and the 
external work done in that proce88 must therefore be also 

determinate, whence it follows that the quotient dd: must 

equally have a determinate value. The same will hold if we 
suppose y to change to !I + dy while te remains constant. If 
then the differential coefficients of the external work Ware 
determinate functions of te and y it follows from Equation III. 
that the differential coefficie~ts of the quantity of heat Q 
taken in by the body' are also determinate functions of te 
andy. 

Let us now write for d W and d Q their expressions as 
functions of d:» and dy, neglecting those terms which are of a 
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higher order than do: and dy. We then have, 

dW = mtk + My ................... (3), 

dQ =Mtk+Ndy ................... (4), 

and we thus obtain two complete differential equations, which 
cannot be integrated so long as the variables fI) and y are 
independent of each other, since the magnitudes m, " and 
M, N do not fulfil the conditions of integrability, viz. 

dm am, dM dN 
-=- and -=-ay do: dy da: • 

The magnitudes W and Q thus belong to that class which 
was described in the mathematical introduction, of which the 
peculiarity is that, although their differential coefficients are 
determinate functions of the two independent variables, yet 
they themselves cannot be expressed as such functions, and 
can only be determined when a further relation between the 
variables is given, and thereby the way in which the varia
tions took place is known. 

§ 2. Eliminatioo of the qoontities U and S from the 
two F'I.IIfU!n,mental Eqootions. 

Let us now return to Equation III., and substitute in it 
for dW and dQ expressions (3) and (4); then, collecting to
gether the terms in a:r: and dy, the equation becomes, 

Md:r:+Ndy=(:~ +m)dx+(~: +n)dy. 

As these equations must hold for aU values of dz and dy, 
we must have, 

dU 
M=do:+m, 

dU 
N=d,y+n. 
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Differentiating the first equation according to y, and the 
second according to x, we obtain, 

dM CPU dm 
dy = dxdy + try' 
dN rJ,IU dn 
-dx = dydx + d;e' 

We may apply to U the principle which holds for every 
function of two independent variables, viz. that if they are 
differentiated according to both variables, the order of dif
ferentiation is a matter ofindifference. Hence we have 

d"U a:U 
dxdy = iii/dX' 

Subtracting one of the two above equations from the 
other we ob~in, 

dM dN dm dn 
d!l - di= dy - dx .................. (5). 

~ 
We may now treat Equation VI'. :in the same manner. 

Putting for d Q and dS their complete expressions, it be-
comes, 

T (dS dS) Mdx + ]j, dg = T d.c dx + dJ d!l ' 

or 
M N. dS dS - dx + - dy = - dx + - dg. 
T .T dx dy 

'fhis equation divides itself, like the last, into two, viz. 

Differentiating the first of these according to y, and the 
second according to X, we obtain, 

c. 
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But as befor.e, 
d'S d'S 

dxdy = dydo; j 

hence subtracting one of the above equations from the other 
we obtain: 

or ~: - ~= ~(M:~ -N~I) ............ (6). 

The two equations (5) and (6) may be also written in a 
sOlIlewhat different form. To avoid the uee of so many 
letters in the formula, we will replace JI and N, which were 

introduced as abbrevi~tions for ~ and ~~, by those differen

tial coefficients themselves. Similarly for m and ·n we will 

write ~d.~ and ~:. Then the right hand side of equation 

(5) may be written 

Thus the magnitude represented by this expression is a func
tion of 0; and .7/. which may generally be considered as known, 
inasmuch as the externa.l forces acting on the body are open 
to direct observation, and from these the external work can 
be determined. 1'he above difference, which will occnr very 
frequently from henceforward, we. shall call "'!'he Work 
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Difference referred to :I: and y" and shall use for it a special 
symbol, putting . 

Dq = t (~ -! (dd:) ............. (7). 

Through these changes equations (5) and (6) are trans
formed into the following: 

~ (:ID -! (~~ = Dq ............................. (8), 

~ (tJ- te(~ =~(~~ x ~-~ x~~) ... (9). 

These two equations fonn the analytical expressions of 
the two fundamental principles for reversible variations, in 
the case in which the condition of the body is determined by 
two given variables. From these equations follows a third, 
which is 80 far simpler as it contains only differential coeffi
cients of Q of the first degree, viz. 

dT dQ dT dQ 
dy x dz - dfI: x riy = TDq ............ (lO). 

§ 3. Case in whick the Temperature i8 taken as one of the 
I~endent Variables. • 

The above three equations are very much simplified if the 
temperature of the body is selected as one of the independent 
variables. Let us for this purpose put y = T, so that the two 
independent variables are the temperature T, and the still 
undetermined quantitY:l:. Then we have first, 

dT 
dy =1. 

Again, referring to the differential coefficient ~r, it is 

assumed in its formation that, while :I: is changed into :I: + dx, 
the other variable, hitherto called y, remains constant. But 
as T is now itself the otber variable, it follows that T must 
remain constant in the above differential coefficient, or in 
other.words 

dT =0 
dx . 
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Again, if we form the Work-difference referred to II; and 
T, this will run as follows: 

D"r lC IT (d~') -! (::') ............ (11). 

Hence equations (8), (9), (10) take the following form: 

. d~ (~~) - ! (~~) = D"r .............. (12), 

#T (fi) - :x (~~) = ~ ~~ ........... (13), 

dQ 
dx = TDzr ...... •• .... (H). 

If the product TD.,l" given in equation (14), be substi

tuted for ~ in equation (12), and then differentiated accord

ing to T, the following very simple equation will be the 
result: 

i (~~) = T ~:/ ................ (15). 

§ 4. Pa1tioular .Assumptions as to the &ternal F0rce8. 
We have hitherto made no particular assumptions as to 

the external forces to which the body is subjected, and to 
which the external work done during its alterations of condi
tion is related. We will now consider more closely a special 
case, which occurs frequently in practice, namely that in 
which the only external force which exists, or at least the 
only one which is of sufficient importance to be taken into 
consideration, is a pressure acting on the surface of the body, 
everywhere normal to that surface, and of uniform intensitv. 
In this case external work can only be done during changes 
in the volume of the body. Let P be the pressure per unit 
of surface, t1 the volume; then the external work done, 
where this volume is increased to t1 + dv, is given by the 
equation 

dW=pdv ....................... (16). 
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Let us now suppose the condition of the body to be given 
by the values of two given variables z and y. Then the 
pressure p and volume t1 must be considered as functions of 
III and y. We may thus write the last equation as follows: 

dW=p (~d.r:+~dy), 
whence it follows that 

~f~:~} ..................... (17). 

Putting these values for ~~ and ~: in equation (1), and 

performing the differentiations indicated, taking note also of' 
0,'1) d'v . 

the fact that d:xd!l = dydz' we obtaln 

_ dp dv dp d'/J 
D,.. - dy x dz - il:i;)I{ d!l' ....••..••.••.• (18). 

This valne of D,.. we have now to apply to equations (9) 
and (10). Let z and T be the two independent variables j 
then equation (18) becomes 

dp dv dp dv 
D",f'= dT x dx - d:c x dT··········· .. ·· (19), 

which value we have to apply to equations (12), (14) and 
(15). The expression given in (18) takes its simplest form, 
if we choose for one of the independent variables either the 
volume or the pressure, or if we choose both for the two 
independent variables. For these cases equation (18) takes, 
as is easily seen, the following forms, 

_dp D., - dy ......................... (20), 
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d'/} 
D",,=- d!/ ...........•......... (21), 

D",=I ......................... (22). 

Lastly in the cases in which either the volume or pressure 
is taken as one of the independent variables, we may choose 
the temperature for the other. We must then put T for y 
in equations (20) and (21), which then become 

D., = ~}, ....................... (23), 

dv 
D,.,=- dT .................... (24). 

§ 5. Frequently occurring Forms of the Differential 
EquaticllB. 

In the circumstances described above, where the only 
external force is a uniform pressure normal to the surface. 
it is usual to choose as the independent variables, which 
are to determine the condition of the body, the quantities 
last mentioned in the foregoing section, viz. volume and 
temperature, pressure and temperature. or lastly, volume 
and pressure. The systems of differential equations which 
hold for these three cases may be easily deduced from the 
more general systems given a.bove; but on account of their 
frequent use it may be well to collect them together in this 
place. The first system is the one which the author has 
usually employed in the treatment of special cases. 

If v and T are taken as the independent varia.bles • 

........ (2.5). 
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If P and T are taken: 

d (dQ) d (d Q\ d" 
dt' dp - dp dT) - - dT ' 
d 'dQI d (dCl\ 1 dQ 
J\d~ dp d'l'j" - -1: dp , 

dp-- Ti/Tt' 

") 

, ....... (26). 

d (dQ) d~v 
dp riT --T dl" 

If v and p are taken: 

i(dQ)_~ (dQ)_l 1 'rip dv dv dp J 

d (dQ) d (dQ) _1 (dT dQ dT dQ\ 0) 

dp d" - d" dp - T dp x (iii - du x rip) 'J ..... (-1). 
dT x dQ _ dT x dQ _ T 
dp dv dv dp 

§ 6. Equations in the ClUe of a body which undergoes 
a Partial Ohange in its Oondition of Aggregation. 

A case which permits a still further simplification peculiar 
to itself, and which is of special interest from its frequent 
occurrence, is that in which the changes of condition in the 
body are connected with a partial change in its Condition of 
Aggregation. 

Suppose a body to be given, of which one part is in 
one particular state of aggregation, and the remainder in 
another. As an example we may conceive one part of the 
body to be in the condition of liquid and the remainder 
in the condition of vapour, and vapour of the particular 
density which it assumes when in contact with liquid: the 
equations deduced will however hold equally if one part 
of the body is in the solid condition and the other in the 
liquid, or one part in the solid and the other in the vaporous 
condition. We shall, for the sake of generality, not attempt 
to define more nearly the two conditions of aggregation 
which we are treating of, but merely call them the first and 
the second conditions. 
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Let a. certain quantity of this. substance be inclosed in 
a vessel of given volume, and let one part have the first. 
and the other the second condition of aggregation. If the 
specific volumes (or volumes per unit of weight), which the 
substance assumes at a given temperature in the two dif
ferent conditions of aggregation, are different, then in a. 
given space the two parts which are in the different con
ditions of aggregation cannot be any we please, but can 
only have determinate values. For if the part which 
exists in the condition of greater specific volume increases 
in size, then the pressure is thereby increased which the 
inclosed substance exerts on the inclosing walls, and con
sequently the reaction which th'ose walls exert upon it, 
and finally a point will be reached, where this pressure is 
so great that it prevents any further pas~age of the substance 
into this conditio~ of aggregation. When this point is 
reached, then, so long as the temperature of the mass and 
its volume, i.e. the content of the vessel, remain constant, 
the magnitude of the parts which are in the two conditions 
of aggregation can undergo no further change. If, however, 
whilst the temperature remains constant, the content of 
the vessel increases, then the part which is in the condition 
of aggregation of greater specific volume can again increase 
at the cost of the other, but only until the same pressure as 
before is attained and any further passage from one condition 
to the other thereby prevented. 

Hence arises the peculiarity, which distinguishes this 
case from all others. For suppose we choose the temperature 
and the volume of the mass as the two independent variables 
which are to determine its condition; then the pressure 
is not a function of both these variables, but of the tempera
ture alone. The same holds, if instead of the volume we 
take as the second independent variable some other quantity 
which can vary independently of the temperature, and which 
in conjunction with the temperature determines fully the 
condition of the body. The pressure must then be inde
pendent of this latter variable. The two quantities, tem
perature and pressure, cannot in this case be chosen as 
the two variables which are to serve for the determination 
of the body's condition. 

We will now take, in addition to the temperature T, any 
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other magnitude :e, as yet left undeterminf'd, for the second 
independent variable which is to determine the body's 
condition. Let us then consider the expression given in 
equation (19) for the work-difference referred to zT, viz. 

dp flv tip tiv 
D,rT= dl' x d.r; - rk x dT" 

In this we must, by what bas been said, put 'f£ = 0, 

and we thus obtain 

_ flp rl" " DzT - dT x Cii: •••.•.•••.••.•..... (_8). 

The three equations (12). (13). (14) are thereby changed 
into the following: . 

tT(~) -~ (:~) =;~,x :: ........ (29). 

d~ (~~) -1.c (~~ = ~ x :~ ......... (30). 

dQ _ dp dt) 
d:ii - T dT x ilx ................... (31). 

§ 7. Clapeyron's Equation and Oarnot's Function. 

To conclude the developments of the Fundamental Equa
tions which have formed the subject of the present chapter, 
we may consider the equation which Clapeyron-deduced as 
a fundamental equation from the theory of Carnot, in order 
to see in what relation it stands to the equations we have 
here developed. .As however Clapeyron's equation contains 
an unknoWn function of temperature, usually designated as 
Carnot's function, it will be advisable beforehand to throw 
our equations, so far as they will come under considera
tion, into the form which they take, if the temperature 
!Unction 'T, introduced in the last chapter, is treated as still 
mdeterminate, and is not, in accordance with the value 

• Journal de l'Ecole PollltecllRique, VoL XIV. (1884). 
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there determined, put equal to the absolute temperature T. 
We shall thereby obtain the advantage of fixing the relation 
between our temperature-function T and Carnot's Function. 

If instead of equation 

dQ= TJS, 

we use the less determi~te Equation VIII. of the last chapter, 

dQ=TdS, 

and eliminate S from this equation, in the lIame manner 
as in § 2, we obtain instead of equation (9) the following: 

Combining this with (8) we obtain instead of equa
tion (16), 

dT dQ dT dQ 
dy x d:J; - d:c x dy = TDzlI ............... (33). 

If we now assume that the only external force is a 
uniform and normal pressure on the surface, we may use 
for DZII the expression given in equation (18), and the above 
equation becomes 

dT dQ dT dQ _ (ap dv dp dv) 
dy x d:J; - dx x dy -T dy x ax - d:c x dy ..••.. (34). 

If further we choose as independent variables t1 and p, 
putting II: = v, and !J = p, we obtain 

dT dQ dT dQ _ 
d- x d---d x -d-=T ................ (3<». 
l' vv l' 

But as T is only a function of T, we may put 

dT aT dT dT dT dT 
- = - x - - and -- = x - -
dv dT dv dp dT dp' 

Introducing these values of ~; and ~; in the above equation, 
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and dividing by ;;, we obtain, instead of the last of equa

tions (27), tbe following: 

dT dQ dT dQ T dp x dv - dv x dp == d; ............... (36). 

dT 
It is bere assumed that the beat is measured in mechani. 

cal units. To introduce the ordinary measure of heat, we 
must divide the expression on the right-hand side by the 
mechanical equivalent of heat, which gives: 

dT dQ dT dQ T 
dp x dv - dli x dp= EdT ............... (37). 

dl' 

Clapeyron's equation agrees in form with this, since it 18 

written-
dT dQ dT dQ "iip x dv- - du x dp == 0 .................. (38), 

where 0 is an undetermined function of temperature, and is 
the same as Carnot's Function already mentioned. 

If we equate the right-hand expressions of (37) and (38), 
we obtain the relation between C and T, as follows: 

T 1 
0== ;:d; == Ed(log or) ..................... (39), 

dT dT 

H, adhering to the determination of T given by the author, 
we assume it to be nothing more than the absolute tempera
ture T, then 0 takes the simpler form, 

T 0== ]f; .............................. (40). 

As equation (33) is formed by the combination of two equa
tions, which express the first and second Main Principles, it 

* Pogg • .Ann. Vol. LIX. p. 574. 
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follows that Clapeyron's must be considered an 
expression of the Principle in the assumed 
by the author, but as the expression of a principle, which 
may be deduced from the combination of the first and second 
principles. As. concerns the manner in which Clapeyron has 
treated his differential equation, this differs widely from the 
method adopted by the author. Like Carnot, he started from 
the assumption that the quantity of heat which must be 
imparted to a passage from one to 
another, may be from its 
conditions, without necessary to know 

by what path has taken place. 
considered of p and v, 

iutegrating his equation the following AY'nTA""",n 
for Q: 

Q = F (T) - Ccp (p, v) •••... .••.••••••.• (41), 

in which F (T) is any function whatever of the temperature; 
and cp( p, v) is a function of p and v which satisfies the follow
ing more simple differential equation: 

dT 
dv 

integrate this 
temperature T for 
and v. If we assume that 
gas, we have 

dcp + dv = 1. .......... . 

AY,,,,..,,,,,,, the 
question as p 
body in question is a perfect 

pv T= }(, ............................... (43), 

whence 

Hence equation 

dcp 
dv=R .......... . 

Integrating, we have 

cp (p, v) = R log P + cp (pv), 
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where <P(pv) is any function whatever of the product pv. For 
this we may by equation (43) substitute any function what
ever of the temperature, so that the equation becomes, 

t!'(pv) = R logp ++(T) ............... (45). 

Jf we introduce this expression for cf> (p, v) in (41), and put 

F(T) - 0+ (T)=RB, 

where B again expresses any function whatever of the tem
perature, we obtain, 

Q = R(B - 0 log p) .... .............. (46). 

This is the equation" which Clapeyron has deduced for the 
case of gases. 
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CHAPTER VI. 

APPLICATION OF THE MECHANICAL THEORY OF HEAT TO 
SATURATED VAPOUR. 

§ 1. Fundamental. equations for saturated vapour. 

Among the equations of the last chapter, those deduced 
in § 6, which refer to a pa.rtial cbange in the body's state of 
aggregation, ma.y conveniently be treated first; inasmuch as 
the circumstance there mentioned, viz. that the pressure is 
only a function of the temperature, greatly facilitates the 
treatment of the subject. We will in the first place consider 
the passage from the liquid to the vaporous condition. 

Let a weight M of any given substance be inclosed in an 
expansible envelope: of this Jet the part m be in the condition 
of vapour, and that vapour (as necessarily foHows from its 
contact with the liquid) at its maximum density; and let the 
remainder M - m be liquid. If the temperature T of the 
mass is given, the condition of the vaporous part, and at the 
same time that of the liquid part, is thereby determined. If 
m be also given and thereby the magnitl1des of both parts 
known, then we know the condition of the whole mass. We 
will accordingly choose T and m as the independent variables, 
and will substitute m for (J; in equations (29), (30), ~1) of 
the last chapter. Then these equations become 

d;'(;~) - d:£ (~~) = ~;,x :: ................ (1), 

ddT(~c:J - dt (~~) = ~ x ~~ .................. (2), 

dQ _ dp dv 
dm - TdT x dm ........................ (3). 
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We may now' denote the specific volume (i. e. the volume 
of a unit of weight) of the saturated vapour by a, and the 
specific volume of the liquid by u. Both these magnitudes 
bear some relation to the temperature T and its correspond
ing pressure, and are therefore, like the pressure, functions of 
the temperature alone. If we further denote by 'V the total 
volume of the mass, we may then put 

v=ms+ (M -m) u, 

=m (a-u) + Mu. 

We will substitute for the difference (a - u), a simpler ex
pression, by putting 

u=a-u ........................ (4), 
whence it follows that 

v=mu+Mu ...................... (5); 
whence 

d1J 
-d =u .......................... (6). 

m 

The quantity of heat which must be applied to the mass, if 
a unit of weight of the substance, at temperature T and 
under the corresponding pressure, is to pass from the liquid 
into the vaporous condition, and which may be shortly called 
the vaporizing heat, may be denoted by p; then we have 

dQ 
drii,=P· .. ······ .... · .... ·· .. ·····(7). 

We will further introduce into the equations the specific heat 
of the substance in the liquid and vaporous condition. The 
specifiQ heat here treated of is not however that at constant 
volume. nor yet that at constant pressure, but belongs to the 
case in which the pressure increases with the temperature in 
the same manner as the maximum expansive power of the 
saturated vapOur. This increase of pressure has very little 
influence on the specific heat of the liquid, since liquids are 
but slightly compressible by such pressures as are herein con
sidered. We shall hereafter explain how this influence may 
be calculated, in our researches on the different kinds of 
specific heat, and a single example will suffice here. For 
water at boiling-point the difference between the specific 
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heat here considered and the specific heat at constant 

pressure, is only 3:00 of the latter, a difference which may be 

n~glected. Accordingly, we may for the purposes of calcula
tion take the specific heat of the liquid here considered as 
being equal to the specific heat at constant pressure, although 
their meaning is different. We will call this specific 
heat O. 

With vapour it is otherwise. The specific heat here con
sidered refers, as shewn above, to that quantity of heat which 
saturated vapour requires to heat it through 1°, if it is at the 
same time so powerfully compressed that even at the higher 
temperature it again returns to the saturated condition. .As 
this compression is very considerable, this kind of specific 
heat is very different from all which we have hitherto treated 
of. We shall call it the Specific Heat of Saturated Steam, 
and shall denote it by H. 

Bringing in the two symbols a and H, we may now at once 
wdte down the quantity of heat which is necessary to give 
the increase of temperature dT to the quantity of vapour 
m, and the quantity of liquid M - m. The result will be as 
follows: 

whence 

or otherwise . 

mHdT+(M-m) OdT, 

~~=mH + eM -m) a, 

dQ 
dT=m(H -0) +MO ...•............ (8). 

From equations (7) and (8) we have 

:T(~~ = ~ ......••.••.•.......•.. (9), 

1m (~~,) = H - 0 ............... :(10). 

Substituting in equations (1, 2, 3) the values given in equa
tions (7, 9,10) we have 
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tlp ip 
dT+ a-H == u dT .. ············· .. ···(11),. 

;~ + 0 - H == ~ •••••••••••••••••••.•.• (12)~ 
dp 

p == Tu dT •.•.•••.....••.•....•.. (13) .. 

These are the fundamental equations of the Mechanical 
Theory of Heat as relates to the generation of vapour. Equa
tion (11) is a deduction from the first fundamental principle, 
(12) from the second, and (13) from both together. 

If it is desired to use the ordinary and not the mechanical 
measures for the quantities of heat, we need only divide all 
the members of the foregoing equations by the mechanical 
equivalent of heat. In this case we will denote the two 
specific· heats and the heat of vaporization by new symbols, 
putting 

c==i; h=~; r==i; ................... (14). 

The equations then become 

;;+ c -h==i(;t) ................ (I.j). 
dr r 
dT+c-h=T ....................... (16), 

_Tu dp 
r- E x itT ......................... (17). 

§ 2. SpeciM Heat of Saturated Steam. 
As the foregoing equations (15), (16) and (17), of wbich 

however only two are independent, have thus been obtained by 
means of the Mechanical Theory of Heat, we may make use of 
them in order to determine more closely two magnitudes, of 
which one was previously quite unknown and the other only 
known imperfectly; viz. the magnitude h and the magnitude 
B contained in u. 

If we first apply ourselves to the magnitude h, or the 
Specific Heat of Saturated Steam, it may be worth while in 
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the first place to give some account of the views formerly 
promulgated concerning this magnitude. 

The magnitude h is of special imporlance in the theory 
of the steam engine, and in fact t,he first who published any 
distinct views upon it was the celebrated improver of the 
steam engine, Ja.mes Watt. In his treatment of the subject 
he naturally started from those views which were based on the 
older theory of heat. To this class belongs especially the idea 
mentioned in Chapter I., viz. that the so-called total heat, ie. 
the total quantity of heat taken in by a body during its pas...ge 
from a given initial condition to its present condition, depends 
only on the present condition and not on the way in which 
the body has been brought into it; and that it accordin~ly 
may be expressed as a function of those variables on whlch 
the condition of the body depends. According to this view 
we must in our case, in which the condition of the body com
posed of liquid and vapour is determined by the quantities 
T and m, consider this qua.ntity of heat Q as a function of T 
and m; accordingly we have the equation 

ddT (~~ - 1m (~~ = O. 

If we here substitute for the two second differentials their 
values given in equations (9) and (10), we have 

or dividing by E 

dp 
dT+O-H=O, 

dr 
- +c-h=O 
dT ' 

whence we have, to determine h, the equation, 

dr 
h= dT + c ......................... (IS). 

This wflS in fact the equation which was formerly used to 
determme h, though not quite in the same form. To calculate 
h from this equation we must know the differential co-

efficient ;;. or the change of the vaporizing heat for a given 

change of temperature. 
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Watt had made experiments on the yaporililing heat of 
water at different temperatures, and was thereby led to a 
result, which may be expressed by a very simple law, com
monly called Watt's law. This in its shortest form is as 
follows: "The sum of the free and latent heat is always 
constant." By this is meant that the sum of the two quan
tities of heat, which must be imparted to a unit of weight of 
water, in order to raise it from freezing point to temperature 
T, and then at that temperature convert it into steam, is in
dependent of the temperature T itself. The quantity of 
heat required for heating the water is expressed by the 
integral 

{CdT, 

in which a is the absolute temperature of freezing point. 
The heat of vaporization is represented by r. Watt's law 
therefore leads to the equation 

r+J:cdT= Constant .................. (19). 

Differentiating, 

~ -0 (90) d'l'+ c - .......................... , 

combining this with equation (18) we have 

11,=0 .............................. (21). 

This result was long considered as correct, and was expressed 
by the following principle: If steam of maximum density 
changes its volume within a vessel impermeable to heat, it 
al ways preserves its maximum density. 

More recently Regnault made very careful experiments on 
the changes in the heat of vaporization with changes in the 
temperature *; and thereby discovered that Watt's law, accord
ing to which the sum of the free and latent heat is always 
constant, does not agree with the facts, but that this sum has 
an increasing value as the temperature rises. The result of 
his experiments is expressed in the following equation, in 

* BelatiOll8 de Experience., t. I.; Mem. de Z'..{cad., t. XXI., 1847. 
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which instead of the absolute temperature T we introduce 
the temperature t reckoned from the freezing point: 

r+ J~cdt= 606'5 + 0'305 t ... : ........•.. (22}. 

Differentiating this equation with regard to t, and then sub

stituting ;~ for ~;, both having the same value, we have 

;~+ c = 0'305 ..............•...•.. (23). 

Combining this equation with (18) we have 

k = ·305 ...............•........... (24). 

This was the value of k, which it was supposed, after the 
publication of Regnault's experiments, must be substituted 
for the value zero and applied to the theory of the steam 
engine. Hence arose the idea that if saturated steam be 
compressed, and thereby heated, in such a way that it always 
has exactly the temperature for which the density is a maxi
mum, it must take in heat from without; and conversely in 
expanding, in order to cool itself in a manner corresponding 
to the expansion, it must give out heat from itself. Hence 
we must further conclude that if saturated steam be com
pressed in a vessel impermeable to heat, a fall of temperature 
must take place; whilst in expanding the steam will not re
main at its maximum density, inasmuch as its temperature 
cannot fall so low as this will necessitate. 

