The air wave surrounding an expanding sphere
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[For summary see p. 292.]
InTRODUCTION

When the surface of a sphere vibrates in any assigned manner the spherical
sound waves which are propagated outwards can be represented by well-
known formulae provided that the motion is such that only small changes
in air density occur. When the motion of the spherical surface is radial the
velocity potential of the sound wave is

¢ =r1f(r—at), (1)
where a is the velocity of sound and r is the radial co-ordinate. The velocity,
u, and the excess, p — p,, of pressure over the atmospheric pressure p, are

u = r-2f(r—at)—r-1f'(r—at), (2)

P—po = —par~tfi(r—at). ' (3)

If Ris the radius of the sphere which, by its expansion, is producing waves,
R is a function of ¢ and the surface condition is

R = R-2f(R—at)— R1f'(R —at). (4)

Equation (4) is an equation for finding the function f. A simple case in which
equation (4) can be solved is when R is constant so, that the sphere is ex-
panding at a uniform velocity. Taking ¢ = 0 when R = 0 the radius at time

¢ can be expressed in the form
R = aat, (5)

where a is a non-dimensional constant. The limitation that the changes in
density are small implies that equations (1)-(3) are true only where « is
small compared with 1.

Writing w = R—at = (e— 1) at equation (5) becomes

2w fe +a= o, (6)

The solution of equation (6) which is valid for negative values of w is

fw) =12,

w2 + C )(oc—l)/oc (7)
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274 G. I. Taylor

The constant of integration ¢ must be taken as zero in order that f(w) may
vanish when w = 0. Hence

_ad® (r—at)?
¢ - 1 —o2 7 ’ (8)

ao® [a?t? 1
v=imalE )

a2 [at
P=Po = zf"f:;z(rl)-

(9)

If at time ¢ = 0, w = 0 and p—p, = 0 everywhere, then at all subsequent
times w = 0 and p = p, in the region outside the sphere r = at.

It will be seen that both  and p— p, are constant when r/at is constant,
thus points where u and p—p, have any assigned value are propagated
outwards at uniform speeds which are proportional to distance from the
centre. Subject to the limitations of the theory of sound therefore* the air
wave produced by a uniformly expanding sphere expands at a uniform rate
and the velocity and pressure at corresponding points are constant at all
stages of the expansion.

This result might have been expected a priori but the solution is here
given in detail because it forms the starting point of the work which follows.

ANALYSIS WHEN VELOCITY OF EXPANSION IS NOT SMALL

It seems likely that a uniformly expanding sphere will be surrounded by
a uniformly expanding air wave, accordingly a solution of the complete
equations of motion is sought in which % and p are functions of = r/¢ only.
For such motions

0 ro
(5i+15;) @wmp) =0, (10
The equation of motion is

cu  ou 1op

S22, (11)
and in view of equation (10) this may be written
duw  ldp
(u—-x)% = ode (12)

* Tt is shown later that the sound wave equations themselves are not valid in this
case, even when a is small, but this fact does not invalidate the expression (8)
regarded as a solution of those equations.
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The equation of continuity is

op op ou 2w\
§+u5+p(—ﬁ+7) =0,

which in view of equation (10) may be written

u—xdp du 2u
st (13)
The gas equation pp~ = constant, together with the expression for the
. dp vyp .
velocity of sound, namely ¢? = —— = *= give
y y dp = p g
lap 1 de )
pdx  y—1ldz’

(14)
ud Yp_ 1 do
& pdx  (y—1)cdx’
Substituting from equations (14) in equations (12) and (13)
dc? du
== hu-a%, (15)

u—z dct du 2u
W_-—l)céa‘;+zx—+?=0. ‘ (16)

For convenience in calculation equation (16) may be replaced by

du 2u u—x\3 !

&= ()] an
Equations (15) and (17) may be expressed in non-dimensional form by sub-
stituting the variables

£ = ufz,
7 = c?fx?, (18)
z =log,x.

The resulting equations are

dy _2qq+(y+1)§—yE -1
E-E m-a-pr ()
dz= 1y—(1-£)2 (20)

dE E3—(1-£)
The solution of equation (19), which contains two variables only, will contain

one arbitrary constant. Without attempting to express this solution in

18-2



276 G. L. Taylor

mathematical form it is possible to construct by numerical integration a
complete set of (£,7) relationships each corresponding with a given value
of the arbitrary constant and to set them out graphically in a single set of
curves on a diagram whose co-ordinates are £ and #. This diagram is shown
in figure 1. The arbitrary constant « is defined so as to correspond with the
constant a in equations (5), (8) and (9), and the value of & corresponding
with each (&, %) curve is shown in figure 1. The single curve which cuts across
all the graphical solutions of equation (19) in figure 1 will be explained later.

BOUNDARY CONDITION AT THE SURFACE OF THE SPHERE
At the surface of the expanding sphere u = 7/t = x so that

' £=1. (21)
In the sound-wave solution the constant o specifies the velocity of radial
expansion of the sphere as a fraction of the velocity of sound. In the com-
plete solution # represents ¢?/2? at any point so that at the surface of the
local velocity of sound
velocity of expansion

the complete solution and the sound-wave solution is therefore attained
when the arbitrary constant a is defined by the relation

Ny = 7% (22)
where 7, is the value of y at £ = 1.

The curves in figure 1 were constructed for a series of values of « starting
at the point (=1, y =o~2) and calculating the change in 7 step by step for
small decrements 4% in £ through the range £ = 1 to £ = 0. The change 0z
in z in each interval 6 was