Having thus explained the conclusions previously drawn 
in relation to k, we will now see what may be concluded 
from the equations here developed. . 

The quantity k occurs in the two equations (15) and (16); I 

but the first of these also contains the quantity u, which cannot 
at present b~ considered as accurately known; it is therefore 
less convenient for determining k than the latter, which in 
addition to h contains only such quantities as the experi
ments of Regnault have determined with great accuracy in 
the case of water, and of many other fluids. This equation 
may be written 

dr r 
4= dT+c-P ...................... (25). 

Digitized by Coogle 



SATURATED VAPOUR. 133 

We have thus obtained by the Mecha.nical Theory of Heat a. 
new equation for determining h, which differs from the equa
tion (18), previously assumed to be correct, by the negative 

quantity -;, the value of which quantity is thus of great 

importance. 

§ 3. Numerical Value ofhfor Steam.. 

If we apply equation (25) to the case of water, we must first, 
following Regnault, give to the sum of the first two symbols 
on the right-hand side the value 0'305. To determine the 
last symbol we must know the value of r, as a function of the 
temperature. Equation (22) gives us 

r = 606'5 + 0'305t - J:cdt ............. (26). 

The specific heat of wa.ter c is determined according to 
Regnault by the following tormulm : 

c = 1 + O'00004t + O'OOOOOO9t .......... (27). 

Applying this, equation (26) becomes 

• r = 606'5 - O'695t - O-ooooet - O'OO00003et ... (28). 

Substituting this value for r in (25), a.nd replacing T by 
273 + t, we obtain for steam the following equation: 

4 = 0-305 _ 606'5 - O'695t - O'OOO02et - O-oOOOOO;Jet . (29) 
273+t ... . 

The expression for r given in (28) is inconvenient from its 
length. and the experiments on the heat of vaporization at 
different temperatures, valuable as they are, can scarcely 
possess such a degree of accuracy as to make so long a 
formula necessary to represent them. Accordingly in his 
paper on the theory of the steam engine the author pre
ferred to use the following formula : 

r = 607 - O'708t .................. (30.). 

The manner in which the two constants in the formula 
are determined will be more closely examin-ed further on, 
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in describing the steam engine, Here we will only give a 
comparison of some values determined by both formul:e, in 
order to shew that the difference between them is so small, 
that one may be substituted for the other without danger: 

t ()O 500 1000 1500 2()()O 
----I-----

r by equation (28) ,,' 606'5 571'6 536'5 500'7 464'3 
r by equation (30) '" 6071> 571'6 536'2 500'8 465'4 

Substituting in equation (25) the expression for ,. in (30) 
we have instead of equation (29) the following: 

k = 0'305 _ 607 - O'708t 
273 + t ' 

or in still simpler form. 
800'3 

k = 1'013 - 273 + t ................. (31). 

A glance at equations (29) and (31) shews that for mode
rate temperatures k is a negative quantity. Equation (29) 
gives for certain fixed temperatures the following values, 
which agree very closely with those calculated by equation 
(31) : 

t ()O 500 1000 1500 2000 

h ,-1'916 -1'465 - 1'133 -0'879 -0'676 

The circumstance that the specific heat of saturated steam 
has a negative value, and that of so large an amount, gives 
it a special character of its own. We may explain in the 
following manner the cause of this singular condition, Ir 
steam is compressed, heat is generated by the work thereby 
expended, and this heat is more than sufficient to raise the 
temperature of the steam to the point at which the new 
density is the maximum density. Accordingly if the steam 
is to be treated in such a way that it remains saturated, it 
must be deprived of a part of the heat thus generated. In 
like manner in the expansion of steam more heat is con
verted into work than is necessary to cool the steam so far 
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only that it remains exactly in the condition of saturated 
steam. Accordingly if this last condition is to hold heat must 
be imparted during the expansion. 

Should the original saturated steam be contained in a 
vessel impermeable to heat, it will be superheated during 
compression and will be in part condensed during expan
sion. 

The conclusion that the specific heat of saturated steam 
is negative was drawn by Rankine and by the author inde
pendently, and about the same time*. Rankine however 
developed only the first of the two equations (15) and (16), 
which contain A, and this in a somewhat different form. 
The second it was impossible for him to develope, since he was 
without the second fundamental principle, which was neces
sary thereto. Since in the first equation there occurs together 
with A the specific volume of the saturated steam, which is 
contained in u, Rankine in order to determine this applied 
to saturated steam the law of Mariotte and Gay-Lussac, 
which, as we shall see further on, is inaccurate. More exact 
determinations of II, could only be accomplished by means of 
equation (16), which was first established by the author. 

§ 4. N'I.IITM'r'iIxd Value of h for other Vapour,. 
When equation (25) was first published, Regnault's deter

minations of the specific heat and heat of vaporization as func
tions of temperature had been performed only for the case 
of watert; and therefore the numerical value of II, could be 
given for water only. Regnault has since extended his 
measurements to other f1uidst, and it is now possible to apply 
the equation to obtain the numerical value of II, for these 
fluids. We thus obtain the following results. 

Bi-sulphide of Oarbon: CS.. According to Regnault we 
have 

J: edt = O'23523t + O'0000815t', . 

• Bankine'. paper was read before the Royal Booiety of Edinburgh in 
February, 1860, and printed in the Tramactioftl, Vol. n. p.147. The author's 
~per was read before the academy of Berlin in February, 1850, and printed 
In Poggendorf's ..tRn~, Vol. LXXIX. pp. 868 and 500. 

t &latiom du E~pt1'ie1l£e" Vol. I., Paris, 1847. 
: llelatiom tk. EreperURCe., Vol. D., Paris, 1862. 
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r + J: cat =,9,0 + O'14601t - O'0004123t' : 

whence we have 
e = 0'23523 + O'0001630t, 

r = 90'00 - 01>8922t - O'OO04938t'. 

Substituting these v.alues, equation (25) becomes 

11, = 0'14001 _ O'0008246t _ 90'00 - O'08::;~-:t O'0004938t' , 

hence we obtain for It the foHowing values amongst others : 

t ()O 

~ II. -0'1837 -0'1406 

The specific heat of the saturated vapour of Bi-sulphide 
of Carbon is thus negative like that of steam, but its values 
are smaller. 

Ether: C,H,.p, According to Regnault we have 

J: edt = O'52900t + O'00029587t', 

r + J: edt = 94'00 + O'45000t - O'00055556t', 

whence we have 

e = 0'529 + O'00059174t, 

r= 94'00 - O'07900t - O'0008514t'. 

Equation (25) thus becomes 

It =0'45000 _ 0'0011111 t- 94'00 - 0'07900t - 0'0008514'-
273 +, • 

and from this the following values are deduced: 

1--h-I---0-'~-O-57-1--_-:-,7-309-I! 
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In the ease of Ether therefore the specific heat of 
saturated steam has, at least at ordinary temperatures, a posi
tive value. 

Chloroform: CHOla' According to Regna.ult we have 

J: edt = 0'23235t + 0·00005072e-. 

r + J.'cdt - 67 + 0'13751 ; 

whence we have 

c = 0'23235 + 0'00010144t, 

,. = 67 - 0'09485t - 0'00005072". 

Equation. (25) thus becomes 

h = 0'1375 _ 67 - 0'094R5t - 0'00005072~ 
273+ t ' 

and from this the following values are deduced: 

~1 ___ ~ ___ 1. __ 1_~ ___ 1 

~ -0'1079 - OO'Ui3 

Bi-Ohloride of Oarbon: CCI,. According to Regnault we 
have: 

J: cdt = 0'19798' + O'0000906t', 

r + J: edt = 52 + 0'H625t - 0'000172t' ; 

whence we ha.ve 

c = 0'19798 + 0'0001812t, 

. r= 52 - 0'05173t - 0·0002626t'. 

Equation (25) thus becomes 

h = 0'14625 _ 0'000344t 52'00 - 0'05173 - O'0002626t' 
273 + t. 
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and from this the following values are deduced: 

h - 0'0442 - 0'0066 

Aeeton: CaHp. According to Regnault we have r edt = 0'50643t + 0'0003965t', 

r + J: edt = 140'5 + 0'36644t - 0'000516tt ; 

whence we have 

C = 0'50643 + 0'0007930t, 

r = 140'5 - 0'13999t - 0·0009125f. 

Equation (25) thus becomes 

It = 0'36644 _ 0'001032t _ 140'5 - O'13:~:~-t O'0009~~5t', 

and from this the following values are deduced : 

t ()O 1000 

h -0'1482 -0'0515 

In addition to the above Regnault has investigated 
Alcohol, Benzine, and Oil of Turpentine, so far as to deter-

mine the values of r + J: edt. For .Alcohol and Turpentine 

he gives no empirical formulre for ascertaining their values, 
on account of the irregularities in the experiments; and for 

Benzine he has not expressed I: edt as a function of tempera

ture, but has only investigated a mean value of the Specific 
Heat for a narrow interval of temperature. The numerical 
value of It is thus much more uncertain for these fluids than 
for those given above, and accordingly we shall not treat of 
them fUlther. 
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In all the formulre for k given above we see that its value 
increases as the temperature rises. In the only case, that of 
ether, in which it is positive at ordinary temperatures, its 
absolute value increases as the temperature rises. In the 
other cases, in which it is negative, its absolute value 
diminishes; it thus approaches to zero, and it would appear that 
at some higher temperature it would attain the value zero, 
and at still higher temperatures would become positive. To 
determine the temperature at which k = 0, we have by equa
tion (25) 

dr r 
dT+ C - T= 0 ..................... (32). 

In this equation we must, as above, express c and r as 
functions of t, and then solve it with regard to t. 

The empirical formulre of Regnault, by means of which 
we have expressed c and r as functions of t, should not of 
course be applied much beyond the limits of temperature 
within which Regnault carried out his experiments. Hence 
the determination of the temperature for which k = 0 
is in many cases impossible, as for instance with water, 
where the equations obtained by putting h == 0 in (20) 
and (31) would lead to a value for t of aoout 500°, where
as the equations are only applicable up to somewhat over 
200°. But with other fluids the temperature for which 
h == 0, and above which k is positive, lies within the limits of 
application of the formulre. Thus Cazin - calculates this 
temperature for Chloroform at 123'48°, and for Bi-chloride of 
Carbon at 128'9°. 

§ 5. Speciftc Heat of Saturated Steam, (JJJ proved by 
Experiment. 

The result arrived at by theory, that the Specific Heat of 
saturated steam is negative, and that therefore saturated 
steam, if expanded in a non-conducting envelope, must 
partially condense, has since been experimentally proved by 
Hirnt. A cylindrical vessel of metal was fitted at the two 
ends with parallel plates of glass, so that it could be seen 
through. This, when filled with steam at high pressure was 

• Annak. tU Ohimie d tU Pkyaiqv.e, Series IT. Vol. XIV. 
t Bulletin ISS tU fa SocUU IndulltmUe tU MulhotUt, p. IS7. 
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perfectly clear; but when a cock was suddenly opened, so 
that part of the steam escaped, and the remainder expanded, 
a thick cloud appeared in the interior of the cylinder, proving 
a partial condensation of the steam. Subsequently, when 
Volume IL of Regnault's Relation deB Experiencea had ap
peared, containing the data., given above, to determine k for 
other fluids, and shewing that for ether k must be positive, Him 
proceeded to experiment with that vapour also. His description 
is as follows·: "To the neck of a strong crystal flask I 
connected a pump, the capacity of which was nearly equal to 
that of the flask, and which was provided with a cock at the 
bottom. Some ether was poured into the flask, and it was 
immersed to the neck in water at about 50°. The cock was 
then kept open, until all the air was assumed to be expelled. 
Then the cock was closed, and the pump plunged into the hot 
water with the flask: whereupon the ether vaponr raised 
the piston to the top. The apparatus was now suddenly 
taken from the water, and the piston forced rapidly down. 
At this moment, but for a moment only, the flask became 
filled with a distinct cloud." It was thus shewn that ether 
vapour behaves conversely to steam, partially condensing, not 
during expansion, but during compression; a fact which 
is in accordance with the opposite sign of k in the two 
cases. 

To check this conclusion Him made an exactly similar 
experiment with Bi-sulphide of Carbon. The result was 
that on forcing down the piston the flask remained per
fectly transparent. This is again in accordance with the 
theory, since with Bi-sulphide of Carbon, as with water, 
k is negative. and compression of the vapour produces a rise 
of temperature, and not a fall. Some years later Cazint. 
aided by the Auociat.·on Bcientifique. made with great care 
and skill a similar series of experiments, in some respects 
more extended. He used as before a cylinder of metal, fitted 
with glass at the ends. This was placed in a bath of oil, so 
as to give it the exact temperature proper for the experi
ment. The first series of experiments embraced only the 
expansion of steam; the arrangement was such that, when 
the cylinder was filled with vapour. a cock could be opened, 

• 00111l0I, 10 April, 1868. 
t Armau. d, Ohimie /lC Ik Ph,dqUIJ, Series IV. Vol. DY. 

Digitized by Coogle 



SATURATED VAPOUR. 141 

through which a part of the vapour escaped either into the 
atmosphere or into an air vessel, the pressure in which 
could be kept at any given point below the pressure of the 
vapour. In a second series of experiments a pump was 
connected with the cylinder; this was placed in the same 
bath of oil, and the piston could be moved rapidly back
wards or forwards by special mechanism, so as to increase or 
diminish the volume of the vapour. 

By these experiments the results obtained by Hirn for 
steam and ether were confirmed, and with the second ap
paratus a double proof was given in each case, viz. both by 
rarefaction and cond.ensation. Steam formed a cloud during 
rarefaction, whilst it remained quite clear during condensa
tion. Ether, on the contrary, formed a cloud during con
densation, and remained clear during rarefaction. Some 
special experiments were further made with vapour of chloro
form. A1l mentioned above, in the case of chloroform h, 
which is negative at lower temperatures, becomes zero at a 
temperature which Cazin has calculated at 123.48°, and at 
still higher temperatures is positive. This vapour must thus 
partially condense during expansion at lower temperatures, 
and must partially condense during compression at higher 
temperatures beyond the point of transition. With the first 
apparatus, which only allowed of expansion, clouds were 
-observed during expansion at temperatures up to 12:-J°. At 
temperatures above 145° there was no formation of cloud. 
Between 123° and 145° the conditions were somewhat different 
according to the degree of expansion. With a small degree 
of expansion there was no cloud; with a higher degree some 
formation of a cloud appeared towards the end of the pro
cess. The explanation of this is simple. The high expansion 
had produced a considerable fall of temperature, and the 
vapour had thereby been reduced to the temperature at 
which expansion is accompanied by a fall of tempera
ture. The result is thus completely in accordance with the 
theory. With the second apparatus the vapour of chloroform 
formed a cloud during expansion up to 130°, whilst it re
mained perfectly transparent during compression. Above 
1360 a cloud was formed during compression, whilst it re
mained clear during expansion. The theory is hereby more 
fully established than by the first apparatus. The circumstance 
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that the temperature at which the law of the vapour changes 
appeared in these experiments to lie between 130° and 13.r', 
whilst theory gives it at 123·48°, is not a matter of great im
portance. On the one hand these experiments are not adapted 
for an accurate determination of this temperature, because 
they always involve finite changes of volume of considerable 
magnitude, whereas the theory embraces indefinitely small 
changes only. On the other hand, Cazin himself mentions 
that his chloroform was not chemically pure, and required for 
a given vapour-pressure a higher temperature than that 
found by Regnault. Having regard to these circumstances, 
the theory must be considered as being fully confirmed by 
experiment. 

§ 6. Specific Volume of Saturated Vapour. 

We will DOW conllider the second of the two quantities 
mentioned at the beginning of § 2, viz. 8, or the specific volume 
of the saturated vapour. 

It was formerly the custom to use the law of Mariotte and 
Gay-Lussac, in order to calculate the volume which a gas as
sumes under different conditions of temperature and pressure, 
and to take no account of whether the vapour was in the satu
rated or superheated condition. It is true that fro~ many 
quarters doubts were expressed, whether vapours really fol
lowed this law up to the saturation point: but, as the experi
mental determination of the volumes offered great difficulties, 
and a theoretical determination was impossible from the want 
of well-established principles, it remained the custom to 
apply the abo)e law in this case, so as at least to arrive 
at some sort of determination of the volume of saturated 
vapour. But the equations obtained by the author, and 
given at the end of § 1, now offer us a means of arriving at 
a strict theoretical calculation for the volume of saturated 
vapour, which. when the data are given, may be worked out 
in practice. For in these equations occurs the quantity u, 
which = 8 - tT, where tT is the specific volume of the fluid. 
This, as a rule, is very small in comparison with 8, and 
may be neglected in many calculations; but it is still a 
known quantity, and may be taken account of without diffi
culty. 

Digitized by Coogle 



SATURATED VAPOUR. 143 

Substituting (a-CT) for u in the last of these equations, (17), 
we obtain 

T(a-a) dp 
r= -E-- x dT"·················(33), 

or, solving the equation for a, 

a = EJp + CT ........................ (3~). 
T dT 

By this equation the specific volume of the saturated va
pour mQ.y be calculated for all substances, whose pressure p 
and heat of vaporization r are known as functions of the 
temperature. 

§ 7. Departure from the law of Manotte and Ga'!J~LU8sac 
in the case of Saturated Steam. 

We will first apply the foregoing equations to ascertain 
whether saturated steam follows the law of Mariotte and Gay
LUBSaC, or how f84' or in what way it departs from it. 

If it follows the law the following equation must hold: 

pa 
T=const., 

or, substituting a + t for T, and multiplying by .i, 
1 a 
Epa a + t= const.: 

but from equation (33), substituting a + t for T, we obtain 

1 a ar 
EP(a - CT) -t = 1 d ....•....... (35). 

a + (a + W-.1!. 
pdt 

As the difference (8 - CT) differs little from 8, the left-hand 
side of these two equat~ons is _ very ne.arly the same, and, to 
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ascertain how saturated steam is related to the law of Mari
otte and Gay-Lussa.c, we have only to enquire whether the 
ri~ht-hand side of the last equation is constant, or varies 
WIth the temperature. To ascertain whether the successive 
values of an expression are equal to· each other, or in what 
way they depart from each other, is a very simple matter; 
and the form of equation (35) is very well adapted for this pur
pose. The author has calculated the values of this expression 
for a series of temperatures from 0° to 200°, applying the 
numbers given by Regnault to rand p. For r, the heat of 
vaporization, the equation (28) was used, viz.: 

r = 606'5 - 0"695t - 0·00002t' - O·000OO03t'. 

The more simple formula (30) might have been used without 
any great difference in the results. To .obtain p, the author 
first applied the numbers which Regnault has published in 
his well-known large Tables, in which the pressure of steam 
for every degree from - 32° to + 230° is given. He found how
ever some peculiar variations from the regular course of the 
numbers, which in certain ranges of temperature had quite 
a different character from what they had in others; and he 
soon discovered that the. source of these variations lay in the 
fact that Regnault had calculated his numbers by empirical 
formulre, a&d that for different ranges of temperatllIe he 
had employed different formulre. It then appeared desirable 
to the author to emancipate himself entirely from the in
fluence of empirical formulre, and to confine himself to those 
numbers which express simply the results of the observa.
tions, because these are specially adapted for comparison with 
theoretical results. Regnault, in order to obtain from his 
numerous observations the most probable values, used the 
aid of graphical methods. He constructed curves of which 
the abscissre represent the temperature, and the ordinates 
the pressure p, and which run from - 33° to + 230°. From 
lOOo to 280° he also constructed a curve in which the ordi
nates represented not p itself, but the logarithm of p. From 
this have been obtained the following values, which may be 
considered the most direct results of his observations, and 
from which were also taken the values which served for the 
calculation of his empirical formulre. 

Digitized by Coogle 



SA.TURATED VAPOUR, 145 

I 
t in Cenu- I p in ~etres, ! I tin Centi-

,grade pin grade Degrees,' rdin w r to " 
I of the Millimetres, f th Ai aero g &CCOf< 1111 

o e r- Curve of the of 
i thermometer. thermometer, I N unlbers, Logarithms *, i 

-2(jO 01H IHJO 1073'7 1073'3 
-10 2'08 120 1489'0 1490'7 

0 4'60 laO 2029'0 20;JO';j 
10 9'16 140 2713'0 2711'5 
20 17'39 150 3572il 
30 31'55 160 4647'0 
40 541)1 170 5960'0 
50 91'98 1~0 7545'0 7537'0 
60 148',9 100 9428'0 942;)'4 
70 233il9 200 11660'0 11679'0 
80 354'64 210 14301>'0 14325'0 
90 525'45 220 1731)01) 

100 76O'tlO 230 

In order to make the required calculation with these data, 

the values of ~ : were determined from the above table for 

the temperatures 5°, , etc" following manner, 
1 dp but as the temperature increases, p tit U"'oU,,","O""'O 

the decrease was taken as uniform for every interval of 10°, 
i,e, from 0° to 10°, from 10° to 20°, and so on; e,g, the value 
for 25° was taken as the mea.n of the two values for :20° and 
:30°, Then since 

d (logp) 
-dt-

the following formulre could be used: 

'or otherwise 

(! dp) 
\p dt WI 

log P'Nl - log P.o 
10 

Q :)~O::; LogPiii:~EIO ............... (36), 

where Log signifies the common system of logarithms, and M 
it In this are given, instead of the given by 

the curve by Regnault, the numbers correspond 
in order to compare th"m with the numbers in the previous column, 
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the modulus of that system. By the help of these values of 

~ fli and of the values of r given by the equation stated 

above, and lastly of the vallie 273 for a, the values were 
calculated which ihe expression on the right-hand side of 
equation (35) and therefore likewise the expression 

1 a 
EP(s-u) a+t 

a.esumes for the temperatures 5°, 15°,25°, etc. These values are 
given in the second column of the table below. For tempe
ratures over 1000 the two series of numbers found above for p 
were both made use of, and the two results thus obtained are 
placed side by side. The meaning of the third and fourth 
columns will be more fully explained below. 

1. 
1 a 
-p(s-Q')-. 

t in Degrees E a+t . -, 4 . 
Centigrade of ' 2. I 3, 

Di1ferences. the Air- According to According to thermometer. Experiment, Equation (38), 

50 30'93 30'46 -o',n I 15 30'60 30'38 -0'22 
25 30'40 30'30 -0')0 
35 30'23 30'20 -0'03 
45 30'10 30'10 0'00 
55 29'98 301)() +0'02 
65 29'88 29'88 01)() 
75 29'76 29'76 0'00 
85 29'65 29'63 -0'02 
95 29'49 29'48 -0'01 

105 29'47 29'50 29'33 -0'14 -0'17 
115 29'16 29'02 29'17 +0'01 +0'15 
125 28'89 28'93 28'99 +0'10 +0'06 
135 28'88 29'01 28'80 -0'08 -0'21 
145 28'65 28'40 28'60 -0'05 +0'20 
155 28'16 28'25 28'38 +0'22 +0'13 
165 28'02 28'19 28'14 +0'12 -0'05 
175 27'84 27'90 27'89 +0'05 -0'01 
185 27'76 27'67 27'62 -0'14 -0'05 
195 27'45 27'20 27'33 -0'12 +0'13 
205 26'89 26'94 27'02 +0'13 +0'08 
215 26'56 26'79 26'68 +0'12 -0'11 
225 26'64 26'50 26'32 -0'32 -0'18 
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This table at once sh~ws that jP(S - a) a: t is not constant, 

as it must be if the law of Mariotte and Gay-Lussac holds, 
but decreases decidedly as the temperature rises. Between 
35' and 95' this decrease appears very regular. Below 35' 
the decrease is less regular, the simple explanation being that 

here the pressure p and its differential coefficient CZ are very 

small, and therefore small errors in their determination, which 
aTe quite within the limits of errors of observation, may yet 
become relatively important. Above 100° the values of the 
expression are not so regular as between 25° and 95°, but 
shew on the whole a similar rate of decrease: and if we 
make a graphic representation of these values, it is fcund 
that the curve, which below 100° passes exactly through the 
points determined by the numbers contained in the table, 
can be readily continued up to 230' in such a way that these 
points are distributed equally on both sides of it. 

The course of t.his curve can be expressed with sufficient 
accuracy for the whole extent of the table by an equation of 
the form 

1 a. EP (s - CT) a + t = m -n,w •••••.••.... (37), 

where 6 is the base of Napierian logarithms, and m, n, lc are 
constants. If we determine the latter from the values which 
the curve gives for 45°, 125°. and 205°, we obtain 

m= 31'549; n= 1'0486; lc= 0·007138 ...... (37a), 

and if for convenience we use common logarithms, we finally 
obtain . 
Log [31'549 - ip.(s-- CT) a :tJ = 0'0206 + 0·003100t ... (38). 

The numbers contained in the third column of the table 
are calculated from this equation. and in the fourth column 
are given the differences between these and the numbers in 
the second column. 
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§ 8. Differential CoefficientB of ps • 
pSG 

The foregoing analysis leads easily to a formula, from 
which we can ascertain more exactly the mode in which 
steam departs from the Jaw of Maiiotte and Gay-Lussac. 
Assuming this law to hold, we shall be able to put 

ps _a+t 
pSo - -----a- ' 

where PSG represents the value of ps at 0°. The differential 

coefficient -dO: (PS) would then have a constant value, viz. the 
t pSo 

well-known coefficient of expailsion ! = 0·003665. Instead 
a 

of this, equation (37) gives, if we use s in place of (s - 0"), 
the equation 

whence 

ps _m.-nekt a+t --- x- ................ (39), 
pSo m-n a 

d (PS) =! m - 11 [1 + k (ft + t)l ekt (40) 
dt pSo a x m - n .... .. . 

Thus the differential coefficient is not a constant, but a 
function which decreases as the temperature increases. This 
function, if we substitute for m, n, and k the numbers given 
in (37 a), has amongst others the following values, for difterent 
temperatures. 

t. d (J') 1ft So· t. d (f') dt"Bo • t. d (f) lit -;;; . 
--

('Il 0·00342 7('1l 0·00307 14('/l 0·00244 
10 0·00338 80 0·00300 150 0·00231 
20 0·00334 90 0·00293 160 0"00217 
30 0·00329 100 0"00285 170 0"00203 
40 0·00325 110 0·00276 180 0·00187 
50 0·00319 120 0"00266 190 0·00168 
60 0"00314 130 0·00256 200 0"00149 
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From the above table we see that it is only at low tem

peratures that the variations from the law of Mariotte and 
Uay-Lussac are small, and that at bigher temperatures, e.g. 
above 100·, they can by no means be neglected. 

A glance at the table is sufficient to shew that the values 

found for ;t (J'B) are smaller than 0'003665; whereas it is 

known that fo~he gases which vary considerably from the law 
of Mariotte and Gay-LusBaC, such as carbonic acid and sulphuric 
acid, the coefficient of expansion is not smaller, but greater 
than the above number. Hence this differential coefficient 
cannot be taken to correspond with the coefficient of expansion 
which relates to increase of volume by heating at constant 
pre&'!ure, nor yet with the figure obtained if we leave the 
volume constant during the heating, and then observe the 
increase of the expansive force. Thus we have here a third 

special case of the general differential coefficient ! (:a'-) , viz. 

that in which the pressure increases during the heating 
under the same conditions as in the case of steam, when this 
retains its maximum density; and thia case must be con
sidered for carbonic acid likewise, if we are to establish a com
parison. 

Steam has at about 108°an expansive force equal to 1 metre 
of mercury, and at 1291° equal to 2 metres. We will examine 
what takes place with carbonic acid, if this is also heated by 
211°, and thereby the pressure increased from 1 to 2 metres. 
Regnault - gives as the coefficient of expansion of carbonic 
acid at constant pressure 0'00371 if the pressure is 760 mm., 
and 0'003846 if the pressure is 2520 mm. For a pressure of 
1500 mm., the mean between 1 and 2 metres, the coefficient 
of expansion, if assumed to increase in proportion to the 
pressure, will have the value 0'003767. If carbonic acid 
under this mean pressure is heated from 0° to 211°, the 

quantity P" will increase from 1 to 
P"o 

1 + 0'003767 x 21'5 = 1'08099. 

Again other experiments of Regnault'st have shewn that, i( 

• Relation d,s Ezplrimce., t. I. Mem. 1. 
t Relation de. Ezplrience., t. I. Mem. 6. 
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carbonic acid, which had a pressure of about 1 m. at a tem
perature of about 0°, is loaded with a pressure of 1'98292 m., 
the quantity pvdecreases in the ratio of 1: 0·99146 j or for an 
increase of pressure from 1 to 2 ms., it will decrease in the 
ratio of 1 ~ 0·99131. Now if both of these take place 
together, viz. a rise of temperature from 0° to 21!O, and 

a rise of pressure from 1 to 2 ms., then the quantity pr. 
p1Jo 

must increase from 1 to 1·08099 x 0·99131 = 1·071596 very 
nearly, whence we obtain as the mean value of the differen-

tial coefficient ~t (:i) , 
0'071596 = 0.00333 

21·5 .••• 

We thus see that for the case here considered we have a 
value for carbonic acid which is less than 0·003665, and 
there is therefore less ground for surprise at obtaining the 
same l·esult for steam at its maximum density. 

If we seek to determine on the other hand the actual 
coefficient of expansion for steam, or the number which 
shews how far a quantity of steam expands, if it is taken at 
a given temperature and at its maximum density and then 
heated, apart from water, at constant pressure, we shall cer
tainly obtain a vaJue which is larger, and probably much 

"larger, than 0·003665 . 
... 

§ 9. Formula to determine the Specific Volume of Satu
rated Steam, and its comparison with e:cperiment. 

From equation (37), and equally from equation (34), the 
relative values of 8 - U', and therefore to a close approxima
tion those of 8, may be calculated for different temperatures. 
without needing to know the Mechanical Equivalent E. If 
however we wish to calcula.te from the equations the absolute 
value of 8, we must either know E, or must attempt to 
eliminate it by the help of some other known quantity. At 
the time when the author first hegan these researches, several 
values of E had been given by Joule, taken from various 
methods of experiment: these differed widely from each 
other, and Joule had not announced which he considered the 
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most probable. In this uncertainty the author determined 
to attempt the determination of the absolute value of 8 from 
another starting point, nnd he believes that his method still 
possesses interest enough to merit description. 

The specific weight of gases and vapours is generally ex
pressed by comparing the weight of a unit of volume of the 
gas or vapour with the weight of a unit of volume of at
mospheric air at the same pressure and temperature. Simi
larly the specific volume may be expressed by comparing 
the volume of a unit of weight of the gas or vapour with the 
volume of a unit of weight of atmospheric air at the same 
pressure and temperature. If we apply this latter method to 
saturated steam, for which we have denoted the volume of 
a unit of weight by 8, and if we designate by v' the volume 
of a unit of weight of atmospheric air at the same pressure 
and temperature, then the quantity under consideration is 

given by the fraction ~ • 
v 

For 8 we have the following equation, obtained from (37) 
by neglecting a : 

E(a+t) 
8 = X (m - ne"') ............ (41). 

ap 

For v' we have by the law of Mariotte and Oay-Lussac 
the equation 

v' = K '!.+.! . 
p 

These two equations give 

8 E . 
-',= D' (m-neit) .................. (42). v .na 

If we form the same equations for any given temperature 

to, and denote the corresponding value of ;, by (~.) 0' we 

obtain 
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If by the help of this equation we eliminate the constant 

factor ff:a from (42). we obtain 

8 (8) m - ruJ<t -; = -; ,j<t ................ (43). 
v v om - n 0 

The question is now whether. for an., given telerature 

to. the quantity (~,) or. its reciprocal (:'!.), which expresses 
v o· 8 0 

the specific weight of the steam at temperature to. can be 
determined with sufficient certainty. 

The ordin,ary values given for the specific weight of steam 
refer not to saturated but to highly superheated steam. 
They agree very well, as is known, with the theoretical 
values which may be deduced from the well-known law as 
to the relation between the volume of a compound gas, and 
those of the gases which compose it~ Thus e.g. Gay-Lussac 
found for the specific weight of steam the experimental value 
0'6235; whilst the theoretical value obtained by assuming 
two units of hydrogen and one unit of oxygen to form, by 
combining, 2 units of steam, is 

2 x 0'0692; x 1'10563 = 0'622. 

This value of the specific weight we cannot in general 
apply to saturated steam, since the table in the last section, 

which gives the values' of dd (PS), indicates too large a 
t pSo 

divergence from the law of Mariotte and Gay-Lussac. On 
the other hand the table shews that the divergences are 
smaller as the temperature is lower; hence, the error will 
be insignificant if we assume that at freezing temperature 
saturated steam follows exactly the law of Mariotte and Gay
Lussac, and accordingly take 0'622 as the specific heat at 
that temperature. In strict accuracy we must go yet further 
and put the temperature, at which the specific weight of 
saturated steam has its theoretical value, still lower than 
freezing point. But, as it would be somewhat questionable 
to use equation (37), which is only empirical, at such low 
temperatures, we shall content ourselves with the above 
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Thus value 0, and 

time putting (~)o=O.622 and therefore (~1= 0'622' we ob

tain from equation (43) 

8 m-n~ 
:~ ;,' = 06"22 em - n) ..•..••.......... (44). 

From this . values for m, 

(37a), the therefore the 

calculated for 
eml&'tlon may be thrown 

~ = .. 1I - }.~1.t •• •••••••••••••••••• (4.5), 
v 

and by giving to the constants AI, N, and a the following 
values, calculated from those of m, n, and k : 

M= 1'663; 

give some idea 

following table 

a = 1'0071 64 .. 

wnTlrllno- of this formula, 
8 

values of -" and 
v 

ciprocal "!..' , which for the sake of brevity we shall denote by 
s 

the letter d, already used to designate specific weight. 

t I (j1 
! 

5()O lOO") 15()O 2(}()O 

--
1'608 I-_~ I 1'502 

0'622 I 0'666 
----- ,---_._----

result that satnrated diverges, so widely 
above formulre and tables indicate, from the law of Mariotte 
and Gay-Lussac, which had been previously applied to it 
without reserve, met at fil"llt, as mentioned in another place, 
with the strongest opposition, even from very competent 
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judges. The author believes however that it is now generally 
accepted as correct. 

It has also' received an experimental verification by the 
experiments of Fairbairn and Tate-, published in 1860. The 
results of their experiments are compared in the follow
ing table, on the one hand with the results previously ob
tained by assuming the specific weight to be 0'622 at all 
temperatures, and on the other hand with the values cal
culated by equation (45). 

Volume of a Kilogramme of Saturated 
Temperature Steam in Cubic metres. 
in Degrees Values Centigrade. previously I By Equation I By Experi-

obtained. (45). ment. 

58'21° 8'38 8'23 8'27 
6-;';)2 0'41 5'29 0':33 
70'76 4'94 4'83 41H 
77'18 3'84 3'74 3'72 
77"49 3'79 3'69 3"j! 
79'40 3'52 3'43 3'43 
83'50 3'02 2'94 3'05 
86'S3 2'6d 2'60 2'62 
92'66 2'18 2'11 2'15 

117'17 0'991 0'947 0'941 
118'23 0'961 0'917 0"906 
118'46 0'954 0'911 0'891 
124'17 0'809 0'769 0'758 
128'41 0'718 0'681 0'648 
130'67 0'674 0'639 0'634 
131'78 0'654 0'619 0'604 
134'87 0'602 0'069 0'583 
137"46 0'562 0'530 0'514 
139'21 0'537 0'005 0'496 
141'81 0'502 0'472 0'457 
142'36 0'495 0'465 0'448 
144'74 0'466 0'437 0'4:12 

This table shews that the values given by experiment agree 
much better with those calculated by the author's equation 
than with the values previously obtained; and that the ex-

• Proc. RoyaZ Soc. 18~, and PhiZ. Mag., Series IV. Vol. Ul. 
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perimental values are in general yet further removed from 
those previously obtained than are the values derived from 
the author's formula. 

§ 10. Determination of the Mechanical Equivalent of 
Heat from the behaviour of Saturated Steam. 

Since we have determined the absolute values of a, with
out assuming the mechanical equivalent of heat to be known, 
we may now apply these values, by means of equation (17), 
to determine the mechanical equivalent itself. For this 
purpose we may give that equation the following form: 

dp (a+ t)~
dt 

E = (8 - a) ............... (46). 
r 

The coefficient of a - a in this equation may be calculated 
for different temperatures by means of Regnault's tables. For 
example, to calculate its values for 100°, we have given for 

: the value 27'20, the pressure being reckoned in milli

metres of mercury. To reduce this to the measure here em
ployed, viz. kilogrammes per square metre, we must multiply 
by the weight of a column of mercury at temperature 0', 
1 square metre in area and 1 millimetre in height, that is by 
the weight of 1 cubic decimetre of mercury at 0°. As Regnault 
gives this weight at 13"596 kilogrammes, the multiplication 
gives us the number 369-8. The values of (a + t) and of r 
at 100° are 373 and 536'5 respectively. Hence we have 

dp 
(a + t) dt 373 x 369-8 

257 j ----=-=::0--=--536-5 r 

and equation (46) becomes 

E = 257 (a - a) ...................... ( 47). 
We have now to determine the quantity (a-a), or, since a is 
known, the quantity a for steam at 100°. The method f!>rmerly 
pursued, i. e. to use for saturated steam the same specific 
weight, which for superheated steam had been found by 
experiment or deduced theoretically from the condensation of 
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water, led to the result, that a kilogram of steam at. 1000 

should have a volume of 1'696 cubic metres. From the fore
going however it appears that this value must be consider
ably too lar~e, and must therefore give too large a value for 
the mechamcal equivalent of heat. Taking the specific heat 
as calculated by equation (45), which for 100° is 0'645, we 
obtain for 8 the value 1'638. 4-pplying this value of 8 we 
get from equation (47) 

E=421 ..•...••••...•.......... (48). 

This method therefore gives for the mechanical equivalent 
of heat a value which agrees in a very satisfactory manner 
with the value found by Joule from the friction of water, and 
with that deduced in Chapter II. from the behaviour of 
gases; both of which are about equal to 424. This agree
ment may serve as a verification of the author's theory as to 
the density of saturated steam. 

§ 11. OJmplete Differential Equation for Q in the case of 
a body comp08ed both of liquid and vapour. 

In § 1 of this chapter we expressed the two first differ
ential coefficients of Q, for a body consisting both of liquid 
and vapour, by equations (7) and (8), as follows: 

dQ 
dm=P, 

i/O 
dT=m(H-O)+MO. 

Hence we may form the complete differential equation of the 
first order for Q, as follows: 

dQ = pdm+ [m (H - 0) +MOJ dT ........ (49). 

By equation (12) we may put 

dp p 
H-O= dT- f' 

whence equation (49) becomes 

dQ = pdm + [ni (;~-~) + NO] dT ......... (50). 
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Since p is a function of T only, and therefore 

dp 
dTdT=dp 

157 

we have dQ = d (mp) + ( - i + MO) dT .......... (51), 

or dQ = Td ("':}) +MGdT ...•.••.•...••••.•.• :(52). 

These equations are not integrable if the two quantities, whose 
differentials are on the right-hand side, are independent of 
each other, and the mode of the variations thus left undeter
mined. They become integrable as soon as thiR mode is deter
mined in any way. We can then perform with them calcu
lations exactly similar to those given for gases in Chapter II. 

We will for the sake of example take a case which on 
the one hand has an importance of its own, and on the other 
derives an interest from the fact that it plays a prominent 
part in the theory of the steam-engine. The assumption is 
that the mass consisting both of liquid and vapour changes 
its volume, without any heat being imparted to it or taken 
from it. In this case the temperature and magnitude of the 
gaseous portion also suffers a change, and some external 
work, positive or negative, must at the same time be per
formed. The magnitude m of the gaseous portion, its volume 
tI, and the external work W, must now be determined as 
functions of the temperature. 

§ 12. Ohange of the Gaseous Portion of the Mass. 
As the mass within the vessel can neither receive nor 

give off any heat, we may put dQ = O. Equation (52) then 
becomes: 

Td (~) + MOdT= 0 ............•.. (53). 

If we divide this equation by E, the quantities p and 0, which 
relate to the mechanical measure of heat, change into rand 
c, which relate to the ordinary measure of heat. If we also 
divide the equation by T, it becomes: 

(mr) dT • d T + Me T = 0 ............. ... (<>3a). 
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The first member of thi.'! equation is a simple differentia.l, 
and may at once be integrated: the integration of the second 
is also always possible, since c varies only with the tempera
ture T. If we merely indicate this integration, and denote 
the initial values of the various magnitudes by annexing 
the figure I, we obtain the following equation: 

!"-!' _ ~1!.l + MJTc dT = 0, 
TTl T.T 

mr _ m, r l MJT dT (- A) 2' - '1' - c l' ................. a'l! • 
I T, ' 

or 

Actually to perform the integration thus indicated, we 
may employ the empirical formula for c given by Regnault. 
For water this formula, already given in (27), is as follows: 

c = 1 + 0'00004 + 0·0000009f. 

Since c is thus seen to vary very slightly with the tempera
ture, we will in our calculations for water assume e to be 
constant, which will not seriously affect the accuracy of the 
results. Hence (54) becomes: 

mr _ m.r, 'II I T (--) -'1' -p-.JY.LC ogT ..................... aa. 
I 

whence 
_ T (m1r1 'II I T) (-6) m--;:- T, .-me ogT, .............. a • 

If we here substitute for r the expression given in (28), or in 
a simpler form in (30), then m will be determined as a func
tion of temperature. 

To give a general idea of the values of this function, 
some values have been calculated for a special case, and col
lected in the following table. The assumption is that the 
vessel contains at first no water in a liquid condition, but 
is filled with steam at its maximum density, so that in 
equation (56) we may put m, = M. Let there now be an 
expansion of the vessel. A compression would not be ad
missible, because on the assumption of the absence of water 
at the commencement, the steam would not remain at its 
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maximum density, but would be superheated by the heat 
developed in the compression. In expansion on the other 
hand the steam not only remains at its maximum density, 
but a part of it is precipitated as water; and the diminution 
of m thus produced is exhibited in the table. The initial 

temperature is taken at 150° C., and the values of i are 

given for the moments when the temperature has sunk 
through expansion to 125°, 100°, etc. As before, the tem
perature is reckoned from freezing point, and is denoted by 
t, to distinguish it from the absolute temperature T. 

t 15oo 125° I 1Ooo 75° 5oo I 25° 

'III. 
1 0'956 I 0'911 0'866 0'821 I 0'776 X 

§ 13. Relation between Volume and TemperatuTe. 
To express the relation which exists between the volume 

v and the temperature, we may first apply equation(5): 

tI=mu +Mu. 

The quantity u, which expresses the volume of a unit of 
weight of the liquid, is a known function of temperature, and 
the same is therefore true of Mu. It remains to determine 
mu. For this purpose we need only substitute in equation 
(55) the expression for r given in equation (17). Thus we 
obtain 

whence 

mu dp _ 'IIl'ITt T 
EX dl'- T - Me log T ............ (57). 

1 1 

_ E (m1Tt Me 1 T) (-8) mu-!!:I!.. T
t
- - C ogT

l 
............ i) • 

dT 

The differential coefficient ;:T maybe considered as known, 

since p is a known function of the temperature; and there
fore this equation determines the product mu, and thence, by 
the addition of Nu, the required quantity tI. 
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The following table gives a series of values of the quotient 

!.. calculated hy this equation for the same case as was treated 
til 
in the last table. Under these are placed for the sake of 

comparison the values of !.. which would hold if the two 
til 

ordinary assumptions in the theory of the steam-engine were 
correct: viz. (1) that steam in expansion remains at its maxi
mum density without any part of it condensing; (2) that 
steam follows the law of Mariutte and Gay-Lussac. On these 
assu~ptions we shall have 

t I 15oo I 1250 

1.1 
1'88 - 1 

1.11 

~xT.... 
P TI 

1 1"93 

!.=~xT 
v1 P T1 • 

lOoo 

3"90 

750 

9"23 

4'16 10'21 

I 5oo 2;)0 : 

25'7 88'7 
I 

29'7 107"1 

§ 14. Determination of the Wark (1JJ a jU'Mtion oj Tem
perature. 

It remains to determine the work done during the change 
of volume. For this we have the equation 

W =fpdv ...................... (59). 
111 

But by equation (5), taking the magnitude (T (which is 
generally small and very slightly variable) as constant. we 
have: 

whence 
dv=d (mu). 

pdv = pd (mu). 

which may be also written thus 
_ dp 

pdv - d (mup) - mu d:fdT ............ (60). 
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In this equation we may substitute for mu ~f the expres

sion given in equation (57), and may then perform the inte
gration. The result however is obtained in a more convenient 
form as follows. By (13) we have: 

up mp 
mu dTdT=p dTj 

and from (53) we obtain 

i dT = d (mp) + MCdTj 

hence 

mu ~~dT=d(mp) + MOdT. 

Equation (60) now becomes 

pdv= d (mup) - d (mp) -MOdT 

=-d[m(p-up)] -MOdT ............ (61). 

Integrating this equation we obtain 

W=m. (Pl-uJPJ-m(p-up)+MO(T1-T) ... (62). 

If in this equation we substitute for p and 0, according to 
equation (14), the values Er and Ee, and collect together the 
terms which contain E as a factor, we have: 

W = mup - m1u1Pl + E [m1r1- mr + Me (T1 - T)] ... (63). 

From this equation we may calculate W, since mr and 
mu are already known from the equations (56) and (58). This 
calculation has been made for the same case as before, and 

the values of .:' i.e. of the work done by a unit of weight 

during expansion, are given in the following table j the unit 
of weight is here a kilogram and the unit of work a kilo
grammetre. The value used for E is 423'55, as found by 
Joule. 

AB a comparison with the numbers of this table it may be 

c. 
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mentioned that the for the work 
actual formation this overcomes 

~xternal pressure, is 18700 kilogrammetres per kilogram of 
water, evaporated at temperature 1500 and at the correspond
ing pressure. 

I-!- l 1500 1250 1000 I 750 

~-li I ____ ~ ____ ~_.~_1 ______ ~4_93_00 __ ~6_3_700 __ , 



CHAPTER VII. 

FUSION AND VAPORIZATION c:w SOLID BODIES. 

§ 1. Fundamental EqooJ.iun.a /01' the proces8 of Fusion. 
Whilst in the case of vaporization the influence of the ex .. 

~mal pressure was early observed, and was everywhere taken 
mto account, it had hitherto been left out of account in the 
case of fusion, where it is much less easily noticed. A little 
consideration however shews that, if the volume of a body 
changes during fusion, the external pressure must have 
~ influence on the process. For, if the volume increases, an 
mcrease of pres.~ure will make the fusion more difficult, 
whence it may be concluded that a higher temperature is 
necessary for fusion at a high than at a low pressure. If on 
the other hand the volume decreases, an increase of pressure 
will facilitate the fusion, and the temperature required will 
be less, as the pressure is greater. 

To examine more exactly the connection between pressure 
~nd fusion-point, and the peculiar changes which are som&' 
tImes connected with a change of pressure, we must form the 
equations which are supplied for the process of fusion by the 
two fundamental principles of the Mechanical Theory of 
Heat. For this purpose we pursue the same course as for 
vaporization. We conceive an. expansible vessel containing 
a certain quantity M of a substance, which is partly in thtl 
solid, and partly in the liquid condition. Let the liquid part 
~ve the magnitude m, and therefore the solid part the mag
lUtude M - m. The two together are supposed to fill the 
vessel completely, so that the content of the vessel is equal 
to v, the volume of the body. 

If this volume ." and the temperature T are given, the 
magnitude m is thereby determined. To prove this, let us 
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first suppose that the body expands during fusion. Let it be 
also in such a condition that the temperature T is exactly the 
melting temperature at that particular pressure. Now if in 
this condition the magnitude of the liquid part ,were to 
increase at the expense of the solid, the expansion which 
must then result would produce an increase of pressure 
against the walls of the vessel, and therefore an increased 
reaction of the walls against the body. This increased pres
sure would produce a rise in the fusion-point, and since tbe 
existing temperature would then he too low for fusion, a 
solidification of the liquid part must begin. If on the COD

trR11 the solid part were to increase at the expense of, the 
liquId, the point of fusion would thereupon sink, and since 
the existing temperature would then be higher than the 
fusion-point, a fusion of the solid part must begin. Next, if 
we make the opposite assumption, viz. that the volume 
decreases during fusion, then if the solid part increase there 
must be a rise of pressure and in consequence a partial 
melting, and if the liquid part increase there must be a fall 
in pressure and in consequence a partial solidification. Thus 
on either assumption we have the same result,' viz. that only 
the original proportions of the liquid and solid parts (which 
proportions correspond to the pressure which gives a tem
perature of fusion equal to the given temperature) can be 
permanently maintained. Since then the magnitude m is 
determined by the temperature and volume, this volume will 
conversely be determined by the temperature and the mag
nitude m; and we may choose T and m as the variabll's 
which serve to determine the condition of the body. It now 
remains to express p as a function of T. Here we may 
again apply equations (1), (2), (3) of the last chapter, viz.: -

ddT (:r~) - 1m (:~) = *~ x ;; , 
d (tiQ) , ti (tiQ\ 1 dQ 

d"T dm - tim d1'j =rp X d'm' 

tiQ = T dp x _dv 
dm dT d'n£· 

If we denote by (T, as before, the specific volume (or voluru.~ 
of a unit of weight) for the liquid condition of the body" 
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and the specific volume for the solid condition by T. we have 
for the total volume tI of the body, . 

tI = mtT + (M - m) T, 

or tI = m (0" - T) + MT ..................... (1), 

whence dv d~, d-,r 0" - T ....................... (2). 

If further we denote the heat of fusion for a unit of weight by 
p', we may put 

~~=p' ........................... (3). 

To express ~~, the other differential coefficient of Q, we 

must employ symbols for the specific heat of the body in the 
. liquid and in the solid condition. Here, however, we must 
make the same remark as in the case of vaporization, viz. 
that it is not the specific heat at constant pressure which is 
treated of, but the specific heat for the particular case in 
which the pressure alters with the temperature in such a way 
that the temperature shall always be the temperature of 
fusion for that particular pressure. In the case of vaporiza
tion, where the changes of pressure are generally small, it 
was possible to neglect the influence of the change of pressure 
on the specific heat of the liquid body, and to consider the 
specific heat of a liquid body, as found in the formula, to be 
equivalent to the specific heat at constant pressure. In the 
present case small changes of temperature produce such 
great changes of pressure, that the influence of these on the 
specific heat must not be neglected. We will, therefore, uuder 
the present circumstances, denote by 0' the specific heat of 
the liquid, which in the formula for vaporization we denoted 
by O. The specific heat of the solid body may be de
noted in this case by K'. Applying these symbols we may 
write 

~~ = mO' + (M - m) K', 

or ~~ == m (0' - K') + MK' .............. (4). 
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From equations (3) and {4} we have 

fp(~~) == ~~ ...................... (5), 

d: (~~) == 0' - X' ............... , (6). 

Inserting these values, and the 'value for ~~ given in (3), in 

the above differential equations, we obtain 

:~+XI - a' == (O'-T) ;~ ............... (7), 

d I , 

d~+ K' - 0 ' =~ .......................... (8), 

p' == T (0' - T) :~ ........................... (9). 

In these equations the heat is supposed to be measured by 
~echanical units. If the heat is to be measured in ordinary 
units, we may use the following symbols: 

I A' I E' I 
C == E; Ie == E; r' == ~ .............. (10). 

The equations then become • 

dr' , , 0' - T (dp) 
d1.,+1e -0 ==-r dT .............. (11), 

~~+ 11- c' ==; ........................... (12), 

r== T(~-T) (;.t;) ........................ (13). 

These are the equations required, of which the first corre
sponds to the first Fundamental Principle, and the second to 
the second, whilst the third is a combination of the other 
two. 
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§ 2. Relaticm between Pram,., ana Temperature of 
Fusion. 

The foregoing equations, only two of which are inde
pendent, may be applied to determine two quantities hitherto 
unknown. 

We will first use the last equation to determine the. way 
in which the temperature of fusion depends on the pressure. 
The equation may be written 

dT T(CT-T) 
dp = Er' .•.••..••.•••••••••.• (14). 

This equation in the first place justifies the remark already 
made, that if a body expand during fusion the point of fusion 
rises as the pressure increases; whereas if the body contracts 
the point of fusion falls. For according as CT is greater or 
less than T so is the difference CT - T, and therefore also the 
difti ·al ffi . dT . . . Ag. b erentl coo clent dp' posItIve or negatIve. alD, y 

this equation we may calculate the numerical value of ;T. 
We will calculate this value for the case of water. The ~o
lume in cubic metres, or t\e value of CT, for a kilogramme of 
water at 4° O. is 0·001. A~ freezing point it is a little greater, 
but the difference is so small that it may be neglected. The 
volume in cubic metres, or the value of T, for a kilogram 
of ice is 0·001087. The heat of fusion for water, or the 
value of .,.', is according to Person 79. At freezing point T 

L equals \73, and for E we will take the value 424. Hence 
weobtam 

dT 273 x 0·000087 
dp =- 424 x 79 

If the pressure is given not in mechanical units (kilograms 
per square metre), but in atmospheres, we must multiply the 

above value of ~T by 10333. This gives us 
11 dT 

ap = - 0·00733, 

i.e. an increase of pressure of one atmosphere will lower the 
point of fusion by 0·00733 of a degree Oent. 
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§ 3. Ea:perimen;tal Verification of tk8 Foregoing Beault. 
The conclusion that the melting point of ice is lowered 

by an increase of pressure, and the first calculation of the 
amount, are due to James Thomson, who derived from 
Carnot's theory an equation which differs from our equation 

(14) only in this, that in the place of ~ it contains an. un

known function of temperature, whose particular value for 
the freezing point was determined from Regnault's data on 
the heat of vaporization and pressure of steam. Sir William 
Thomson afterwards applied to this theoretical result a very 
accurate test by expenment·. 

In order to measure small differences of temperature, he 
prepared a thermometer filled with ether-sulphide, the bulb 
of which was 3t in. long and the tube 61 in. Of this 5i in. 
were divided in 220 equal partsl and 212 of these parts com
prised an interval of temperature of 30 Fahr., so that each 
part was about equal to ..fr of a degree Fahr. This thermo
meter was hermetically enclosed in a larger glass tube, to 
protect it from the external pressure, and so enclosed was 
placed in an Oersted press, filled with water and lumps of 
clear ice, and containing an ordinary air gauge to measure 
the pressure. When the thermometer had become stationary 
at a point ~rresponding to the melting point of ice at atmos
pheric pressure, the pressure was increased by screwing down 
the press. The thermometer was at once seen to fall, as the 
mass of water and ice assumed the lower melting tempera
ture corresponding to the higher pressure. On taking off' 
this pressure the thermometer returned to its original position. 
'l'he table below givt's the fall of temperature observed for two 

Pressure. 

S"l Atm. 
16"S " 

--------

Fall of Temperature~- ---I 
Observed" 

0"0590 C. 
0"129 " 

Calculated. 

0"059" C. 
0"123 " 

different pressures, and also the fall of temperature, as cal
culated for those same pressures by applying to temperatur~8 

• Phil. MGf/., Series Ill. Vol. urnl. p. 123. 
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as high as 16"8 atm. the value of :T, which was found in the 

last section, and which primarily felates to the" ordinary at
,mospheric pressure. 

We see that the observed and ca.1cula.ted numbers agree 
very closely together, and thus another result of theory 
has been verified by experiment. 

More recently a very striking experiment was performed 
by Mousson·, who by the application of enormous pressures 
melted ice which was kept during the experiment at a 
temperature of -180 to - 20°. The pressure employed he 
calculates approximately at about 13000 atmospheres; on 
which it may be remarked that it may be possible to pro
duce the melting with a much smaller pressure, since with 
his arrangement all that could be known was that the ice 
had somehow melted during the experiment, and not the 
exact time at which the melting took place. 

§ 4. Erperimenttt 07& Su.b8ta7&C68 tehich exparul during 
Fusion. 

Bunsen t was the first to institute experiments on sub
stances which expand during fusion, and of which the ? 
fusion point must therefore rise as the tem..p.emtufil in- • 
creases. The substances he chose were spermaceti and 
paraffin. By an ingenious arrangement he obtained in an 
extremely simple manner a very high and at the same time 
measurable increase of pressure, and was able to observe 
portions of the same substance side by side under ordinary 
atmospheric, and under the increased pressure. He took a 
tube of thick glass about the size of a straw and 1 foot in 
length, and drew it at one end into a capillary tube 15 to 
20 inches long, and at the other end into a somewhat larger 
one only Ii inches long. The latter, which was placed lowest 
in the apparatus, was bent round until it stood up parallel 
to the lower part of the glass tube. This short curved part 
was filled with the substance to be tested, and the larger 
glass tube with quicksilver, whilst the long capillary tube 
remained filled with' air. Both capillary tubes were sealed 

• Pogg. .dflR.. VoL cv. p. 161. 
t Pogg • .dAtI., Vol. LDD. p. 662. 
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at the ends. On heating the apparatus the quicksilver 
expanded, rose in the longer capillary tube, and compressed 
the air within it. The reaction of this air compressed first 
the quicksilver and then the substance in the shorter tube, 
and the magnitude of the pressure, which was capable of 
rising to above 100 atmospheres, could be measured by the 
volume of air left in the upper tube. 

This apparatus was fixed on a board close to another 
arranged in the same way except that the upper air-tube 
was not sealed; so that no compression of the air, and con
sequent rise of pressure, could take place. The two tubes 
were now plunged in water, the temperature of which was 
somewhat higher than the melting point of the substance 
to be tested. Thus when the lower tube filled with the 
substance was once completely under water, it was only 
needed to sink it still deeper in order to heat a larger part 
of the quicksilver, and so to obtain a higher pressure 
in the closed upper tube. Under these conditions Bunsen 
repeatedly melted the substance in both tubes, and then by 
cooling the water allowed it again to solidify, observing the 
temperature at which this took place. The result was that 
this solidification always took place at a higher temperature 
in the tube in which the pressure was increased than in 
the other. The following were the numerical results. 

Spermaceti. 

Pressure. 

lAtIn. 
29 " 
96 " 

141 " 
156 " 

Pressure. 

I Atm. 
85 

" 100 
" 

Point of 
Solidifica.tion. I 

47'70 C. 
48'3 " 
49'7 " 
50'5 .. 
50'9 " 

Paraffin. 

I 
Point of 

Solidification. 

46'30 C. 
48'9 

" 49'9 
" 
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More recently H opkins* experimented with spermaceti, 
wax, sulphur, and stearine, producing pressures by means of 
a weighted lever to 800 atmospheres and upwards. With all 
the above substances a rise of the melting point under an 
increase of pressure was observed. The particular tempera
tures observed with different pressures shewed however 
considerable irregularities. In the case of wax, with which 
the rise of temperature was most regular, an increase of 
pressure of 808 atmospheres produced a rise in the melting 
point of 1510 Cent. 

The calculation of the rise in the melting point from 
the theoretical formula cannot well be performed for the 
substances tested by Bunsen and Hopkins, since the data 
required. are not known with sufficient accuracy. 

§ 5. Relation between the heat consumed in Fusion and 
tM temperature of Fusion. 

Having applied equation (13), in § 2, to determine the 
relation between the temperature of fusion and the pressure, 
we will now turn to equation (12), which may be written as 
follows: 

dr' , , r' 
dT = c - le + -1" •••••••••.••••••• (15). 

This equation shews that, if the temperature of fusion is 
changed by a change of pressure, the quantity of heat r' 
required for fusion also changes. The amount of this change 
can be determined from the equation. In this the symbols 
a' and le' denote the specific heat of the substance in the 
liquid and in the solid condition, not however, as already 
observed, the specific heat at constant pressure, but the 
specific heat in the case in which the pressure changes with 
the temperature in the manner indicated by equation (13). 

The mode of determining this kind of specific heat will 
be described in the next chapter. Here we will merely 
by way of example give the numerical values in the case 
of water. The specific heat at constant pressure, i.e. that 
specific heat which is simply measured at atmospheric 
pressure, has in the neighbourhood of 0° the value 1 for 
water, and, according to Persont, the value 0'48 for ice. 

* Reporl, Brit. -'BlOC., 1854, p. 57. 
t Compte. Rendlll. Vol. ux. p. 326. 
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The specific heat for the case here considered has on the 
contrary for water and ice the values c' == 0'945 and k' -0'631. 
:h'or r' we may take Person's value 79. We thus obtain 

dr' 79. 
d 1'- 0'945 - 0'631 + 273 

== 0'314 + 0'289 
=0'603. 

It is known that the freezing point of water can aLio 
be lowered by protecting it from every sort of disturbance. 
This lowering of temperature however only refers to the 
commencement of freezing. As soon as this has begun, a 
portion of the water freezes immediately such that the whole 
mass of water is thereby warmed again up to 00, and the re
mainder of the freezing takes place at that temperature. 
There is therefore no need to examine more closely the change 
in the magnitude r' which corresponds to a lowering of the 
temperature of this kind, and which is simply determined by 
the difference of the specific heat of water and ice at constant 
pressure. 

§ 6. Passage from the Bolid to the gaseous condition. 
Hitherto we have considered the passage from the liquid 

to the gaseous and from the solid to the liquid condition. 
It may however happen that a substance passes direct from 
the solid to the gaseous condition. In this case three equa
tions will hold of the same form as equations (15), (16) 
and (17) of the last chapter, or (11), (12), (13) of this: we 
must only remember to choose the specific heats and specific 
volumes relating to the different states of aggregation, and 
the quantities of heat consumed in the passage from one con
dition to the other, in the manner corresponding to the pre
sent case. 

The circumstance that the heat expended is greater in 
the passage from the solid condition to the gaseous than 
from the liquid, leads to a conclusion which has already been 
drawn by Kirchhoff*. For if we consider a substance when 
just at its melting point, vapour may be developed ~ this 
~emperature both from the liquid and from the solid. At 

• Pogg. Ann., VoL CJJJ. p. 206. 
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temperatures 'above the melting point we have only to do 
with vapour developed from aliquid,andat temperatures below 
with vapour developed from a solid, leaving· out of account 
the special case mentioned in the last section, in which a. 
liquid kept perfectly still remains fluid in spite of having 
reached a lower temperature. 

If for these two cases,' i. e. for temperatures above and below 
the melting point, we express .the pressure of vapour p as a 
function of temperature, and construct for each case the curve 
which has the temperatures for abscisslB and the pressures 
for ordinates, the question arises how the curves correspond
ing to the two cases are related to each other at the common 
limit, viz. the temperature of fusion. In the first place, so 
far as concerns the value of p itself, we may consider it as 
known QY experience to be equal in the two cases; and 
thus the two curves will meet in one point. at the tempera
ture of fusion. But with regard to the differential coefficient 

~~, the last of the above-named three equations shews that it 

has different values in the two cases; and thus the tangents 
to the two curves at their point of intersection have different 
directions. 

Equation (17) of Chapter VI. which relates to the passage 
from the liquid to the gaseous condition, may be wntten as 
follows: 

dp Er 
dT = T(s - 0") ........................ (16). 

To form the correspondin~ equation for the passage from 
the solid to the gaseous condItion, we should set on the left 
hand the pressure of the vapour given off by the solid body, 
which for distinction we may call P. On the right hand we 
must put, instead of 0", which is the specific volume of the 
liquid, the specific volume of the solid which we may call 'T ; 

the difference thus indicated is however very small, since 
these two specific volumes differ very slightly from each 
other, and in addition are small in comparison with 8, the 
specific volume of the substance as a gas. It is of more 
importance to substitute for r, which is the heat required to 
cause the passage from the liquid to the gaseous condition, 
the quantity of heat required for the passage from the solid 
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to the gaseous condition. This latter equals r + '1", where '1" 
is the heat required for melting. Thus in the present case 
the equation is : 

dP E(r + '1") .... 
dT = T(8 -'T) •••••••• : .............. (1/). 

Combining this equation with (16), and neglecting the small 
difference between (T and 'T, we have 

dP dp Br' 
dT - dT = T(s _ a) ••.•..•••.. , •••..•••. (18). 

If we a.pply this equation to water, we must put T = 273, 
'1" = 79, s::o: 205, (T = 0'001. and giving E the known value 424 
we have 

dP dp 424 X 79 , 
dT- dT=273 x 205 =0599. 

If we wish to express the pressure in millimetres of mer
cury. instead of kilogrammes per square metre, we must, as 
remarked in Chapter VI. § 10, divide the above result by 
13'596; then putting for p and P the Greek letters 7r and 
n, we have 

an d'lT' 
dT - dT= 0'044-

It may be added for the sake of comparison that the diffe

rential coefficient ~ has for 0° the value 0'33, according to 

the pressures which Regnault has observed at temperatures 
just over 0°, 
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CHAPTER VIII. 

ON HOMOGENEOUS BODIES. 

§ 1. Cfhanges of Ooodition without Ohange in tM Oon
dition of Aggregation. 

We will now return to the geneml equations of Chapter 
V. and will apply them to cases, in which a body undergoes 
changes which do not extend so far as to alter its condition 
of aggregation, but in which all parts of the body are always 
in. the same condition. We will suppose these changes to be 
produced by changes in the tempemture and in the external 
pressure. In consequence of these, changes take place in the 
a.rrangement of the molecules of the body, which are indi
cated by changes in form and volume. 

With regard to the external force, the simplest case 
is that in which an uniform normal pressure alone acts on 
the body; in this case no account need be taken of changes 
in the body's form, in determining the external work, but only 
of its altemtion in volume. Here we may take the condition 
of the body as known, if of the three magnitudes, tempera
ture, pressure and volume, which we will denote as. before 
by T, p and'll, any two are given. According as we choose 
for this purpose 'II and T, or p and 1~ or 'II and p, so 
We obtain one of the three systems of equations, which in 
Chapter V. are numbered (25), (26) and (27): these equa
tions we will now use to determine the different specific heats 
and other quantities, related to changes in temperature, 
pressure, and volume. 
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§ 2. I mprO'lJed Denotation for tM Differential Ooeift
cients. 

If the above-named equations of Chapter V. are referred 
to a unit of weight of the substance, the differential coeffi-

cient :~ will denote in equations (25) the specific heat at 

constant volume, and in equations (26) the specific heat at con

stant pressure. Similarly :~ has different values in (25) 

and (27) and ~~ has different values in (26) and (27). Such 

indeterminate cases always occur where the nature of the 
question occasions the magnitudes chosen as independent 
variables to be sometimes interchanged. If we have chosen 
any two magnitudes as independent variables, it follows 
that in differentiating according to one we must take the 
other as constant. But if, whilst keeping the first of these 
as one independent variable throughout, we then choose for 
the other different magnitudes in succession, we naturally 
arrive at a corresponding number of different significations 
for the differential coefficients taken according to the first 
variable. 

This fact induced the author, in his paper "On various 
convenient forms of the fundamental equations of the Me
chanical Theory of Heat,"· to propose a system of denotation 
which 80 far as he knows had not been in use before. This 
was to subjoin to the differential coefficient as an index the 
magnitude which was taken as constant in differentiating. 
For this purpose the differential coefficient was inclosed in 
brackets and the index written close to it, a line being drawn 
above the latter, to distinguish it from other indices, which 
might appear at the same place. The two differential c0-
efficients named above, which represent the specific heat 
at constant volume and at constant pressure, would thus be 

written respectively (:~); and (~~_. This method was 

soon adopted by various writers, but ~he line was generally 

• Report oj the I'iattwelutl' SocUty 01 Zurit:h, 1865, and Pogg • ..f •••• Vol 
CUV. p. 858. 
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left out for the sake of convenience. More recently· the 
author introduced a simpler form of writing, which yet 
retained the essential advantage of the method. This con
sisted in placing the index next to d, the sign of differentia
tion. The brackets were thus rendered needless and also the 
horizontal line, because no other index is in general placed 
in this position. The two above-named differential coeffi-

cients would thus be written ~~ and ~~ ; and this method 

will be adopted in what follows. 

§ 3. Relations betweoo the Differential Ooefficients of 
Presswre, Volume, and Temperature. " 

If the condition of the body is determined by any two of 
the magnitudes, Temperature, Volume, and Pressure, we 
may consider each of these as a function of the two others, 
and thus form "the following six: differential coefficients : 

d.p aiop d,;11 d'l:11 apT d.T 
dT' dv' d'1" dp' dv' dp' 

In these the suffixes, which shew which magnitude is 
to be taken as constant, may be omitted, provided we agree 
once for all that in any differential coefficient that one of the 
three magnitudes, T,p, v, which does not appear, is to be con
sidered as constant for tha.t occasion. We shall however 
retain them for the sake of clearness, and because we shall 
meet with other differential coefficients between the same 
magnitudes, for which the constant magnitude is not the 
same as here. 

The investigations to be made by help of these SIX dif
ferential coefficients will be facilitated, if the relations which 
exist between them are laid down beforehand. In the first 
place it is clear that amongst the six there are three pairs 
which are the reciprocals of each other. If we take v as 
constant, T and p will then be so connected that each may 
be treated as a simple function of the other. The same holds 
with T and v where p is constant, and with v and p when T 

• .. On the principle of the Mean Ergal and its application to the mole· 
cular motions of Gases." Proceeding. of the Nied.errhein. Ge •• filr Natur· 
und Heilkunde, 1874, p. 188. 
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is constant. Hence we may put 

2.. _ d.l' . 1 dpv. 
d.T - dT' ;r;'P:: dT' i-=~V ........... (1). 

tt' p. 
dp dv dv 

To examine further the relation between these three 
pairs, we will by way of example treat p as a function of 
T and fl. Then the complete differential equation for p is 

d d.PdT d"Pd :p= dT + dv v. 

If P is constant, we must put in this equation, 

dv 
dp=O, dv= dpdTi 

whence it becomes 

o =~dT+ d,.pdpv dT· 
dT dv dT . 

wheftce 

d;; x ~p;x ~: = -1. ................. (2). 

By means or this equation combined with equations (1), 
we may express each of the six differential coefficients by the 
product or the quotient of two other differential coefficients. 

§ 4. Complete Differential Equations for Q. 

We will now return to the consideration of the heat taken 
in and given out by the body. If we denote the specific 
heat at constant volume by C" and at constant pressure b) 
Cp ' and take the weight of the body as unity, we have 

d.Q C dvQ C 
dT =.; dT = p' 

We have also the equations (25) and (26) of Chapter V., 
which with our present notation will be written as follows: 

d,.Q = Td.V. d,.Q --T~~ 
dv d'1" dp - dT' 
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Hence we can write down the following complete differen
tial equations : 

d Q - a.dT + T:'~ dv .................. (3), 

dQ=a,dT- T~~dp .................. (4). 

From 'ese two we easily obtain a third differential equa
tion for Q, which relates to v and p as independent variables. 
For multiplying the first equation by a, and the second by 
a" subtracting, and. dividing the result by a,- a .. we have 

dQ= c,~c. (a, ~~dv+a.~;dp) ......... (5). 

These three equations correspond exactly to those obtained 
in Chapter II. for perfect gases, except that the latter are 
simplified by applying the law of Manotte and Gay-Lussac. 
The equation expressing this law is 

pv=BT, 
whence we have 

d,.v_B 
dT-p' 

SUbstituting these values in the above equations, and in the 

last putting ~ for T, we get 

RT 
d Q = a.dT + - dv, 

v 

RT 
dQ = a dT - -- - dp , p' 

dQ=!!'-- pdv+ ~ vdp. a,-a. (),- C. 

These equations are the same as (11), (15) and (16) or 
Chapter II. 

The equations (3), (4) and (5) are not immediately inte
grable, as has been already shewn with respect to the special 
eqUations holding for gases. For equations (3) and (4) this 
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follows from equations already given. If in the last equa
tions of the systems (25) and (26) of Chapter V. we use the 
symbols a. antI a,., and also the method above explained of 
writing the differential coefficients, we have 

~t:; = T:~; dd~" = - T:i! ............ (6). 
Whereas the conditions which must be fulfilled, if (3) and 

(4) are to be "integrable, are as follows: 

~,.a. = Td.'P d.p . ~~ = _ T d.-v _ d " 
dv dT'" + dT' dp dTa d'l.' . 

"By a aimilar but longer process we may shew that equa
tion (5) is not integrable; as may at once be concluded from 
the fact that it is derived from equations (3) and (4). 

These three equations thus belong to that class of com-
o plete differential equations which are described in the Intro
duction, and which can only be integrated if a further relation 
between the variables is given, and the path of the variation 
thereby fixed. 

§ 5. Specifio Heat at aonstant Vol"ume and at aonstant 
Pressure. 

If in equation (4) we substitute for the indeterminate 

differential dp the expression :-: dT, we introduce the special 

case in which the body changes its temperature by d T, the 
volume remaining constant. If we divide by d T we have on 

the left-hand side the differential coefficient ~ ~ , which is 

the specific heat at constant volume and has been denoted 
by a.. "Hence we obtain the following relation between 
a. and a,.: 

a. = a,. - T:-; x :.~ ...................... (7). 

Substituting in equation (5) the value of a,. - a. given 
by this equation, we obtain the following simpler form : 

d Q = a,. dd"T dv + a. ~d·T dp ...... ......... (8) • 
v " p 
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If by means of equation (7) we proceed to determine the 
specific heat at constant volume from that at constant pres
sore, it is requisite first to make a slight change in the 

equation. The differential coefficient ~ contained therein 

expresses the expansion of the body upon a rise of tempera
ture, and may generally be taken as known, but the other 

differential coefficient ~; cannot in general be determined 

for solid and liquid bodies by direct experiment. However 
from equation (2) we have 

~p! 
d.p dT 
dT = -'if;,' 

dp 

In this fraction the numerator is the differential coeffi
cient already discussed, and the denominator expresses, if 
taken w~th a negative sign, the diminution of volume by an 
increase of pressure, or the compressibility of the body; and 
this for a large number of liquids has beeu directly measured, 
whilst for solids it may be approximately calculated from the 
coefficients of elasticity. Equation (7) now becomes 

(~fr 
0,= 0,.+ T~ ..................... (7a). 

af'v . 

dp 

If the specific heats are expressed not in mechanical but 
i~ ordinary uuits, we may denote them by c, and c,.; the equa
tion then takes the form : 

T(~";r 
c, = c,. + E-;r;;- .... ...... ........... (7b). 

dp 

In applying this equation to a numerical calculation we 
lDust remember, that in the differential coefficients the unit 
oholumemust be the cube of the unit of length which has 
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been used for determining E: and that the unit of preSsure 
must be the pressure which a unit of weight exerts on a unit 
of .surface. If, as is usually the case, the coefficients of ex
pansion and compression refer to other units, they must be 
reduced to those above mentioned. 

Since the differential coefficient ~,.v is always negative, the 

specific heat at constant volume urust always be less than 
that at constant pressure. The other differential coefficient 
d,;v. 11" I h f .. dT 18 genera Y poSItive. n t e case 0 water It 18 zero at 

the temperature of maximum density, and accordingly the 
two specific heats are equal at that temperature. At all 
other temperatures, both above and below, the specific heat 
at constant volume is less than that at constant pressure; for 

although the differential coefficient ~~ is negative below the 

temperature of maximum density, yet, as it is the square of this 
which occurs in the formula, it has no influence on its value. 

As an example of the application of equation (7), we will 
calculate the difference between the two specific heats in 
the case of water at certain known temperatures. According 
to the observations of Kopp (see his tables in Lehrbuck 
der Phys. 'It. thear. Ohimie, p. 204), we have the following 
coefficients of expansion in the case of water, its volume at 
4" being taken as unity: . 

at 0° - 0'000061, 
.. 25° + 0'00025, 
.. 50° + 0'00045. 

According to the observations of Grassi *, we have for the 
compressibility of water the following numbers, which express 
the diminution of volume upon an increase of pressure of one 
atmosphere, in the form of a decimal of the volume at the 
original pressure: 

at 0° 0'000050, 
.. 25° 0'000046, 
.. 50° 0'000044. 

• .dnn. de Chim. tt de PhY6. 8rd ser. Vol. XXXI. p. 487, and ][rllnig' • 
.Tarim. /ilr Physik du .dualande., Vol D. p. 129. 
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We will now, as an example, perform the calculation for 
the temperature of 25°. The unit of length may be the 
metre, the unit of weight the kilogram. We must then 
take the cubic metre as the unit of volume; and, since a 
kilogram of water at 4(1 contains 0'001 cubic metres, we 

must, in order to obtain ~~, ~ultiply the coefficient of ex

pansion given above by 0'001. Thus we have 

:~ = 0'00000025 = 25 x 10-8. 

For compression we must, by what has been said, take as 
unit the volume which the water contained at the tem
perature in question and at the original pressure (which latter 
we may assume to be the ordinary pressure of one atmosphere). 
'rhis volume at 25° = 0'001003 cubic metres. Further we· 
have taken one atmosphere as unit of pressure, whereas we 
must take the pressure of 1 kilogramme on 1 squar.e metre j 
in which case a pressure of one atmosphere is expressed by 
10,333. Accordingly, we must put 

d,p''' = _ 0'000046 x 0'001003 = _ A." 10-13 

dp 10,333 'J!D x • 

Further, we have at 25°, T = 273 + 25 = 298; and for E 
we will take Joule's value 424. Substituting these numbers 
in equation (7b), we get 

298 251 10-18 
CJI - C" = 424 x 45 x 10-18 = 0'0098. 

In the same way we obtain from the values given above 
for the coefficients of expansion and compression at O· and 
50° the following numbers: 

at 0°, cJI - c" = 0'0005, 

" 50°, CJI - C" = 0'0358. 

If we now give to CJI, or the specific heat at constant pres
sure, the experimental values found by Regnault, we obtain 
for the two specific heats the following pairs of values: 
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at O' {OJ> = 1 _ 
0., = 0'9990, 

250 {OJ> = 1'0016 
.. 0" = 0'9918, 

500 {Ott = 1'0042 
" 0" = 0'9684. 

§ 6. Specific H eat8 under other ciroumstances. 

In the same way as we have determined the specific heat 
at constant volume in the last section, we may determine also 
the specific heat corresponding to various other circumstances, 
since we may by equation (4) fix its relation to the specific 
heat at constant pressure. 

Thus, if the circumstances are given under which the 
heating takes place, the two differentials dT and dp are no 
longer independent, but the one is determined by the other. 

We can therefore write for dp the product ~~ dT, in which 

~j, is a known function of the variables on which the con

dition of the body depends. Substituting this product for 
dp in equation (4), dividing by dT, and denoting by 0 the 

quotient ~~, which stands on the left-hand side of'the equa.

tion, and which expresses the specific heat under the given 
.::ircumstances, we obtain 

_ dJ>t} dp a -OJ>-TdT x d:1' •....•....••••.••• (9). 

If the specific heat is to be expressed in ordinary units, 
we may use the symbol 0 instead of a; and the equation 
becomes 

T apv ap 
c=cJ>-E.dT.dT ................ (9a). 

We will employ this equation, by way of example, to de
termine the specific heats which came under consideration in 
the two last chapters, viz. (1) the specific heat of water, when 
in contact with steam at maximum pressure; (2) the specific 
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heat of water and ice, when the pressure changes with the 
temperature in such a way that the temperature of melting 
corresponding to the pressure at any moment is always equal 
to the temperature which exists at that moment. 

In the first case we have simply to give to :~ the Talue 

corresponding to the intensity of pressure of the steam. For 
the temperature 100° this value is 370, taking as unit of 
pressure a kilogram per square metre. With regard to 

~;, the researches of Kopp give 0·00080 as the coefficient of 

expansion of water at 100°, taking the volume of water at 4-
as unity. This number must be multiplied by 0·001, in order to 

obtain the value of ~; in the case when a cubic metre is 

taken as the unit of volume and a kilogram as the unit of 
weight: we thus obtain the number 0·0000008. Lastly we 
write for T the absolute temperature for 100°, or 373, and 
for E, as usual, 4241. Then equation (9a) becomes 

373 
C == CJI - 424 X 0·0000008 x 370 = cII - 0·00026. 

If we take for the specific heat of water a.t constant pres· 
11ll'e, and at 100°, the values derived from the empirical 
formula of Regnault, we obtain for the two specific heats 
which we wish to compare, the following simultaneous values: 

cp = 1'013, 

C = 1·01274. 

It thus ap~ that these two quantities are so nearly 
equal, that it would have been useless to take account of the 
difference between them in the calCulations as to saturated 
steam. 

The consideration of the influence of pressure on the 
freezing point of liquids shews that a great change in the 
pressure only produces a very slight alteration in the freezing 

point; hence in this case ~~ must be very large. If we 

assume, according to the calcula.tions in Chapter VII., that au 
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increase of pressure of one atmosphere lowers the freezing 
point by 0'00733° C., we have 

dp 10333 
dT == - 0'00733; 

hence equation (9a) becomes, giving to T the value at the 
freezing point, viz. 273, and to E the value 424, 

_ 273 10333 dpv dfJ'I1 
C - cp + 424 x 6:00733 x dT = cp + 908000 dT' 

Applying this equation first to water, we will take Kopp's 
value for the coefficient of expansion of water at 0', viz. 
- 0'000061; then, using the kilogram as unit of weight, and 
the cubic metre as unit of volume, we have 

dfJv == _ 0'000000061 . dT' , 

whence, from the equation above, 

c == ofJ - 0'055 • 

.Ai? ofJ is here == I, being the ordinary heat unit, we ha.ve finally 

0==0'945. 

Next, to apply the equation to ice, we will take the linear 
coefficient of expansion of ice at 0'000051, following the 
experiments of Schumacher, Pohrt, and Moritz; whence the 
cubic coefficient will be 0'000153. In order to reduce this 
number to the required units, we must multiply it by 
0'001087, the volume of a kilogram of ice in cubic metres: 
whence we obtain ' 

~;= 0'000000166. 

Substituting this value, the equation becomes 

0== 0" + 0'151. 

According to Person * 0" == 0'48: hence we have finally 

c== 0'631. 

* Comptu lUftdVI, VoL %D. p. 526. 
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These values, 0·945 and 0·631, were those employed in Chap
ter VII. for the calculation by which the relation between 
the heat expended in fusion and the temperature of fusion 
was determined. 

§ 7. Isentropic Variations of a Body. 
Instead of determining the kind of variation of condition, 

which a body is to undergo, by means of an equation con
taining one or more of the quantities T, p, v, we will now 
lay down as a condition, that no heat is imparted to or with
drawn from the body during its variation. This is expressed 
mathematically by the equation 

dQ=O. 

If this equation holds, we have further 
dQ 

dS= dT=O, 

that is, the entropy S of the body remains constant. We 
will therefore give to this kind of variation the designation 
isentropic, already applied to the curves of pressure which 
correspond to it: and will characterize the differential co
efficients formed in discussing it by the index S. 

H in equation (3) we put d Q = 0, we have 

o = O.aT + ~d: av. 
H we divide this equation by av, the differential coeffi

cient ~:, thus obtained, refers to the case of an isentropic 

variation, and hence we must write : 
dllT T a.p dv =- c x dT •...............•.. (10) . . 

Similarly we obtain from equation (4), 

~T = ~ x ~;, ...•.......•...... (11). 
'P l' 

Applying either equation (5) or equation (7), we have 

O - C a.p J a a"v J • 
- "dl'uV + • dTuP, 

Digitized by Coogle 



188 ON THE MECHANICAL THEORY OF HEAT. 

~ 
whence as'/} O. dT 

dp--OI'd.P· 
dl' 

Applying equations (1) (2), this equation becomes 

~s'IJ = g. x ~ti .................. (12). 
'P " '.p 

If here we give to O. its value from (7a), we obtain 

~'IJ = ~~ + ~ (~;Jt ............... (13). 
:p 'P " 

If we take the reciprocal of (12). we obtain the equation 

~! = ~ )( ~; .................. (14). 

This equa.tion, if transformed in the same wa.y as (12). 
gives 

dsp _ dl'P T (d.p)- (1~) (l;-Tv--o. (J!f ............... a. 

These differential coeffioients between volume and pres
sure, for the case of the entropy being constant, have been 
applied to calculate the velocity of propagation of sound in 
gases and liquids, as has been already described in Chap
ter II. for the case of perfect gases. 

§ 8. Special Forms of the FundarMntal Equations for 
an .l!.1rpanded Rad. 

Hitherto we have always oonsidered the external force to 
be a uniform surface pressure. We will now give an ex
ample of a different kind of force, a.nd will take the case of 
an elastic rod or bar, whioh is extended lengthwise by a 
tensional strain, e.g. a hanging weight, whilst no forces act 
upon -it in a transverse direction. Instead of a tensional we 
may take a compressive strain. so long as the rod is not thereby 
bent. This we should simply treat in the formulae as a 
negative tension. The condition that no transverse force 
acts on the rod would be exactly fulfilled only if the rod were 
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placed in vacuo and thus freed from the atmospheric pres
&ure. But, since the longitudinal strain, which acts on the 
cross section, is very large in comparison with the atmos
pheric pressure upon an equal area, the latter may be. 
neglected . 

. Let P be the force, and l the length of the rod, when 
acted on by the Corce and at temperature T. The length, 
and in general'the whole condition, of the rod is under these 
conditions determined by the quantities P and Tj and we may 
thereCore choose these a.~ independent variables. 

Let us now suppose that by an indefinitely small change 
in the force or temperature or both, the length l is increased 
by dl. The work Pdl will then have been done by the 
force P. Since however in our formulae we have taken as 
positive not the work done but the work destroyed by a 
force, the equation for determining the external work must 
be written 

dW=-Pdl ............•........ (16). 

Taking l as a function oC P and T, we may write this equa
tion as Collows : . 

dW==-P(:~dP+ :~ dT); 

dW dl dW dl 
whence dP ::=-P dP; dT::=-P dT' 

Differentiating the first of these equations according to T 
and the second according to P, and observing that, since 

P and T are independe"nt varia.bles, :: ::= 0, we have 

d (dW) d'l 
dT dP ::= - P dPd-'I" 

d (dW)' dl d~l 
dP dT =- dT- P d'1'dP' 

If we subtract the second of these from the first, and 
substitute for the difference on the left-hand side of the 
resulting equation the symbol already employed for the 
same purpose, viz. Dl'rt we have 

dl 
Dl'f'== dT .... : ................... (17). 
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This value of Dp'l' we will apply to equations (12)~ (13). 
(14). (15) of Chapter V .• substituting P for :r; in this partiw 
cular case throughout. We· then obtain the fundamental 
equations, in the following form : 

d~ (~~) - fp (~~) = :~ ............•. (18). 

d~ (~) - fp(~~) =- ~ ~~ .•.........• (19). 

dQ dl 
dT= T dT······················(20). 

d~' (~~) = T :~ ................. (21). 

§ 9. Alteration of Temperature during the ea:tension of 
the Rod. 

The form of equation (20) indicates a special relation 
between two processes, viz. the alteration in temperature 
produced by an alteration in length. and the alteration 
in length produced by an alteration in temperature. Thus 
if, as is usually the case, the rod lengthens when heated 

under a const,ant strain, and :~ is therefore positive, the 

equation shews that :~ is also positive; whence it follows 

that. if the rod is lengthened by an increase in the external 
force. it must take in heat from without if it is to keep its 
temperature constant, or in other words, if no heat is im
parted to it, it will cool during extension. On the other 
hand if, as may happen in exceptional cases, the rod shortens 

when heated at constant pressure. and therefore :~ is nega-

tive, then the equation shews that :~ is also negative. In 

this case the rod must give out heat, when lengthened by 
an increase of strain, if it is to preserve a constant tempera
ture; and if no giving out of heat takes place it must grow 
warmer in lengthening.· 
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. The magnitude of the alteration of temperature which 
takes place if the force is varied, without any heat being 
imparted to or taken from the rod, is easily determined if 
we form the complete differential equation of the first order 
for Q, in the same way as we have already done in the case 
of bodies under a uniform surface pressure. The differen-

tial coefficient ~rj is determined by equation (20), in which 

we will write for :~ the fuller form ~~. In order to ex

press the ot~er differential coefficient t$ in a convenient 

form, we may denote the specific heat of the rod under 
constant strain by Op, and the weight ofthe rod by M. Then 
we have 

dpQ 7..r:a 
dT =.La' p, 

and the complete differential equation IS as follows: 

dQ=MOpflT+ T ~~ .................. (22). 

It we now assume that no heat is imJilarted to or taken 
from the rod, we must put d Q = 0, which gtves 

0= MOpdT + T~~ dP. 

If we divide this equation by dP, the quotient ~~ ex

presses that differential coefficient of T according to P, in 
the formation of which the entropy is taken as constant; 

it should therefore be written more fully ~J. We thus 

obtain the following equation: 
dsT T dpl 
dP=- MO- x dT·· .. ·············· (23). 

p 

This equation was first developed, though in a slightly 
different form, by Sir William Thomson, and its correctness 
was experimentally verified by Joule-, The agreement of 

• Phil, Trafll" 1869, 
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observation and theory was specially brought out by a phe
nomenon occurring with India rubber, which had already 
been noticed by Gough, but was then observed also by Joule 
and verified by accurate measurements. So long as India 
rubber is not extended at all, or only by a very small force, 
it behaves, with regard to alterations in length produced by 
alterations in temperature, in the same way as other bodies i 
i. e. it lengthens when heated and shortens when cooled. When 
however it is extended by a greater force its behaviour is 
the opposite; i. e. it shortens when heated and lengthens 

when cooled. The. differential coefficient :~ is thus positive 

in the first case and negative in the second. In accordance 
with this it exhibits the peculiarity that it is cooled by an 
increase of the strain. so long as the strain remains small, 
but is heated by an increase of the strain when the strain 
is large. This agrees with equation (23), according to which 

~:: must always have the opposite sign to.~1.. 

§ 10. Further Deductions from the Equations. 

The complete differential equation (22) may also be so 
formed as to present 7' and l, or 1 and P, as the independent 
variables. For this purpose we must first state the relation 
which holds between the differential coefficients of the 
quantities T, I, and P. This relation will be expressed by 
an equation of the same form as (2), viz.: 

dfz x ~~ x ~; = - 1 .............•. (24). 

First, to form the complete differential equation which 
contains T and l as independent variables, we must consider 
P as a function of T and l, and accordingly write (22) in the 
form 
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Transforming the last term by means of equation (24), 
'We have 

dQ= (MOI"+T~f x ~~) dT- T:: dl ••••• (25). 

If we denote by 0, the specific heat at constant length, 
the coefficient of dT in this equation must be equal to MO, ; 
whence 

. T d,J d,P 
0.=01'+ MxdTxdT ...••.•.••••.• " (26). 

Transforming this by means of (24), we have 

T (~1)· 
0. = Cl"- M x --;r;r- ...................... (27). 

dP 
Equation (25) assumes then the following simplified 

form: 
d,P 

dQ=MOp,T-T dT dl ............... (28). 

Secondly, to form the complete differential equation which 
contains l and P as independent variables, we must consider 
T as a function of land P. Equation (22) then becomes 

dQ-MO (dpT +d,T dP)+TdpldP 
- I' dt dP dT 

= MOp ddt dZ+ (MOp ~'J + T ~f) dP. 

Transforming the coefficient of dp, we havo 

dQ=MOp ddt d&+ (MOp + T:fx ~:) :~ dP. 

By equation (26) Yo, can be substituted for the expression 
in brackets. The equation then becomes 4 

dQ=MO" ddt dl+MC, ~'J dP ........... (29). 

We will again apply equations (28) and (29) to the case 

c. 
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of the rod when it neither receives nor gives out any heat, 
and therefore d Q = O. The first equation then becomes 

ali = la, x ~': .•................ (30); 

and the second 
d,T 

aBl a, dP 
dP=- 0, x d;T' 

dl 
But ~y equation (24) we may write the latter thus: 

~~= g' x ~~ ..................... (31). 
p 

Giving to 0, its value according to (27), we have 

dJ a.) T (dpl)1 . 
dP= dP- MOp dT ................ (32). 

The relation between length and stretching force which 

is expressed by the differential coefficient ~~, as here de

termined, is that which has to be applied to calculate the 
velocity of sound in an elastic rod, in place of the relation 

expressed by the differential coefficient ~~, which is commonly 

used, and which is determined by the coefficient of elasticit,. 
In the same way, to calculate the velocity of sound lU 

gaseous and liquid bodies, we mllst use the relation between 

volume and pressure expressed by ~; in place of that ex-

pressed by ~; . We may however remark that in treating 

of the propagation of sound, in cases where the force P is 
not large, we may in equation (32), which serves to deter-

mine ~i, substitute for the specific heat at constant tension, 

denoteT by Gp , the specific heat at constant pressure. as 
measured in the ordinary way under the pressure of the 
atmosphere. 
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CHAPTER IX. 

DETERlIINATION OF ENERGY AND ENTROPY. 

§ 1. General Equations. 

In former chapters we have repeatedly spoken of the 
Energy and Entropy of a body as being two magnitudes of 

. great importance in the Science of Heat, which are determined 
by the condition of the body at the moment, without its 
being necessary to know the wa.y in which the body has 
come into this condition. Knowing these magnitudes, we 
can easily make by their sid various calculations relating 
to the body's changes in condition, and the quantity of heat 
thereby brought into action. One of these, the Energy, has 
already been made the subject of many "falua-ble researches, 
especially by Kirchhoff·, and the method of determining it is 
therefore more accurately known. We will here treat of 
Energy and Entropy simultaneously, and set forth side by 
side the equations wliich serve to determin,e them. 

In Chapters I. and III. the two following fundamental 
equations, denoted by (III.) and (VI.) were developed: 

dQ=dU+dW ..... : ............... (III), 

dQ = TdS ............................ (VI). 

Here U and B denote the Energy and Entropy of the 
body, and dU a.nd dB the changes produced in them by an 
indefinitely small change in the body's condition: dQ is the 
quantity of heat taken in by the body during its change; 

• Pogg. Ann., Vol. ew. p. 177. 
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dW the external work performed; and T the absolute tem
perature at which the change takes place. The first equa
tion is applicable to any indefinitely small change of con
dition, in whatever way it takes place, but the latter can' 
be applied only to such changes as are in their nature 
reversible. These two equations we will now write in 
the form: 

dU==dQ-dW •.••.•.•...••.•...••• (1), 

d8= d~ •.•••.•.••..•..••....•........ (2). 

, Their integration will then determine U and 8. 
Here we must first notice a point which has already been 

mentioned with regard to energy in Chapter 1, § 8. It is 
not possible to determine the whole energy of a body, but 
only the increase which the energy has received, whilst the 
'body was passing into its present condition from some other 
which we choose as its initial condition; and the same is also 
true of the Entropy. 

Now to apply equation (1). Let us suppose that the body 
has been brought into its present condition from the given 
initial condition, the energy of which we will denote by uo' 
by any convenient path, and in any way reversible or not 
reversible; and let us suppose dU to be integrated through 
the range of this change in condition. The value of this 
integral will be simply U - Uo• The integrals of dQ and 
dW represent the whole quantity of heat which the body 
has taken in, and the whole external work which it has per
formed, during the change in condition. These we will de
note by Q and W. Then we have the equation 

U== Uo+ Q- W .......•............. (3). 

Hence it follows that if for any mode of passing from 
a given initial condition to the present condition of the body, 
we can determine the heat taken in and the work performed. 
we thereby know also the energy of the body, except as 
regards one constant depending on the initial condition. 

Next to apply equation (2). Let us suppose that the body 
has been brought into its present condition from the given 
initial condition, the entropy of which we denote by So. by 

// '~path whatever, but by a process which is reversible; 
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and let us suppose the equation integrated for this change in 
condition. The integral of d8 will have the value 8 - 80 : 

whence we have 

8=80 + JdT
Q ..................... (4). 

Hence it follows that if for any passage of the body, by 
a reversible method but by any path whatever, from a given 
initial condition to its present condition, we can determine 

J~, we shall thereby know the value of ihe entropy, ex

cept as regards one constant depending on the initial con
dition. 

§ 2. Differential Equations for the Case in which only 
Reversible Changes take place, and in which the condition of 
the Body is determined by two Independent Variables. 

H we apply both the equations (III.) and (VI) to one 
and the same indefinitely small and reversible change in the 
body's condition, the element dQ will be the same in both 
equations, and may thereforo be eliminated. Hence we 
have 

Td8=dU+dW ..................... (5). 

We will now assume that the condition of the body is 
determined by two variables, which, as in Chapter VI., we 
will generally denote by fI) and y, signifying by these certain 
magnitudes to be fixed later on, such as temperature, 
volume, pressure. If the condition is determined by fI) and y, 
then all magnitudes, the values of which are fixed by the con
dition of the body at the moment, without its being neces
sary to know the way in which the body has come into that 
condition, are capable of being represented by functions of 
these variables; in which functions the variables must be 
considered as independent of each other. Accordingly the 
entropy 8 and the energy U must be looked upon as 
functions of fI) and y. On the other hand, the external work 
W, as we have repeatedly observed, holds a completely dif
ferent position in this relation. It is true that the differ
ential coefficients of W. so far as concerns reversible changes, 
may be considered as known functions of fI) and y: W itself 
however cannot be represented by such a function, and can 
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only be determined, if we have given not only the initial 
~d final conditions of the body, but also the path by which 
it has passed from one to the other. 

If in equation (5) we put 

dS dS 
dS = ck d:c + dy dy, 

dU dU 
d U = d:r: d:r: + dy dy, 

dW dW 
d W = dz d:r: + dy dy, 

that equation becomes 

dS dS (dU dJV\ (dU dlfl 
T dz d:r: + T dy dy = d:r: + J:i J d:r: + dy + dy J dy. 

As this equation must hold for any values whatever of lk 
and dy, it must hold for the cases amongst others in which 
one or other of these differentials is equal to zero. Hence 
it divides into the two following equations : 

T dS -dU+dWl drc - dz dz 
dS dU dW ......................•. (6). 

T-=-+--
dy dy dy J 

. From these equations either S or U may be eliminated by 
a second differentiation. We will first take U, as this gives 
rise to the simplest equation. For this purpose we must 
differentiate the first of equations (6) according to y, and the 
second according to:e. We shall write the second differential 
coefficients of Sand U in the ordinary manner: but the differ-

'al ffi . f dW d dW ill' fi II . entl coe Clents 0 d:r: an dy we w wnte as 0 OW8: 

d (dW) d d (dW) Th" . h th 1..' • dy tk an d:r: dy' 18 18 WIt e same OJJJect as lD 

Chapter V., viz. to shew that they are not second differential 
coefficients of a function of l1J and y. Finally we may observe 
that T, the absolute temperature of the body, which ill this 
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investigation we assume to be uniform throughout the body, 
may also be considered as a function of tIJ and y. We thus obtain 

dT dB tJlS tJlU d (dW\ 
dy x die + T (kdy = dtlJdy + dy diiJ' 

dT dB tJlS tJlU d rdW) 
dtIJ x dy + T dydtIJ = dydtIJ + dtIJ \ dy • 

Subtracting the second of these equations from 
and remembering that 

tPS = tJlS and tP U = tP U 
dtlJdy dyrk' dtlJdy dydtlJ' 

we have 

dT x dB _ dT x ~S =~ (dW) _~ rdW) 
dy dtIJ dtIJ dy dy d:IJ dtIJ \ dy . 

the first, 

The right-hand side of this equation we have named in 
Chapter V., "the work difference referred to zy," and 
have denoted it by D .. ; hence we may put 

D .. =~(d:)_ !(~) ............ (7); 

and the previous equation becomes 

dT dB dT dB 
dy x dtIJ - rk x dy=D ................. (8). 

This is the differential equation, derived from equation (5), 
which serves to determine (S). . 

Secondly. to eliminate S from equations (6), we write them 
in the following form : 

dS 1 dU 1 dW 
a;- T dtIJ + T dtIJ ' 

dS 1 dU 1 dW 
dy = T dy + T dy . 
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Differentiating the first of these equations according to y. 
and the second according to :1:, we have 

d'S 1 d'U 1 dT dU d (1 dW) 
d:x:dy = T x tkdy - pa x dy x d:c + d!l T d:x: ' 

d'S 1 d'U 1 dT dU d (1 dW) 
d!lda; = T x d!ld:c - pt x d:c x dy + d:x: T dy • 

Subtracting the second of these equations from the first, 
putting all the terms containin~ U in the resulting equation 
on the left-hand side, and multiplying the whole equation by 
pt, we have 

dT x dU _ dT x dU =pt [~(! dW)_.!!. (! dW)] 
dy da; da; dy dy T d:c da; T dy • 

We will adopt a special symbol for the right-hand side or 
this equation, viz., 

A., = ~ [~ (~ d!) - ! (~ dd~) ]. ........ (9) j 

and we may point out that between D .. and A., there is the 
following relation: 

. dTdW dTdW 
A .. = TD., - d!l d:c + d:r; dy ......... (10). 

Using this symbol, the above equation assumes the form 

dTdU dTdU 
dy d:c - da; d!l = A.. .. .......... (11). 

This is the differential equation, derived from equation 
(5), which serves to determine U. 

§ 3. Introduction of the Temperature as one of eM 
Independent Variables. 

The above equations take a specially simple form, if the 
temperature T is chosen as one of the independent variables. 
If we put T = y, we have 

dT dT 
dy = 1, di: = O. 
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We thus obtain from (10) the following expression of the 
relation between 1:& ... and D ... : . 

dW 
1:&,,1'= TD"f'- dJ; ................... (12). 

Equations (8) and (11) also become 

:=D"f'] dU ........................ (13}. 
a;;; = I:&lrf' . 

The differential coefficients of the two functions S and U 
with regard to :c are thus known. For, their differential 
coefficients with respect to T we will take the expressions 
which follow directly from (2) and (1) on the assumption 
that the condition of the body is determined by T and x, viz. : 

dS IdQ } 
dT=TdT' 
dU = dQ _ dW .................. (14). 

dT dT dT 

From equations (13) and (14) we can form the following 
complete differential equation~: ' 

dS=~~~dT+D"f'd:c, }' 
dQ dW ......... (15). 

dU = CIT- dT) dT+ I:&#lf'd:c 

Since S and U must be capable of being expressed as 
functions of T and x, in which functions these two variables 
may be taken as independent of each other, the well-known 
condition of integrability must hold for the case of the two 
equations just given. For the first equation this condi-
tion is . 

.! (1:. dQ) = dD",f' 
dJ; TdT dT' 

or :3: (~~) = T d~f' .................. (16). 
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which is equation (15) of Chapter V. For the second equa
tion the condition is 

! (~~ -! (~~) == dtTP •••• '" ••••• (17). 

This equation can be easily shewn to depend on the last. 
For by (12) 

dW 
4"p = PD"p - th: • 

Differentiating this equation according to P, we have 

~P=pd~I+D.p_ d~(~)' 
Now, remembering that 

D.r=d~(~)- !(dd~)' 
we may write this equation as follows: 

d4"p_ pdD"p _~ (dW) 
dP - dP d:e dP • 

On substituting this value of d:it in equation (17), we are 

brought back to the form of equation (16). 
We have now to determine 8 and U themselves, by 

integrating equations (15). Let us suppose that the body 
has been brought into its present condition, by any path 
we please, Crom an initial condition for which the. quantities 
T, 8, 0, U have the values TO' 80> 0., Uo respectively: and 
let this particular change of condition give the range of the 
integration. As an example, let us suppose that the body 
is first heated Crom the temperature p. to the temperature 
P, while the other variable keeps its initial value 0., and 
then that this other variable changes its value Crom te, to ~, 
while the temperature remains constant. Then we have 
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In both these equations the first inteJll'8l on the right-hand 
side is a simple function of T, whilst the second is a function 
oCTand 11:. 

Let us now make the opposite assumption, viz. that the 
change of z first takes place at the initial value of T, and 
then the change of T at the final value of 11:. Then we 
obtain 

8= 8. + J: (Dler)r=r. rb + 1:. ~ x ~~dT, 1 
fll: r dQ dW J ...... (19). 

u= U.+ .... (4zr)r_r. da:+ Jro CtT- dT) dT 

In both these equations the first integral on the right-hand 
side is a simple function of 11:, and the second of T and 11:. 

By what has been said above, we may choose any other 
path whatever, instead of that which we have taken as our 
example, in which path the changes of T and II: may be 
transposed in any way, or may both take place at once 
according to any law. We should naturally in each special 
case choose that path, for which the data. requisite to perform 
the calculation are most accurately known. 

§ ,. Special CtJI6 of tM DifferenJ;ial equatioos on tM 
a88'Umption that the O1Ily eztemal f0TC8 is a Uniform, 8urfac6 
Pressure. . 

If we assume as the only External Force a Uniform 
Pressure normal to the surface, we must put 

dW=pdv. 

Hence dW dv dW d'IJ 
dz =p dtc and dy =p dy' 

The expressions for D", and 4", then assume peculiar forms. 
'Those for D", have been already considered in Chapter V. 
We have first 

d (d'IJ) d ( d'IJ) D .. = dy P do: - dz P dy , 

,4 .. = P [~ (~x :) - tz (~x :;)] . 
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In the last of these equations we will put for the sake of 
brevity: 

71' == ~ ........................ (20). 

whereby it becomes 

4.,. = 'r [!: (71' dV) _.!! (71' dv)] • 
dy d:J; d;r: dy 

Performing the differentiation in these equations, and 
. d!v rPv 

remembermg that ikdy = dyd;r:' we have 

dp dv dp dv 
D., = ([iJ x du; - dfIJ x dy .......... • .... (21). 

(d7T' dv d71' dv) 
4.,. = 'P dy x d;r: - d:J; x dy ......... (22). 

If the temperature T be selected as one independent. 
variable, whilst the other remains fIJ as before, the expressions 
become 

_ dp dv dp d'l1 
D.r - dP x d;r: - d:c x (IT ............... (23). 

I (d71' dv d7T' dv \ 
4.'1= T (jpx d:J; - d;r: x dT' ...... • ..... (24); 

or, restoring to 71' its value}" 

The equations (15) then assume the following forms : 

_ 1 d Q (dp dv dp d1J) _ 
dB - T X dT dT+ dT x d:J; - dJ: x dT d:J; ............ (20). 

dU = (~~-p ;~) dT+ T' (~;X: -~: x ;;)d;r: ... (~6) j 
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or written in another form, 

dU = (~~-p ;~)dT+ [T(;~ X: -: x :~) 
- p :J da: ...... (26a). 

If we further choose for the second variable, as yet unde
tetmined, the volume '11, and thus put tJ: = '11, we have 

dv' dv 
du: = 1 and dT = O. 

Hence the preceding equations become 

dS=~ :~dT+ ;~dv, 1 
dQ d) t ........... (27). 

dU=dTdT+(T d~-P d J 
If the pressure p be chosen as the second independent 
variable, so that a; = p, we hav~ 

dp -1 and dp - 0 . 
da:- dP-' 

and the equations become 

1 dQ dv 1 
dS= T dTdT - d'i dp, I t ..... (28). 

dU=(dQ_pdv'dT_(T dV +pdV)ap J 
dT dT) dT dp , 

§ 5. Application of the foregot'ng EquatiO'fUJ to Horna
g81UJOUS Bodies, arid in particular to Perfect Gases. 

For Homogeneous Bodies, where the only external force 
is a uniform pressure normal to the surface, it is usual, as 
at the end of the last section, to choose for independent 

variables two of the quantities T, V, p; and ~~ then takes 

the simple significations which we have several times alluded 
to, Thus if T and ''11 are the independent variables, and if 
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the weight of the body be a unit of weight, ~~ signifies the 

specific heat at constant volume: or, if T and p are the 
independent variables, the specific heat at constant pressure. 
Equations (27) and (28) become in these cases 

dS = ~ dT+ :~d", } . 

tlU= a.dT+(T~-p)d •............ (29), 

dS=~dT- ;;dp, } 
. d'IJ) dtl dv) (30). 

dU= (Op-p dT dT- (T dT+P dp dp 

If we wish to apply these equations to a perfect gas, we 
may use the following well known equation: 

pv=RT. 

Hence, if T and 'IJ be selected as independent variables, 
dp B 
dT=fj' 

and equations (29) then become 

dS=O dT +Bd'IJ} 
• T 'II .................. (31). 

dU=O.dT 

As in this case O. must be regarded as a constant, these 
equations can at once be integrated, and give 

T· } S = So + O.log + .R log! 
To tlo ............. (32). . 

U= Uo + C.(T-To) 

If we choose T and p as independent variables, we may 
put 

d'IJ R dv RT -=-and---- . 
dT P dp - p" 
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accordingly equations (30) become 

dS=O dT _RdP} . 
II T P •...•••....••..... (33). 

dU= (O,.-R)dT 

Whence we obtain by integration 

B=S +0 log --Rlogl 
• • To P. .. ........... (34). T '} 

U= U.+(O,.-R)(T- TJ 
The integration of the general equations (29) and (30) can 
of course only 1?e accomplished il, in {29}, P and O. are 
known functions of T and tI, or il, in (30), tI and 0. are 
known functions of T and p. 

§ 6. .Application of the Equations to a Body composed 
of matter in two Different States of Aggregation. 

As another special case we may select the state of things 
treated of in Chapters VI. and VII., viz. the case in which 
the body under consideration is partly in one state of aggre
gation and partly in another, and when the change, which 
the body may undergo at constant temperature, is such that 
the magnitudes of the parts in the two different states of 
aggregation are altered, with a corresponding change in the 
volume, but no change in the pressure. In this case the 
pressure P depends only on the temperature; and we may 

therefore put Z = 0, by which equations (25) and (26) are 

transformed as follows: 

1 dQ dp dtl "'I 
dS=px dT dT + dT x d:J;ik, } 

d Q dtl dp dv (35). 
dU= (dT -P dT) dT+ (T dT-P)ck dx 

.As in Chapters VI. and VI!., let us denote by M the weight 
of the whole mass, and by 'In the weight of the part in the 
second state of aggregation; and let us take m in place of :» 
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for the second independent variable; then equation (6), 
Chapter VI., becomes 

dv 
d;iii, = 'It, 

for which, by equation (12), Chapter VI., we may substitute 

dv --E-
dm- T dp' 

dT 
Th~n the above equations become 

dS=~~~dT+ ~,dm, ) 

dU=(~-P;)dT+t -T~)dm (36). 

To integrate these equations we may take as a starting 
point the condition that the whole mass M is in the fimt 
state of aggregation, that its temperature is TO' and that its 
pressure is the pressure corresponding to that temperature. 
The passage from this to its present condition (in which 
the temperature is T, and in which the part m of the whole 
mass is in the second, and the part M - m in the first state of 
aggregation) may be supposed to take place in the following 
·way:-First let the mass, still remaining entirely in the fimt 
state of aggregation, be heated from To to T, and let the 
pressure change at the same time, in such a way that it 
IS always the pressure corresponding to the temperature at 
the moment: then let the part m pass at temperature T from 
the first to the second state of aggregation. The integration 
has to be performed according to these two successive stages. 

During the first stage dm = 0, and thus it is only the first 
term on the right-hand side which has to be integrated. 

Here ~~ has the value Mo, where a signifies the specific 

heat of the body in its first state of aggregation, and for the 
case in which the pressure changes during the heating in the 
way described above. This kind of specific heat has been 
already discussed several times, and the conclusions drawn 
in Chap. VIII, § 6, shew tha.t where the first state of aggre-
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gation is the solid or liquid, and the second the gaseous, 
it may safely be taken, for purposes of numerical calculation, 
as equal to the specific heat at constant pressure. It is only 
at very high temperatures, for which the vapour tension 
increases very rapidly with the temperature, that the difference 
between the specific heat 0 and the specific heat at constant 
pressures is important enough to be taken into account. 
Further, during the first change the volume 'IJ has the value 
Mu, where u is the specific volume of the substance in the 
first state of aggregation. During the second stage dT = 0, 
and therefore it is only the second term on the right.-hand 
side of equation (3a) which has to be integrated.. This inte
gration can be at once performed for both equations, since 
the coefficient of dm is a. constant with regard to 1n. The 
resulting equations therefore a.re . 

JT 0 mp 
S=S.+M To'l'dT+ T' .' 

u= u,,+M J:' (O-p :~)dT+mp(l- TPdP) ... (37). 

. dT 
If in these equations we put m = 0 or m = M, we obtain 

the entropy and energy for the two cases in which the mas1 
is either entirely in the first or entirely in the second state of 
aggregation, under the temperature T, and under the pressure 
corresponding to that temperature. For example, if the first 
state is the liquid and the second the gaseous, then if we put 
m = 0, the expressions relate to the case of liquid under tem
perature T, and under a pressure equal to the maximum 
vapour tension at that temperature; or if we put m = M, they 
relate to saturated vapour at temperature T. 

§ 7." Relations o/the Expressions D~ and AlT." 
In concluding this chapter it is worth while to refer again 

to the expressions Dn and An' which by (7) and (9) have the 
following meanings : 

D -~ (t!!) _~ (dW) 
"'-dy,tUc dw dy , 

A = T' [~ (!. dW) _ ~ (!. dW)] 
q dy T da: dw T dy . 
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. These are both functions of a: and y: but if to detennine 
the condition of the body we choose instead of a: and y any 
two other variables which we may call f and "I, we may form 
correspondin~ expressions Dh and ~h as follows: 

Dh -! (dd~)~ tEe!!), } 
_ [~(.! dW) _ ~ (~dW\] ..... (38). 

AE,- T' d"l T df df T d-:q) 

These are of course functions of E and "I. as the fonner 
were of a: and y. But if we compare one of them, e.g. that 
for Dh , with ·the corresponding expresssion for Dn , we find 
that these are not simply two expressions for one and the 
same magnitude referred to different variables, but are 
actually two different magnitudes. For this reason Dn has 
not been called simply the work difference, but the work 
difference referred to a:y, so that it may be distinguished 
from Dh , the work difference referred to f'rj. The same holds 
true of ~"'. and ~E" 

The relation which exists between D"" and DE, may be 
found as follows. The differential coefficients which occur in 
the expression for De. in (38), may be derived by first forming 
the differential coefficients according to a: and y, and then 
treating each of these as a function of f and "I. Thus we 
have 

dW dW da: dW dy 
dE = da; x dE + dy x dE' 

~~=dW x~+dW x dy 
dTJ da: d'TJ dy d'TJ • 

Differentiating the first of these equations according to " 
and the second according to E, and again applying the same 
artifice, we have . 

r d (dW) da: da: + ~ (dW) da: ~!l 
da: da; dE d7J dy da: dE d'TJ 

d (dW) _ t dW d'a: d (dW) da: d,,! 
d'TJ dE - + -da: dEd'TJ + da: dy d7J dE 

d (dW\ d,,, dy dWd'y 
+ dy dy) dE d~ + dy dEd7J' 
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r d (dW) do; do; d (dW) do; dy 
ik dx dE d'l'} + dy dx d'l'} dE 

d (dW)' -t dW d'a: d (dW) do; dy 
dE d'l'} - + do; dEd'l'} + do; dy dE d'l'} 

+.!!. (dW\ dy dy + dW d'y 
dy dy J dE d'l') dy dEd'l'}' • 

If we subtract the second of these equations from the first, 
all the terms on the right-hand side disappear except four, 
which may be expressed as the product of two binomial terms 
in the following equation: 

d (dW) d (dW) (do; dy do; dy) ["d (dW) 
d'l'} dE - dE d'l'} = dE x d'l'} - d7] x dE dy da: 

~!(~:)l 
Here the expression on the left side is DE., and the expres
sion in the square bracket is Dzw. Hence we have finally 

_ (do; dy da: diJ) DA - dE x d7] - dq x dE D .. , ••.•....... (39). 

Similarly we may obtain 

(da: dy da: d.lI) ( ) 
d A = dE x d7] - d7] x dE d Z6·········(39a. 

If we substitute one new variable only, e.g. if we keep the 
variable a:, but replace y by 7], we must put a: = E in the two 

last equations, whence ~ = 1 and ~: = O. The equations 

then become 
dy dy 

D..,. = d~ D"II and d z• = d7] d.., ......... (40). 

If we retain the original variables, but change their order 
of sequence, the expressions simply take the opposite sign, as 
is seen at once on inspection of t7) and (9). Hence 

Dzr=-D:e, and d, .. =-d .. , ............ (41). 
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CHAPTER X. 

ON NON-REVERSIBLE PROCESSES. 

§ 1. Oompletion of the Mathematical EIXpression for thB 
second main Principle. 

In the proof of the second main principle, and in the 
investigations connected therewith, it was throughout assumed 
that all the variations are such as to be reversible. We must 
now consider how far the results are altered, when the 
investigations embrace non-reversible processes. 

Such processes occur in very different forms, although in 
their substance they are nearly related to each other. One 
case of this kind has already been mentioned in Chapter I., 
viz., that in which the force under which a body changes its 
condition, e. g. the force of expansion of a gas, does not 
meet with a resistance equal to itself, and therefore does 
not perform the whole amount of work which it might 
perform during the change in condition. Other cases of the 
kind are the generation of heat by friction and by the 
resistance of the air, and also the generation of heat by a 
galvanic current in overcoming the resistance of the wire. 
Lastly the direct passage of heat from a hot to a cold body. by 
conduction or radiation, falls into this class. 

We will now return to the investigation by which it was 
proved in Chapter IV. that in a reversible process the Bum of 
all the transformations must be equal to zero. For one kind of 
transformation, viz. the passage of heat between bodies of 
different temperatures, it was taken as a fundamental principle 
depending on the nature of heat, that the passage from a 
lower to a higher temperature, which represents negative 
transformation, cannot take place without compensation. On 
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this rested the proof that the sum of all the transformations 
in a cyclical process could not be negative, because, if any 
negative transformation remained over at the end, it could' 
always be reduced to the case of a passage from a lower to a 
higher temperature. It was finally shewn that the sum of 
the transformations could not be positive. because it would 
then only be necessary to perform the process in a reverse 
order, in order to make the sum a negative quantity. 

Of this proof the first part, that which shews that the sum 
of the transformations cannot be negative, still holds without 
alteration in cases where non-reversible transformations occur 
in the process under consideration. But the argument which 
shews that the sum cannot be positive is obviously inappli
cable if the process is a non-reversible one. In fact a direct 
consideration of the question shews that there may very 
well be a balance left over of positive transformations; since in 
many processes, e.g. the generation of heat by friction, and the 
passage of heat by conduction from a hot to a cold body, 
a positive transformation alone takes place, unaccompanied by 
any other change. 

Thus, instead of the former principle, that the sum of all 
the transformations must be zero, we must lay down our prin
ciple as follows, in order to include non-reversible variations:

The algebraio sum of all the transformations whioh ooour 
in a oyolical process must always be positive, or in the limit 
equal to zero. 

We may give the name of uncompensated transformations 
to such as at the end of a cyclical process remain' over without 
anything to balance them; and we may then express our 
principle more briefly as follows :-

Uncompensated transformations must always be positive. 

In order to obtain the mathematical expression for this 
extended principle we need only remember that the sum 
of all the transformations in a cyclical process is given 

by - Jd~. Thus to express the general principle, we must 

write in place of equation V. in Chapter 111., 

Jd~ :; 0 .......................... (IX). 
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Equation (VI.), Chapter III., then becomes 

dQ ~ TdS ................. ........ (X.) 

§ 2. Magnitude of the Uncompensated Transformation. 
In many cases the magnitude of the Uncompensated 

Transformation is obtained directly from the equivalence 
value of the transformations, as determined by the method 
of Chapter IV. If for example a quantity of heat Q is 
generated by any process such as friction, and this is finally 
imparted to a body of temperature T, the uncompensated 

transformation thus produced has the value ~. Again, if a 

quantity of heat Q has passed by conduction from a body 
of temperature 1~ to another of temperature T., then the 

uncompensated transformation is Q (~ - ;.) • If a body 

has passed through a non-reversible cy;lical1process, and we 
wish to determine the resulting uncompensated transforma
tion, which we may call N, we have, by the principles 
explained in Chapter IV., the equation 

N=- Jd~ .......................... (l) . 

.AJJ however a cyclical process may be made up of several 
individual changes of condition in a given body, some of 
which may be reversible, others non-reversible, it is in many 
cases interesting to know how much any particular one of 
the latter has contributed towards making up the whole 
sum of uncompensated transformations. For this purpose 
we may suppose that after the change of condition which 
we wish to enquire into, the variable body is brought by any 
reversible process into its former condition. By this means 
we form a smaller cyclical process, in which equation (1) 
may be applied just as well as in the whole process. Thus 
if we know the quantities of heat which the body has taken 
in during this process, and the temperatures which appertain 

to them, the negative integral - fdj gives the uncom

pensated transformations which have taken place. But as 

Digitized by Coogle 



ON NON-REVERSIBLE PROCESSES. 215 

the return to the Oliginal condition, which has taken place 
in a reversible manner, can have contributed nothing to 
increase this sum, the expression above gives the uncom
pensated transformation which was sought, and which was 
caused by the given change in condition. 

If we examine in this way all the parts of the whole 
process which are non-reversible, and thereby find the values 
of ~, N. etc., which must all be individually positive, then 
the sum of the!,!e gives the magnitude N relating to the 
whole cyclical process, without requiring us to bring under 
review those parts of it which are known to be reversible. 

§ 3. Expansion of a Gas unaccompanied by External 
Work. 

It may be worth while to examine more closely those 
changes of condition, mentioned in § I, which take place 
in a non-reversible manner because the resistances to 
be overcome are less than the forces at work; Ollr ob
ject being to determine the amount of heat taken in 
during the process. As however there al·e a great number 
of different changes of this kind, which are produced in a 
great number of ways, we must confine ourselves to a few 
cases, which are either especially noteworthy on account of 
their simplicity, or have some special interest on other 
grounds. 

The general equation for determining the quantity of 
heat which a body takes in, whilst it undergoes any given 
change of condition, reversible or non-reversible, is as 
follows: 

Q = U.- U1 + w ..................... (2) ; 

in which U1 and U. are the energy in the initial and final 
conditions,and W is the external work done during the 
variation. 

To determine the energy we can employ the equations of 
Chapter IX. If the only external force is a uniform pres
sure, and if the condition of the body is determined by its 
temperature and volume, then we may use equation (29), viz. 

dU = Of} dT + (T t~-p) dv .. ............. (3). 
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This must be integrated for a passage in some reversible 
manner from the initial to the final condition. If the 
temperature is equal in the two conditions, as we shall 
assume in the examples which follow, then the integration 
may be performed at constant temperature, and the result 
will be, if we denote the initial and final volumes by 
VI and v.' _ rl( dp ) . U.- U'--JfI, TdT-P dv ••........••... (4), 

whence equation (2) becomes 

Q= [\ T*,-p) dv+ W ................ (5). 

As the first and simplest case we may take that in which a 
gas expands without doing any external work. We may sup
pose a quantity of the gas to be contained in a vessel and that 
this vessel is put in connection with another in which is a va
cuum, so that part of the gas can pass from one to the other 
without meeting any external resistance. The quantity of 
heat which the gas must in this case take in, in order to keep 
its temperature unaltered, is determined by putting W = 0 in 
the last equation; thus we have 

Q= t.(T~~-p)dv ..................... (6). 

If we. make the special assumption that the gas is a 
perfect one, and therefore that P" = R T, we have 

dp R 
dT=;' 

whence 
dp R pv R 

T- =T-=-· x-=p· dT v R V ' 

whence (6) becomes 
Q=O ............................ (7). 

As already mentioned, Gay-Lussac. Jonle, and Regnault 
have experimented on expansion apart from external work. 
J o~le annexed to. his experiments, described in Chapter II., by 
whIch he determmed the heat generated in the compression 
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of air, other experiments upon ~§~~~~~~~~~ 
the expansion of air. The re- 'I' 
ceiver R, shewn in Fig. 6, was 
filled with air condensed . to 22 
atmospheres, and was then con
nected, in the manner shewn in 
Fig. 18, with an empty receiver 
R'. so that the communication 
between the two was only closed 
by the cock. The two receivers . 
were placed together in a water Fig. 18. 
calorimeter, and the cock was then opened, whereupon the 
air passing over to the receiver R' expanded to about twice 
its former volume. The calorimeter shewed no loss of heat, 
and thus, so far as could be measured by this apparatus, 
no heat seemed to be required for the expansion of the air. 

The above result however holds only for the process as a 
whole, and not for its individual parts. In the first receiver, 
in which the expansion takes place and the motion originates, 
heat is required; in the second. on the contrary, in which the 
motion ceases, and the air which rushes in first is compressed 
by that which follows, heat is generated; and so also in the 
places where friction has to be overcome during the passage. 
Since however the heat generated and the heat required are 
equal, they cancel each other; and we may say, so far as the 
general result of the whole process is cllncerned, that no 
expenditure of heat takes place. 

Fig. 19. 

To observe specially the different parts of the process, 
Joule varied his experiment by placing the two receivers and 
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the pipe carrying the cock in three different calorimeters, as 
she.wn in Fig. 19. Then the calorimeter in which was the 
receiver containing the air shewed a loss of heat, and the two 
other calorimeters a gain. The whole gain and the whole loss 
were so nearly equal that Joule considers the difference to be 
within the limits of error of the observation. 

§ 4. Expansion of a Gas doing Partial Work. 

If a gas in expanding has a resistance to overcome, but one 
wbich is less than its expansive force, then an amount of work 
will be performed less than the amount which the gas could 
perform during the expansion. An example of this is the 
case of a gas rushing into the atmosphere out of a vessel 
in which it has a pressure higher than atmospheric pressure. 

In this case also the process is a complicated one. We 
have not only to deal with the work necessary for the 
expansion and the corresponding consumption of heat, but in 
addition heat is consumed in producing the velocity with 
which the gas escapes; and heat is again generated when this 
velocity is subsequently checked. Similarly, heat is con
sumed in overcoming the resistance of friction, and is 
generated by the friction itself. To investigate accurately 
all these individual parts of the process would involve us in 
great difficulties. 

If however we only wish to determine the quantity of 
heat, which on the whole must be taken in from without in 
order to keep the temperature of the gas constant, the case is 
simple. We can then leave out of account those parts of the 
process which balance each other, and need only consider the 
Initial and final volume of the gas, and so much of the work 
done as is not transformed back again into heat. Then the 
internal work is the same as in any other case of the gas 
expanding at the same temperature and between the same 
initial and final volumes j while the external work is simply 
represented by the product of the increase of volume and the 
atmospheric pressure. 

To determine the required quantity of heat, we start 
again from equation (5), and there substitute for W the 
expression for the external work performed in the present 
case, viz. PI (VI - VI)' where PI. is the atmospheric pressure. 
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The equation thus becomes 

Q-t.( T~-P )dv+ P. (v.-vJ ........... (8). 

If the gas is a perfect one, the integral on the right-hand 
side, as shewn in the last section, will = 0, and the equation 
takes the simpler form 

Q = P. (v. - Vi) ......................... (9), 

which expresses that in this case the heat taken in is only 
that corresponding to the work required for overcoming the 
external pressure of the air. 

If the heat is to be measured according to the ordinary, 
not the mechanical unit, we must divide the right-hand side 
of (8) and (9) by the mechanical equivalent of heat, whence 
we have . 

1 ("t (dp ) p. Q=E) •• TdT-P dv+l?(v.-vl) .. · .. ·(Sa), 

Q =}j (v.- VI) .................... .... (9a). 

This kind of expansion has also been experimented on by 
Joule. Having as before compressed air to a high pressure 
in a receiver, he allowed it to escape under atmospheric 
pressure. In order to bring the escaping air back to· the 
original temperature, he caused 
it, after leaving the receiver, to 
pass through a long coil of pipe, 
as shewn in Fig. 20, which was 
placed together with the receiver 
in a water calorimeter. There 
then remained in the air only a 
small reduction of temperature, 
which it shared in common 
with the whole mass of the calo
rimeter. The cooling of the 
calorimeter gave the quantity of 
heat given oft' to the air during Fig. 20. 
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its expansion. Applying equation (~a) to this quantity of 
heat, Joule was able to use this experiment as a means of 
caJeulating the mechanical equivalent of heat. The numbers 
obtained from three series of experiments gave a mean value 
of 438 (in English measures 798); a value which agrees closely 
with the value 444 found by the compression of air, and does 
not differ from the value 424, found by the friction of water, 
more widely than can be explained by the causes of error 
inherent in these experiments. 

§ 5. Method of Ercperimeltt used by 1.'homson and Joule. 

The above-mentioned experiments of Joule, in which air 
contained in a receiver was expanded either by escaping into 
another receiver or into the atmosphere. shewed that the 
conclusions drawn under the assumption that air is a perfect 
gas are in close accordance with experience. If however we 
wished to know to what degree of approximation air or any 
other gas obeys the laws of perfect gases, and what are the laws 
of any variations that may occur from the conditions of a per
fect gas, then the above mode of experiment is not sufficiently 
accurate; since the mass of the gas is too small compared 
with that of the vessels and other bodies which take part in 
the variation of heat, and therefore the sources of error 
derived from these have too great an influence on the result. 
A very ingenious method of making more accurate experi
ments was devised by W. Thomson, and the experiments were 
carried out by him and Joule with great care and skill. 

Let us imagine a pipe, through which is forced a 
continuolls current of gas. At one place in this let a porous 
plug be inserted, which so impedes the passage of the gas, 
that even when there is a considerable difference between the 
pressllre before and behind the plug, it is only a moderate 
amount of gas. suitable for the experiment, which can pass 
through in a unit of time. Thomson and Joule used as plug 
a quantity of cotton wool or waste silk, which, as sbewn 
in Fig. 21, was compressed between two pierced plates, .AB 
and OD. 

Let us now take two sections, EF and G H, one before and 
one behind the plug, but at such a distance that the unequal 
motions which may occur in the neighbourhood of the plug 
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are not discernible, and there is only a uniform 
current ot gas to deal with. Then the whole 
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process ot expansion, corresponding to the differ- 0111---1]11 
ence of pressure before and behind the plug, takes 
place in the small space between these two sec-
tions. If then the current ot gas is kept uniform C "M'~'''· D 
for a considerable time, a state ot steady motion ~~~t/;· 
is produced, in which all the fixed parts of the .A, ,':..!.~ d" B 

apparatus keep their temperature unaltered, I' 

and neither take in nor give off heat. Then it, E:iI---l r 
as was done by Thomson and Joule, we surround 
this space with a non-conducting substance, so 
that no heat can either pass into it from without 
or vice fJ81'8a, the gas can only give out or take Fig. 21. 
in the quantity of heat expended or generated in the process; . 
and thus, even where this quantity is very small, a difference of 
temperature may exist sufficient to be easily noticed and 
.accurately measured. 

§ 6. Development of the Equationll relating to the abooe 
met/wd. 

In order to determine theoretically the difference ot 
temperature in the above case, we will first form the general 
equations determining the quantity of heat which the gas 
must have taken in; if the temperature at the second section 
is to have any required value. From this we can readily 
find the temperature at which the heat imparted will be 
nothing. 

The separate parts ot the process in the present case are 
connected partly with consumption, partly with generation of 
heat.. Heat will be consumed in overcoming the frictional 
resistance due to the passage through the porous plug; whilst 
by the friction itself the same amount of heat will be 
generated. At certain points in the passage heat is consumed 
in increasing the velocity; whilst at other points heat is 
generated as the velocity decreases. To determine the quantity 
of heat which on the whole must be imparted to the gas, we may 
leave out of account the parts of the process which balance 
each other; since it is sufficient for our purpose to know what 
is the work which remains over as external work done or con
Bt1D!-ed, and at the same time the actual permanent change in 
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the vis viva of the current. }'or this we need only consider the" 
work done at the entrance of the gas into the space be,tween 
the sections, i.e. at section EF, and also at the exit from that 
space, i.e. at section GH; and similarly the velocities of the 
current at those two sections. 

With regard to the velocities, the difference between their 
vis ,viva can readily be calculated. If however they are at 
each section so small as they were in Thomson and Joule's 
experiments, their vis tliva may be. altogether neglected. It 
then remains only to determine the work done at the two 
sections. The absolute values of these quantities of work may 
be obtained as follows. Let us denote the pressure at section 
EF by PI' and suppose the densi-ty of the gas at this section to 
be such that a unit-weight ,at this density has the volume til' 

Then the work done during the passage through the section of 
a ~nit-weight of the gas equals PlVl • Similarly the work done 
at section GH will be P.v •• where PI is the pressure and tI, 
the specific volume at that section. These two quantities 
must however be affected with opposite signs. At section 
GH, where the gas is escaping from the given space, the 
external pressure has to be overcome, in which case the work 
done must be taken as positive; while iIi section EF, where 
the gas is entering the space and thus moving in the same 
direction as the external pressure, the work must be con
sidered as negative. Thus the net external work per
formed on the whole will be represented by the difference 
(PI V.- PlVl)· 

We liave now further to determine the quantity of heat, 
which a unit-weight of the gas must take in while it passes 
through the distance between the two sections; suppos
ing the gas to have at the first section, where the pressure is 
PI' the temperature T" and at the second section, where the 
pressure is PI' the temperature T.. For this purpose we 
must use the equation which applies to the case in which a 
unit-weight of the gas passes from a condition determined by 
the magnitudes Pl and T" into that determined by the 
magnitudes PI and T., and performs in so doing the work 
P,v. - PlVl• We therefore recur to equation (2), in which the 
symbOl to, denoting the external work, must be replaced by 
P~VI-P1V1 ; hence we have 

Q =U.- U1 +Pltll- P1tl1 ................. (10). 
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Here we need only to· determine U. - u;., for which 
purpose we can again use one of the differential equations for 
U set forth in the last chapter. In this case it is convenient 
to choose the differential equation in which T and P are the 
independent variables, i.e. equ~tion (30) of Chapter IX.: 

( . dv) (dv d'll) dU= O,.-p dT dT- T dT+ P dp dp. 

In this equation we may put 

d'll dv 
p dpdT+ p dp dp=pdv=d(pv) -vdp. 

It thus takes the following form: 

dU= O,.dT- (T:~- 'II) dp-d(p'll) ... ~ ... (l1). 

This equation must be integrated from the initial values 
~, PI' to the final values TI , PI' The integration of the last 
term can he performed at once, and we may write: 

U. ~ Ul = J[ a,. dT- (T :~ - 'II) dPJ -P.".+PI'lll .... (12). 

Substituting this value of U.- U1 in equation (10), we 
obtain 

Q = J [ a,. d T - ( T :~ - tI) dPJ ......... (13). 

Here the expression under the integral sign is the differ
ential of a function of T and p, since 0,. satisfies equation (6) 
of Chapter YIlI. : 

0'0,,_ T a-'II 
dp -- dr' 

And thus the quantity of heat Q is completely determined 
by the initial and final values of T and p. 

If we now introduce the condition corresponding to 
Thomson and Joule's experiments, viz. that Q = 0, then the 
difference between the initial and final temperatures is no 
longer independent of the difference between the initial and 
final pressures, but on the contrary the one can be found 
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from the other. If we suppose both these difFerences indefi
nitely small, we may use instead of (13) the following 
differential equation: 

dQ =C,dT- (T ;;- tI)dp. 

If we here put dQ = 0, we obtain the equation which 
expresses the relation between dT and dp, and which may be 
thus written: 

:~ = ~p (T :~ - tI ) •••••••••••••••••• (14). 

If the gas were a perfect gas, and therefore pv = R T, we 
should have 

d'IJ R ." 
dT= p =1" 

hence the above equation would become 

dT -0 
dp- . 

Thus in this case an indefinitely small difference of 
pressure produces no difference of temperature; and the 
same must of course hold if the difference of pressure is 
finite. Hence one and the same temperature mUst exist 
before and behind the porous plug. If on the contrary some 
difference of temperatUl"e is observed, it follows that the gas 
docs not satisfy the law of Mariotte and Gay-Lussac, and by 
observing the values of these differences of temperature 
under various circumstances, definite conclusions may be 
formed as to the mode in which the gas departs from that 
law. 

§ 7. Results of the Experiments, and Equations of 
Elasticity for the gases, as dedtWed therejrfYm. 

The experiments made by Thomson and Joule in 18~!' 
shewed that the temperatures before and behind the plu;.: 
were never exactly equal, but exhibited a small differencf. 
which was proportional to the difference of pressure in earl, 

* Phil. Tram., 1854, p. 821. 
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case. 'With air at an initial temperature of about 15°, losses 
of temperature were observed, which, if the pressure were 
measured in atmospheres, cOuld be expressed by the eq1,1ation 

TI - T. - 0·26° (PI - p;). 
With carbonic acid. the losses of heat were somewhat 

greater; with an initial temperature of abOut 19° they satis-
fied the equation " ' 

TI - T.-1·15°(PI-p;). 

The differential equations corresponding to these two equa-
tions are as follows: " ' 

, , , 

dT dT d:p -0·26 and dp -1·15 ..•.......•.. (15,) 

In a later senes of experiments, published in 1862*, 
Thomson and Joule took special pains to ascertain how the 
cooling effect varies when different initial temperatures are 
chosen. FOI: this purpose they caused the gas, before reach
iog the porous plug, to pass through a long pipe surrounded, 
by water, the temperature of which could be kept at will to 
anything up to boiling poiot. The result showed that the 
cooling was less at high than at low temperatures, and in the 
inverse ratio of tp.e squares of the absolute temperatures. 
For atmospheric air aod carbonic acid they arrived at the 
followiog complete formulae, in which " is the absolute 
temperature of freezing point, and the unit of pressure is'the 
weight of a column of quicksilver 100 English inches high: 

dT ("\1 dT (")1 dp -0·92 'P) and dp =4·64 T • 

If one atmosphere is taken as unit of pressure, these 
formulae become 

dT (")' dT ("V d,P-0·28 T and dp -1·39 T) ........ (16). 

With hydrogen Thomson and Joule observed in their 
later researches that a slight heating effect took place instead 
of cooling. They have however deduced DO exact formula 

• Phil. Tram •• 1862, p. 679. 
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for this gas, because the observations were not sufficiently 
accurate. 

If in the two formulae for ~T, given in (16), we substi

tute for the numerical factor ~ general symbol .A, they 
combine into one general formula, viz. 

dT a)I' T=.A(7' ..................... (17) • .p 
Substituting in equation (14), we obtain 

T :~,- v = .A O. (; r ~ ................. (18). 

According to Thomson and Joule, this equation should 
be employed for gases as actually existing. in place of the 
equation referring to perfect gases, 

dv 
T dT-v=O, 

if we wish to express the relation which exists between 
the change of volume and temperature when the pressure is 
kept constant. ' 

If a" is taken as constant, equation (18) can be integrated 
immediately. Now it is only for perfect gases that it has 
really been proved that the specific heat 0,. is independent 
of the pressure; and similarly it is only for perfect gases 
that the conclusion derived from Regnault'R experiments 
is strictly true, viz. that a" is also independent of the 
temperature. If however a gas differs very slightly from 
the condition of a perfect gas, 01' will have values differing 
very slightly from a constant, ana these differences may be 
taken as quantit.ies of the same order. Since in addition 
the whole term containing a,. is only another small quantity 
of the same order, the differences produced in the equa
tion by the differences of 0,. will be small, quantities of 
a higher order, and such may in what follows be neglected; 
thus we may take a,. as constant. Then multiplying the 

. b dT d' t' h equatlOn y 1.'-', an mtegra mg, we ave 

v a' 
p--:!.A0"'1'·+P, 
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or f/=PT-iAO,.(;)' ................... (19). 

where P is the constant of integration. which in the present 
aula may be considered as a function of the pressure p. 

According to the law of Mariotte and Gay-Lussac 
we should have 

R 
t1=- T ........................ (20)j 

p 
and it is therefore advantageous to give the fnnction P 
the form. 

R P=-+'Ir, 
p 

where 'II' represents another function of p which however 
can only be very small. Eqnation (19) then becomes 

tI=R~+'lrT-i.AO,.(;)' ............... (21). 

This equation Thomson and Joule further simplified 
as follows. The mode in which the pressure and volume of 
a gas depend on each other varies less from the law of 
Mariotte according as the temperature is higher. Those 
terms of the foregoing equation which express this varia
tion must thus become smaller as the temperature rises. 
The last term is the only one which actually fulfils this con
dition; the last but one. 'lrT. does not fulfil it. Accordingly 
this term should not appear in the equation, and putting 
'II' = O. we obtain 

tI==Ri-i.AO,. (fr ............... (22). 

This is the equation which according to Thomson and 
Joule must be used for gases actually existing. in place of 
equation (20) which holds for perfect gases. 
. An exactly similar equation was previously deduced 
by Rankine-. in order to represent the variations from 
the law of .:M.ariotte and Gay-Lussae, found by Regnault 

. • PhiZ. Trani., 18jj4, p. 886. 
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in the case of carbonic acid. This equation in its simplest 
form may be written a 

pu = RP - TV ..................... (23). 

in which a like R is constant. 
If we divide this equation by p. and in the last term, which 

is very small. repl~ the product pv by the very nearly equal 

product R T, and finally write fJ for the constant i . we obtain 

P fJ 
t1==Rp-PIJ 

which is an equation of the same form as (22). 

§ 8. On th8 Belta'Viour of Vapour during Ea:panBion under 
Variou8 OircumstanC88. 

As & further example of the different results which 
may be produced by expansion, we will consider the behaviour 
of saturated vapour. We will assume two conditions: (1) that 
the vapour expanding has to overcome a resistance equal to 
its whole force of expansion; (2) that it escapes into the 
atmosphere, and thus has only to overcome the atmospheric 
pressure. Under the last condition we may make a distinc
tion according as the vapour is separate from liquid in the 
vessel from which it escapes, or is in contact with liquid, 
which continually replaces by fresh evaporation the vapour 
which is lost. In all three cases we will d~termine the 
quantity of heat, whicn must be given to or taken from 
the vapour during expansion, in order that it may continue 
throughout at maximum density. 

First then let us suppose a vessel to contain a unit
weight of saturated vapour, and let this vapour expand, e.g. 
by pushing a piston before it. In so doing let it exert upon 
the piston the whole expansive force which it possesses at 
each stage of its expansion. For this it is requisite only that 
the piston should move so slowly that the vapour which ' 
follows should always be able to equalize its expansive force I 

to that of the vapour which remains behind in the vessel. I 

The quantity of heat (I, which must be imparted to this I 

vapour, if it expands so far as that its temperature falls fromJ 
a given initial value PI to a value T.. is simply found by the 
equation JTo Q == hdT .................. (240). 
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Here h is the magnitude introduced in Chapter VI., and 
named the Specific Heat of Saturated Vapour. If, as is the 
case with most vapours, h has a negative value, the foregoing 
integral, in which the upper limit is less than the lower, 
represents a. positive quantity. 

In the Case' of' water, h is given by formula. (31) of 
Chapter VI., viz., 800'3 

h=1'013-1'" 

Applying this formula it is easy to calculate the value of Q for 
any two temperatures 7~ and Tr For example let us assume 
that the steam has an initial pressure of 5 or of 10 atmospheres, 
and that it expands until its pressure has fallen to one atmo
sphere; then by Regnault's tables we must put Tl = a+ 152'2, 
or = a + 180'3 respectively, and T, = a + 100; we thus obtain 
the values Q = 52'1 or = 74,,9 units of heat respectively. 

In the second case we suppose that a vessel contains a 
unit-weight of saturated vapour apart from liquid, and at a 
temperature T" which is above the boiling point of the 
liquid; and that an opening is made in the vessel, so that 
the vapour escapes into the atmosphere.. Let us proceed to 
a distance beyond the opening such that the pressure of 
the vapour is there only equal to the atmospheric pressure. 
To insure that the current of vapour sha.ll expand in the 
proper manner, let the vessel be fitted at the opening with a 
trumpet-shaped mouth KPQM (Fig. 22.) This mouth is not 
actually needed in order that the L 
equations which follow may hold, ,.",. .-...... M 

but merely serves to facilitate the 
conception. Let KLM be a. surface 
within this mouth, such that the D 
pressure of the vapour is ,there only 
equal to atmospheric pressure, and 
its, velocity so small that its via 
viva may be neglected. We will 
further assume that the heat gene-
rated by the friction of the vapour 
against the edge of the opening 
and the surface of the mouth is 
not dissipated, but again imparted 
to the vapour. A. B 

Now to determine 'the quantity Fig. 22. 
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of heat which must be imparted to the vapour dining ex
pansion, if it is to remain throughout in the saturated con
dition, we will again apply the general equation (2) j which 
gives, if in this case we denote the heat by Q'. 

Q' == U. - Us + W ••................ (25) ; 

here Ul is the energy of the vapour in its initial condition 
within the vessel, Ui the energy of the vapour in its final 
condition at the surface KLM, and W the external work done 
in overcoming the pressure of the atmosphere. 

The energy of a unit-weight of saturated vapour at 
temperature T is given by the value of U in equation (37) 
of Chapter IX., if we there put m = M = 1. It is 

U = U. + (,..( 0 - p :;) dT + t -T ;~ ). 

First give to T the initial value ~, and let Pl' (:~) I' and PI 

be the values of p, :~. and p corresponding to this tempera

ture. Again let T have the final value T., and let PI' (d~~ . 
(/,1/ 1 

and PI be the corresponding values. Then subtracting these 
two equations from each other we have 

u.-~=J:.:(a-p~~)dT+PI[l- ~)] ," 
TI (dl' • 

-p, [1- T,~)J ....... (!6). 

The external work which results from the overcoming of 
the atmospheric pressure PI' during an expansion from 
volume 81 to volume 8 .. is given by the equation 

W = p. (8. - 81), 
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W ewill give another form to this expression. If, as in 
Chapter VI., we put 8 == U + u, where u is the specific volume 
of the liquid, the equation becomes 

W == PI (ul - u.) + P. (u. - u.). 
Substituting for u the expression given in equation (13), 
Chapter VI., we have 

W == PI [~p ~P)] + PI (u.- u.) ..... (27). 
T.(dl'). ~(dT. 

Now substituting in (25) the value of U. - U. from (26), 
and of W from (27), we arrive at the equation 

Q'-f.:(O-p ;')dT+P.-p.+ (k) (P.-pJ 
p. dl' 

I + PI (ul - u.) ......... (28). 

Here the heat is expressed in mechanical units. To 
express it in ordinary heat units the right-hand side must 

be divided by E. As before we will put i == c; ~ = r. At 

the same time, since u is a small quantity and vanes very 

slightly, we will neglect the quantities :; and (u.- u.). 

Thus we obtain 

J~ r 
q == edT + r.- r l + --a'--~ (PI - pJ ........ (29). 

T, T ( P 
1 d1' I 

This equation is well adapted for the numerical calcula
tion of Q, since the quantities which it contains have all· 
been determined experimentally for a considerable number 
of liquids. . . 

For water we have according to Regnault 
dr 

c + dT== 0'305 ; 

whence 
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The quantities in the last term of equation (29) are also 
sufficiently known, 80 that the whole calculation is easy. 
For example if we take the initial temperature at five or 
ten atmospher~, we have Q'=19"5 or=17·0 units of heat 
respectively. 

Since. (j is positive, it follows that in this case also heat 
must be imparted to th,e vapour, not taken from it, if no 
part of it is to be allowed to condense; which condensation 
might take place not only at the opening, but equally well 
inside the vessel. The quantity of vapour 80 condensed 
would however be less than in the first case, because (f is 
less than Q. 

It may easily happen that the above equations give a 
larger quantity of heat for an initial pressure of five than 
of ten atmospheres. The reason is that at five atmospheres 
the volume of the vapour is already very small: and the 
diminution of volume, when the pressure is raised to ten 
atmospheres, is so small that the corresponding increase of 
work during the escape of the vapour is more than balanced 
by the excess of the free hea.t in the vapour at 180·3° o\"er 
that in the vapour at 152"2°. . 

. L Lastly let us take the third case, 
., ... --------..... in which the vessel contains liquid 

as well as vapour. Let the veliSel 
ABOD (Fig. 23) be filled to the le\"el 

G J 0 EF with liquid, and above this with 
c,....--=i:,-'. -'-' ""'--"T, --. vapour. Let PQ be the opening 

..•. -____ / of escape, fitted, as in the last case, 
H with the trumpet-shaped mouth 

KPQM, to regulate the spreading 
out of the current of vapour. Let 
there be some source of heat which 
keeps the liquid at a constant tem
perature ~, so that it continually 

E -_-.~=-:~~.=~~~ I' gives oft' new vapour to replace that 
A ;~:=-~~=-=-- B which escapes, and thus the conui-

F" 23 tions of th~ escape remain always 
Ig. • the same. 

This last circumstance makes an important distinction 
between this case and the foregoing. The pressure, which 
the vapour newly given oft' exerts on that already existing. 
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performs work during the escape of the vapour, which must 
be brought into the calculation as negative external work. 

Let GHJ be a surface at which the vapour which passes 
through has still the 'same expansive force P., temperature ~, 
and specific volume 8. which exist within the vessel, and at 
which the new vapour is given off. Again let KLM be a 
surface at which the vapour passing through has simply the 
expansive force equal to the atmospheric pressure PI' At both 
surfaces we shall assume the velocity to be 80 small that 
its vis viva may be neglected. In its passage from one 
surface to the other, the vapour must continually have just 
that measure of heat given to it or taken from it, which is 
necessu.ty in order to keep it wholly in the gaseous condition, 
and completely saturated, and also in order that at the 
surface KLM it may have the temperature T. corresponding 
to the pressure PI (i.e. the boiling temperature of the liquid), 
and the specific volume 8. belonging to that temperature. 
We have now to enquire how large this quantity of heat fl' 
must be for each unit-weight of the escaping vapour. 

To determine this we may proceed as in the last case, 
remembering that we have now a different value for the 
external work. This value is the difference between the 
work done at the surface GHJ, through which passes a 
volume of vapour 81., at pressure p" and that done at the 
surface KLM, througn which passes a volume 8. at pressure 
Pr It is thus given by the equation 

Putting once more 

we have 

.W = PI, - Pl'" 

, =U+(1'= -!cz;, +(1', 
TdT 

If we now form for Q" an equation of the same form as 
(25), and in it substitute for U,- Ul the expression given in 
(26), and for W the expression given above, the main terms in 
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the~e "tWO expressions cancel each other, and there re
maIDS 

Q" = [.~( a-p~fr) dT+ P.- PI +P.0'.-P10'1·· .. (31). 

If we transform this equation so that it refers not to 
mechanical but to ordinary units of heat, and neglect the 
terms containing 0', we arrive at the simple equation 

(j' = (T. edT + r. - r l ..... , , ".' ••••••• (32). JT1 

For water the equation takes the form 

Q" = - 0'305 (Tl - T.) ; 

and if we calculate the numerical va.lues of Q" for an initial 
pressure of five or of ten atmospheres, we obtain 

Q" = - 15'9 or = - 241'5 units of heat respectively. 

Since the values of Q are negative, it follows that in this 
case heat must be taken out of the vapour, not imparted to 
it. If this withdrawal of heat does not take place to a 
sufficient extent· at any place under consideration, then the 
steam is there hotter than 1000 and therefore superheated. 
Here it is of course assumed that nothing but steam passes 
through the first surface GHJ, and thus that there are no 
particles of liquid mechanically carried off by the steam, as 
may happen during violent ebullition. 
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CHAPTER XI. 

APPLICATION OF THE MECHANICAL THEORY, OF HEAT TO 
THE STEAM-ENGINE. 

§ 1 .. Necessity of a new Investigation into the Theory of 
the Steam-Engine. 

Since the altered views as to the nature and action of 
Heat, which are comprised under the name of the Mechanical 
.Theory of Heat, had their first origin in the known fact 
that heat can be applied to produce mechanical work, it 
might have been at once expected that the theory so formed 
would conversely serve to place this application of heat 
in a clearer light. In particular the more general point 
of view thus obtained would make it possible to pass a.' more 
certain judgment upon the particular machines used for 
this application, as to whether they already completely 
fulfilled their purpose, or whether and how far they failed 
to do so. 

To these reasons, which apply to all thermo-dynamic 
machines, are joined in the case of the most important 
of them, the' steam-engine, certain special grounds~ which 
make it desirable to undertake a new investigation into 
its working, derived from the mechanical theory of heat. 
This theory in fact, in the case of steam of maximum density, 
has brought to light certain important departures from the 
laws previously assumed as correct, or at least generally used 
for purposes of ~cula.tion. . 
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On this head we need only refer to two results given in 
Chapter VI. In most of the recent writings on the steam
engine, amongst others the excellent work of de Pambour, 
the foundation of the theory has been taken to be the 
law of Watt, viz. that saturated steam when contained in a 
non-conducting vessel remains during all changes of volume 
steam of maximum density. In some later writings, after the 
publication of Regnault's researches on the heat required to 
evaporate water at different temperatures, the assumption is 
made that steam partly condenses during compression, and 
during expansion cools in a less degree than corresponds 
to the reduction of density, and therefore passes into the 
superheated condition. On the other Land it is proved 
.in Chapter VI. that steam must behave in a way which 
is different from the first assumption and the exact oppo
site of t~e second assumption, viz. that it is superheated 
during compression, and is partly condensed during expan-

. sion. 
Further it is assumed in the above writings, in default of 

more accurate means of determining the volume of a unit
weight of steam at different temperatures, that steam even at 
its maximum density still follows the law of Mariotte and 
Gay-Lussac. On the other hand it is shewn in Chapter VI. 
that it departs widely from that law. 

These two points have naturally an important influence 
on the quantity of steam which passes from the boiler into the 
cylinder at. each stroke, and on the behaviour of this steam 
during expansion. It is thus obvious that they are them
selves sufficient to make it necessary that we should calculate 
in a different way from that hitherto adopted the amount 
of work which a given quantity of steam performs in the 
steam-engine. 

§ 2. On tM .Action of tM 8team-]J)ng&"-M. 

In order to illustrate more clearly the series of processes 
which make up the action of a condensing steam-engine. 
and to bring out clearly the fact that they form a cyclical 
process, continually repeating itself in the same manner, 
the imaginary diagram (Fig. 24) may be employed. A is 
the boiler, the contents of which are kept uniformly at. 
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a constant temperature 
T, by means of a source of 
heat. From this boiler a 
part of the steam paues 
into the cylinder B, and 
drives the piston a cer
tain distance upwards. 
Then the cylinder is shut 
off from the boiler, and 
the enclosed steam dri ves 
the piston still higher by 
expansion. The cylinder 
is now put in connection j'~ ~~~~U 
with the vessel 0, which 
represents the condenser. 
It will be supposed that . 
this condenser is kept cold, Fig. 24. 
not by injected water, but by cooling from without: this makes 
no great difference in the results, but simplifies the treatment. 
The constant temperature of the condenser we may call TO" 
During the connection of the cylinder with the condenser, the 
piston returns through the whole distance it has previously 
traversed; and thereby all the steam which has not of itself 
passed into the condenser is driven into it, and there con
denses into water. It remains, in order to complete the 
cycle of operations, that this condensed water should be 
brought back again into the boiler. This is effected by the 
small pump D, the working of which is so regulated, that 
during the upward stroke of its piston it draws out of the 
condenser exactly as much water as has been brought into it 
by the condensa.tion during the last stroke; and this water is 
then, by the downward stroke of its piston, forced back into 
the boiler. When it has here been heated once more to the 
temperature TI , all is again restored to its initial condition, 
and the same series of processes may begin anew. Thus we 
have here to deal with a complete cyclical process. 

In the common steam-engine the steam passes into the 
cylinder not at one end only, but at both ends alternately. 
The only difference thereby produced is, however, that during 
one up and down stroke of the piston two cyclical processes 
take place instead of one, and it is sufficient in this case to 
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determine the work done during one process, in order to be 
able to deduce-the whole work done during any given time. 
In the case of an engine without a condenser, we have only 
to assume that it is fed with water at 1000, and we IDay 
then suppose it replaced by an engine with a condenser, the 
temperature of the condenser being 100°. 

§ 3. .Assumptions for th~ purpose 01 Simplijication.. 
For the purpose of this investigation we will assume, as 

has usually been done, that the cylinder is a non-conducting 
vessel, and so neglect the exchange of heat which takes place 
during each stroke -between the walls of the cylinder and the 
steam. 

The vapour within the cylinder can never be anything but 
steam of maximum density with -a certain admixture of 
water. For it is evident from the conclusions of Chapter VI, 
that during the expansion which takes place in the cylinder 
after it is shut oft' from the boiler the steam cannot pass into the 
superheated condition, because no heat is imparted to it from 
without; but must rather partially condense. It is true that 
there are certain other processes, to be mentioned later, which 
tend to produce a slight super-heating; but this is prevented 
from taking place by the met, that the steam always carries 
with it into the cylinder a certain amount of water in the 
form of spray, with which it remains in contact. The exact 
amount of this water is of no importance; and since for the -
most part it is diffused through the steam in fine drops, and 
therefore readily participates in the changes of temperature 
which the steam undergoes during expansion, no important 
error will be introduced if at each moment under consideration 
we assume that the temperature of the whole mass of vapour 
in the cylinder is the same. 

Further, to avoid too great complexity in the formulre, we 
will first determine the whole work done by the steam pressure, 
without examining how much of this is actually useful work, 
and how much is expended on the engine itself in overcoming 
friction, and in actuating the pumps required, besides the one 
shewn in the figure, for the proper working of the machine. 
This latter part of the work may be subsequently determined 
and deducted from the whole, in the manner shown later on. 
It may further be remarked with regard to the friction between 
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the piston and cylinder, that tbe work expended upon tbis is 
not to be regarded as wbolly lost. For since heat is generated 
by tbis friction, the inside of the cylinder is thereby kept 
hotter than it otherwise would be, and the power of the steam 
increased accordingly. . . 

Lastly, since it is desirable to understand the working of 
the most perfect machine possible, before enquiring into 
the influence of the various imperfections which occur in 
practice, we will in this preliminary investigation ma.ke two 
furtber assumptions, wbich may afterwards be withdrawn. 
The first is that the inlet pipe from the boiler to the cylinder, 
and the outlet pipe to tbe condenser or to tbe atmosphere, 
are so large, or else the speed of the engine so slow, that 
the pressur~ witbin the end of the cylinder connected with 
the boiler is always equal to tbe pressure in the boiler itself; 
and similarly that the pressure within the otber end is always 
equal to that in the condenser, or to the atmospheric pressure 
as the case may be. The second is that there are no clear
ance or waste spaces sufficient to affect the result. 

§ 40. Determination of the Work dooe during a single 
stroke. 

Under the conditions just enumerated the amount of 
work done during the cyclical process corresponding to a 
single stroke may be written down by help of the results 
obtained in Chapter VI. without further calculation, and 
their sum comprised jn a simple expression. 

Let M be the whole quantity of vapour which passes from 
the boiler to tbe cylinder during one stroke j of this let the 
part m be in the form of steam and tbe remainder M - m 
in the form of water. The space which this mass occupies writ 
be'(by Ch. Vr., § 1) m l uJ..+ Ma-, where ul represents tbe value 
of 1£ corresponding to 1'., while tT is taken as constant and 
tberefore has no suffix. The piston has therefore been raised 
so far that this amount of space is left under it; and since this 
takes place at the pressure PI corresponding to T1, the work 
done during the first prOcess, which we may call WI' is given 
by the following equation: . 

WI == ml 1£1PI +MOP1· .... • .... •.• ... • ... (I). 
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Let the expansion which succeeds to this continue so far 
that the temperature of the vapour enclosed in the cylinder 
falls from the value T, to a value Tr The work done during 
this expansion, which .we may call WI' is given directly by 
equation (62) of Chapter VI., if we there take T. for the 
final temperature, and corresponding values for the other 
quantities involved. Thus 

W, - m, (p, - ",p,) - m. (P. - "tPJ + MO (Ti - TJ ...... (2). 

On the return stroke of the piston, which now begins, 
the vapour, which at the ~nd of the expansion occupied 
the space m. u. + Mu, is driven out of the cylinder into 
the condenser, overcoming the constant resistance Pgo The 
negative wor~ thus performed is therefore given by the 
equation 

Now let the piston of the small pump rise until it leaves 
under it the space Mu; the pressure then continues to be 
the pressure Po of the condenser, and the work done is . . 

W, -Mapo ...................... ;. (4). 

Finally, during the descent of this piston, the preSRure PI 
of the boiler has to be overcome, and we have ther~fore the 
negative work 

Wa == -Mup, ....................... (5). 

Adding these five equations we have for the whole work 
done during the cyclica.l process by the steam pressure, or in 
other wordS by the heat, which work we may call W', the 
following expression: 

W' = m,p,-m.PI+MO (T,- TJ + "'.". (P.- p.) ... {6). 

From this equation we must eliminate mi' If for ". we 
substitute the value given by equation (13) Cnapter VI., viz. 

"1- T. (QI?) • 
I dT, 

then m. only occurs in the product m.p,; for which equation 
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(55) Chapter VI. gives, if we substitute therein P and C for r 
and 0, the expression 

_ T. IrOT.I ~ m.p. - m1Pl l' -.at I JI og T. . 
1 1 

Substituting this expression we obtain an equation in which 
all the quantities on the right-hand side are known, since 
the masses M and m1, and the temperatures T1, T., and To are 
supposed to be known directly, and the quantities P, p, and 
dp dT are assumed to be known as functions of temperature. 

§ 5. Special FOTmS of the Ea:pression found in the last 
section. 

If in equation (6) we put T.=Tl' we obtain the work 
done in the case where the machine works without expan
sion, viz. 

W' =m1u1 (PI -Po) .................... ·(7). 

If on the other hand we assume that the expansion con
tinues until the steam has cooled by expanding from the 
temperature of the boiler down to that of the condenser (an 
assumption which cannot be realized in practice, but forms 
the limiting case to which we may approach as near as 
is practicable) we have only to put TI = To; whence we 
have 

W' = m1 PI - mo Po + MC (T1 - To} ............ (8). 
Eliminating mopo from this equation by means of the 

same equation (55) Chapter VI., in which we must also put 
T. = To> we have 

W' = mtPl TI;l To + MC (Tl - To + To log ~:). ..... (9). 

§ 6. Imperfections in the Construction of the Steam
Engine. 

With all steam-engines as actually constructed the 
expansion falls much below the maximum value given at the 
end of the last section. If for example we take the tempera
ture of the boiler at 150°, and that of the condenser at 50u, 

then if the temperature of the steam in the cylinder is to be 
lowered by expansion to the temperature of the con~enser, 

c. 1G , 
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the steam must be expanded (by the table given in § 13 
of Chapter VI.) to twenty-six times its original volume. Iu 
practice, on account of the many evils attending too high an 
expansion, steam is not expanded beyond three or four times 
its volume in general, or ten times at the very utmost. Such 
an expansion, with an initial temperature of 151°, is shewn 
by the same tables to lower the temperature to 100°, or 75° 
at the utmost, instead of to 50°. 

Besides this imperfection, which has already been taken 
account of in the above investigation and included in equation 
(6), the steam-engine is subject to several others, two of 
which have been already expressly excluded from considera
tion. These are, first the fact that the pressure in one end 
of the cylinder is less than that in the boiler, and in the 
other greater than that in the condenser, and secondly the 
presence of waste spaces. We must now extend our previous 
investigations so as to include these further imperfections. 

, The influence upon the work done of the difference 
between the boiler and cylinder pressures has been investi
gated most fully by Pambour in his work Theorie des 
Atlachines a, Vapeur. The author may therefore be allowed, 
before himself entering on the subject, to reproduce the most 
important of these investigations, only making some changes 
in the notation and omitting the quantities which refer to 
friction. It will thus be easier to shew how far Pambour's 
results are no longer in accordance with our present know
ledge on the subject of heat, and at the same time to connect 
with it the new method of investigation, which in the 
author's opinion must take its place. 

§ 7. PamlJour's Formulae for the relatioo between 
Volume and Pressure. 

Pambour's theory has its foundation in the two laws 
already mentioned, which at that time were generallyappliccl 
to the case of steam. The first is the law of Watt, viz. that 
the sum of free and latent heat is always constant. From 
this law, as already mentioned, was drawn the conclusion that 
if a certain quantity of steam at maximum density were 
inclosed in a non-conducting vessel, and the contents of this 
vessel then increased or diminished, the steam would neither 
,be superheated nor partially condensed, but would remain 
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During the return stroke of the piston, where the whole 
space swept through by the piston equals the whole space 
occupied by M + p. at pressure P •• less the waste space which 
is represented by P.ou;' + p.a, we have 

w. = - (m.u. + MO' - p.ouo") Po' .•••..•.••.. (240). 

During the forcing back of the mass M into the boiler we 
have 

W, = - yO' CPl - pJ .................. (25). 

Hence for the total work done we have 

W' = m.p. - m.p. + (M + p.) 0 (Ta- Tl ) 

+ maul (Pl' - pJ + m.u. CP. -Po') 

- yO' CPI - Pl' + Po' - pJ - P-ouo" (Pl' -Po') •.. (26). 

In this equation the masses m. and m are given by 
equation(21) and by equation (55) of Chapter \7"1. respectively; 
substituting in the former Po" for Po, and changing To. roo 1£0 

in the same way, while in the latter M + P. is to be sub
stituted for M, p for r, and 0 for c. The elimination of ml 

and m. is thus rendered possible: here however we shall only 
make the substitution in the case of one of them, m., as it is 
more convenient for purposes of calculation to combine the 
equation so obtained with the two named above. Thus the 
system of equations serving to determine the work done 
by the steam-engine will, in its most general form, be as 
follows: 

W' = tR,Pl - maP. + MO (Tl - T.) 
+ p.oP:' - p.O (T, - T;') + m.u. CP. - p;) 
+ m.u;' (Po' - Po") - MO' (Po' - pJ 

m. [PI + u. CPs' - pJ] = msP, 
+ MO (Tl - TJ + p.oPo" - p.O (T. - T.") 

"(' ") ~r (P ') + p..uo Pl -Po +.la0' 1 - Pl 
mn mn T. 
_~8 = _tr_. + (M + p.) Olog.=.J 
T, T. T, 

.•. (27). 
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The mass M flows from the boiler, in which the pressure 
is PI' into the cylinder. Of this mass the part ml is in 
the condition of steam, the remainder of water. The mean 
pressure in the cylinder during this time we will as before 
call PJ' and the final pressure PI' The steam now expands, 
until its pressure has fallen from P, to Pa' and its temperature 
from T, to Ta. Then the cylinder IS opened to the condenser, 
the pressure in which is Po' and the piston moves back 
again through the whole length of the stroke. The back 
pressure which it has to overcome is on account of its 
comparatively rapid motion somewhat larger than Po> and the 
mean value of this back pressure we will for the sake of dis
tinction calIf:' The steam which remains in the waste space 
at the end 0 the return stroke, and must be taken into ac
count for the next stroke, has a pressure which may not be 
equal either to Eo or to Po', and therefore must be denoted 
by Po". It may be greater 0)' less than Po', according as the 
steam is shut off from the condenser a little before or after 
the end of the return stroke; for in the former case the steam 
will be compressed still further, while in the latter it will 
have time to escape partially into the condenser and so to 
expand again. Finally the mass M must be returned from 
the condenser into the boiler, during which as before the 
pressure Po assists the operation, and the pressure PI has to 
be overcome. 

The quantities of work done during these processes will 
be represented by expressions very similar to those in the 
simpler case already considered: a few obvious changes must 
be made in the suffixes to the letters, and the quantities 
added which refer to the waste space. We thus obtain the 
following equations : 

During the admission of steam we have, as in § 10, 
only writing '1/,;' instead of '1/,0' 

WI = (mlul + Mu - mou;') PI' ... :" ........ (22). 

During the expansionfroon pressure PI to Pa' we have as 
in equation (62) of Chapter Vr., writing M + P. 'instead of M, 

W.=m.uaP.- m.uaPI+m.p.-m.p.+ (M +p.) OCT, - TJ 
......... (23). 

, , 
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the pressure in the cylinder is nearly the same as in 
the boiler, and that it is only by the expansion that the 
pressure is finally brought down to the value p,,-it may 
happen that the value found for ms is less than m, + p.o. 
and accordingly that a part of the original steam must 
have condensed. On the other hand if p/ is only a little 
greater or even a little smaller than PI' then the value 
of ml will be greater than m, + 1'-0' This latter is in general 
true of the steam-engine, and in particular holds for the 
case assumed by Pambour, in which P.' = PI' 

Here as in Chapter VI. we have arrived at a result 
widely diverging from the views of Pambour. Whereas 
he assumed for the two different kinds of expansion. which 
succeed each other in the steam-engine, one and the same 
law, according to which the original quantity of steam 
can neither grow less nor ~reater, but must always remain 
exactly at maximum denSIty, we have been led to two 
separate equations, which indicate an opposite condition 
of things. In the first expansion. during the admission of 
steam, there must by equation (21), be a. continual genera
tion of fresh steam; in the further expansion. after the 
steam is cut off, and while ~t is doing the full work 
corresponding to its force of expansion, there must by 
equation (56) of Chapter VI. be a condensation of some part 
of the existing steam. 

Since these two opposite processes of increase and 
diminution of steam, which must also exert an opposite 
influence on the amount of work done by the engine, 
partly go to cancel each other, the final result may in 
certain circumstances be nearly the same as under the 
simpler assumption of Pambour. We must not however 
on this account cease to take into consideration the difference 
we have discovered, especially if our object is to determine 
what effect a change in the arrangement or speed of the 
engine will have on the amount of work done. 

§ 12. Determination of the Work done during one stroke, 
taking into donsideration the Imperfections alre.ady noticed. 

We may now return to the complete cyclical process 
performed by t.he steam-engine, and treat its several parts 
one after another in the same way as before. 
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that the whole space taken up by M + p- at the end of this 
time is given by 

m.p-. + eM + p-) u. 
From this we must subtract the waste spacP.. Since this 
is filled at the commencement by a mass p- at temperature To. 
of which the part P-o is in the condition of steam. it may 
be represented by 

P-o'Uo + p-u. 
If we subtract this expression from the former, and multiply 
the remainder by the mean pressure P'l' we obt.ain for 
the first part of the work done 

(m.ll. +Mu- P-ollo}p/. 
(2) The work done in the condensation of the mass 

m.is 
- m. u.P.' 

(3) The work done in forcing the mass M back into the 
boiler is 

-Meryl' 
(4) The work done in vaporizing the part Uo is 

P-o uoPo' 
Adding these four quantities together we obtain the 

following expression for the whole work done: 

W::.:: m.u. (p; - P.) - Mu (PI - p/) - P-IUO (Pl' - Po) ••...• (20). 
Since Q = W. we may equate the expressions in (19) and 

(20); and bringing to one side of the equation th~ terms 
containing m., we obtain . 

m.[p.+u. (P/ -p.)]=mJPl +MO (TI- Til) +f'oPo-p-C(1J- To) 
+P-OUO(PI -P.)+MU(PI-PI) ............ ( ... I). 

By means of this equation the quantity mil is given 
in terms of quantities assumed to be already known. 

§ 11. Divergence of the above Results from Pambour's 
.Assumption. 

In cases where the mean pressure PI' is much larger 
than the final pressure PII,-e. g. if we suppose that during 
the greater part.of the time of admission of the steam, 
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Let the ma.ss p., which is not forced back into the boiler, 
be first cooled in the liquid condition from Tg to To, and then 
at this temperature let the part JI-o be transformed into steam j 
the piston receding so far, tha.t this steam can again occupy 
its original space. 

Thus the ma.ss M + p. will have passed through a complete 
cyclical process, to which we may now apply the principle 
that the sum of all the quantities of heat taken in during 
a cyclical process must. be equal to the total external 
work done. In this case the following quantities of heat 
have been taken in : 

(1) In the boiler, where the ma.ss M ha.s been heated 
from T. to ~, and at the latter temperature the part m 
transformed into steam, we have the quantity of heat I 

ffl1Pl +MO(T1 - T.). 
(2) During the condensation of tn. at temperature T., we 

have 
-m.p~ 

(3) During the cooling of the part p. from T. to To> we 
have 

- p.0 (T.- To). 
(4) During the vaporization of the part P.o at temperature 

To, we have 
P.oPv 

The whole quantity of heat taken in, which we may 
call Q, is thus given by 

Q=mtPl-tnJ'. +MO (Tl - T.) +p.,po -p.O(T.- TJ ... (19). 

The quantities of work are obtained as follows: 
(1) To determine the space swept through by the 

piston during the entrance of the steam, we must remember 

gaseous condition at the end as at the beginning, we need only assume that 
the water forced back into the boiler is not only in quaniity, but also in 
its actual molecules, the aame as that which left the boiler previously; and 
that when this water takes up the temperature T I , the quantity 77I:i which was 
formerly vapour, is again vaporized, whilst an equal quantity of the existing 
steam is condensed. For this purpose there is no need that the whole mass 
in the boiler should take in or give out any heat, because that required for 
the vaporizaiion, and that generated by the condensation, exactly balance 
each other. 
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before the entrance of the steam; for the sake of generality we 
will assume this to be partly in the liquid, partly in the 
gaseous condition, and will call the latter part 1-'0' The 
pressure of this steam may for the moment be denoted by Po, 
and the corresponding absolute temperature by Tc' without 
implying thereby that these are exactly the same values as 
hold for the same quantities within the condenser. Let Pt 
and 7;. be, as before, the pressure and temperature in the 
boiler, M the mass which flows from the boiler into the 
cylinder, and m1 the part of M which is in the condition of 
steam. The pressure exerted on the piston during the 
entrance of the steam need not, as already explained, be 
constant. We will call Po the mean pressure, by which the 
space swept through by the piston during the entrance of the 
steam must be multiplied, in order to obtain the same 
amount of work as is actually done by the varying pressure. 
Let P, be the actual pressure in the cylinder at the moment 
when the steam is cut off, T. the corresponding temperature. 
Lastly let m. be the magnitude we have to determine, viz. 
the part of the whole mass M + I-' within the cylinder, which 
is in the condition of steam. 

To determine this quantity, let us suppose the mass 11[+1-' 
to be brought back to its initial condition in any way 
whatever, e. g. the following. Let the gaseous part m. be 
condensed in the cylinder by the fall of the piston, it being 
assumed that the piston can force itself even into the waste 
space; at the same time let the mass have such a qnantity of 
heat continuously imparted to it, that its temperature T, re
mains constant. Then let the part M of the whole liquid mass 
be forced back into the boiler, where it again takes up its 
original temperature Tt • We have now within the boiler 
the same condition of things as before the flow of the steam, 
since every part of the boiler has its original tempemture j 
and therefore the proportions of liquid and steam must be 
the same as at the commencement. Whether the individual 
molecules, which are in the gaseous and in the liquid 
condition, are exactly the same as at the commencement does 
not concern us; we make no distinction between these, and 
never enquire what molecules, but simply how many mole:
cules, are in each of the two conditions.· 

• If it be wished that exactly the same molecules should be in the 
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large, that the pressure in the cylinder is as great as that in 
the boiler. This then gives the maximum quantity of work. 
If with an equal admission of steam the speed of the engine 
is greater, or if with equal speed the admission of steam is 
less, then in each case a less quantity of work is obtained 
from the same quantity of steam. 

§ ] O. Changes in the Steam during its passage fr(YTTl, the 
Boiler into the Cylinder. 

Before we pass on to treat the same connected series of 
processes on the principles of the Mechanical Theory of Heat, 
it will be advantageous to consider one of them, which 
requires a special investigation of its own, in order to fix 
beforehand the results which refer to it. This process is the 
flow of the steam into the clearance or waste space and into 
the cylinder, in the case when it has a smaller pres~ure 
to overcome than that which forces it out of the boiler. 

The steam as it comes from the boiler passes first into 
the waste space; there it compresses the steam of less density 
which remains over from the last stroke, fills up the space 
thus obtained, and then acts upon the piston; this, according 
to the assumption, on account of its comparatively lighter 
load recedes so fast, that the steam cannot follow it quickly 
enough to keep the density in the cylinder the same as in the 
boiler. Under such circumstances, if nothing but saturated 
steam escaped from the boiler, this would become superheated 
in the cylinder, inasmuch as the vis viva of the flow would 
be transformed into heat; but since the steam always carries 
with it sma'l particles of water, the superabundant hea.t 
goes to vaporize a part of these, and the steam thus remains 
in the saturated condition. 

We must now consider the following problem: Given the 
initial condition of the whole mass under consideration, as 
well that already found in the waste space as that which is 
newly received from the boiler; given also the amount of 
work which is done during the entrance of the steam by the 
pressure which acts on the piston; lastly given the pressure 
which exists at the moment when the boiler is shut off from 
the cylinder; then to detennine what proportion of the mass 
within the cylinder is at that moment in the condition of steam. 

Let p. be the mass which exists in the waste space 



d}8ooC) Aq paZ1l15!O 

APPLICATION TO THE STEAM-E..,{GINE. 247 

l'xpression is almost too small to be taken into account, 
a jfYrliori we may neglect an error which is small even ill 
comparison with that value; and we shall therefore retain 
the expression in the form given above. 

Adding these four several quantities of work toget,her, we 
obtain the following expression for the whole work done 
during the cyclical process: 

W=mB (e~ e + log ~) -;-'0' (1- e) ('6 +Po) -Mrr(Pl- Po) 

......... (17) . 

§ 9. Pambour's Value jor the Work done P~ Unit-weight 
of Steam. 

If instead of' the work done in one stroke, during which 
the quantity of steam used is m, we prefer to find the work 
done per unit-weight of steam, all that is needed is to divide 
the foregoing value by 'In. Let us denote by l the fraction 

!!, which gives the ratio of the whole mass which passes into 
m 
the cylinder to that part of it which is in the form of steam, 
and is therefore somewhat greater than 1; hy V the frac-

tion ! , i.e. the space which on the whole is occupied by the 
m 

unit-weight of steam in the cylinder; and by W the fraction 

W' ,i.e. the work done per unit-weight of steam. Then we 
m 
have 

(e- e 1) W = B -e- + log e - V (1 - e) ('6 + Po) -lrr (Pt - pJ 
......... (18). 

../ 

In this equation there is only one term which involves 
the volume V, and this contains Vasa factor. Since this 
term is negative, it follows that the work, which can be 
obtained from one unit-weight of steam, is the greatest, other 
things being equal, when the volume which that steam occu
pies in the cylinder is the least possible. The least value of 
this volume, to which we may continually approximate, but can 
never exactly obtain, is that which is given by the assumption 
that either the engine goes so slowly, or the steam-pipe is so 
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space swept through by the piston up to this moment, We 
have the following equation for the first part of the work 
done: 

e-e WI =mB x --'II (e - e) b ••••••••••• (13). 
e 

The law of variation of the pressure during the expansion 
is also given by equation (11). If 11 is the volume and p the 
pressure at any moment, then 

mB 
1'== --11. 

11 

This expression we must substitute in Jpd11, and then 
integrate this from 11 == ev' to 11 == 11'. Thence we obtain for 
the second part of the work done 

W.==mBlog!-11' (I-e) b .............. (14). 
e 

Next, to determine the negative work done by the resis
tance during the return stroke, we must know the value of 
that resistance. Without entering at present into the ques
tion how this resistance is related to the pressure in the 
condenser, we will denote the mean pressure by Po; then the 
work done will be given by 

W. = - 11' (1 - e) Po .................. (15). 
Finally there remains the work which must be expended 

in forcing back into the boiler the quantity of liquid 11. 
Pambour has taken no special account of this work, but 
included it with the friction of the engine. Since, however, 
for the sake of completing the cycle of Qperations, it has been 
included in the author's formulae, it will be investigated here 
in order to facilitate the comparison. If PI be the pressure 
in the boiler, and 'Po in the condenser, then equations (4) and 
(5) show, 8S in the example already considered, that this 
work is-on the whole given by 

W,=-MO"(PI-pJ ................... (16). 

For the present case, where Po is not the pressure in the 
condenser itself, but in the end of the cylinder which is open 
to the conden&er, this equation is not quite exact; but since 
on account of the smallness of 0" the value of the whole 
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ever be fixed in general terms, because it depends not only on 
the construction of the engine, but also on how widely the 
",alve in the steam pipe has been opened by the engineer, 
and on the speed with which the engine is moving. Bya 
change in these circumstances the difference may be made to 
vary within wide limits. Again the pressure in the cylinder 
may not remain constant during the whole time the steam 
is entering. because the speed of the piston, and also the 
opening left by the valve, may be made to vary during this 
time. 

With reference to this latter point Pambour assumes that 
the mean pressure, to be used for determining the work done, 
may with sufficient accuracy be taken to be the same as the 
final pressure which exists in the cylinder at the moment 
when it is shut off from the boiler. The author does not 
think it desirable to introduce into the general formulae an 
assumption of this kind, although in the absence of more 
exact data it may fairly be resorted to for the purpose of actual 
ealculations; but he is bound to follow Pambour's method, in 
order to complete the exposition of his theory. 

The actual pressure at the moment when the steam is 
shut off, Pambour determines by means of his equation, 
as given above, between volume and pressure; assuming that 
special observations have been made to determine the quantity 
of steam which pa.'4ses from the boiler to the cylinder during 
an unit of time, and therefore during each stroke. We 
will, as before, denote by M the whole quant.ity which passes 
into the cylinder during one stroke, and by m the portion 
which is in the condition of steam. .AB this quantity M, of 
which Pambour only recognizes the part which is in the 
condition of steam, fills at the moment when the cylinder is 
closed the space ev', we have by equation (11), 

ev' = bmB •.•......•..••..•••.... (12), 
+P. 

where PI is the pressure in the cylinder at that moment. 
Hence 

mB 
P.= -, - b . ....•..•.•••...•.••• (12a). 

ev 

H we multiply this equation by (6 -e) v', which is the 
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where B and b are constants. 'l'hese constants he endeavoured 
to fix so that the volumes calculated by this formula. might 
agree as nearly as possible with those calculated by the 
formula given above. As however sufficient accuracy cannot 
thus be arrived at in the case of a.ll the pressures which are 
met with in the steam-engine, he made use of two different 
formulae in the cases of engines with and without condensers. 
The first, for condensing engines, is as follows: 

20000 
'/1 = _ ~~(\ + p ••••..•••.••••.••••.• (IIa), 

This agrees best with the formula (10) for pressures between 
1- and :3i atmospheres, but may be applied within somewhat 
wider limits, sa., i and 5 atmospheres. 'l'he second. for non-
condensing engmes, is as follows:' . 

21232 
'IJ = 3020 + p ..................... (lIb). 

This is most accurate between 2 and 5 atmospheres, and may 
be applied anywhere between Ii and 10 atmospheres. 

§ 8. Pambour's Determination of the Work dOO6 during 
a single stroke. 

The quantities needed for determining the work done, and 
depending on the dimensions of the engine, will be here 
denoted in a manner somewhat differing from that of Parnbour. 
The whole space within the cylinder, including the waste 
space, which is left open for steam during a single stroke. 
we shall ca.ll '/1'. The waste space we shall ca.ll ev' and the 
space swept through by the piston (1 - e) v'. That part of 
the whole space. which is left open for the steam up to the 
moment when the cylinder is shut off from the boiler, again 
inclusive of the waste space, we sha.ll ca.ll ev'. Then the 
space swept through by the piston during the entrance of 
steam will be denoted by (e-e) v',and ~hat swept through 
during expansion by (1 - e) v'. 
. First to determine the work done during the entrance of 

the steam. For this purpose we must know the actual 
pressure in the cylinder at this time, which must be less than 
that in the boiler, otherwise there would be no flow from one 

, into the 'dthet. The amount of this difference cannot how-


























































































































































































































































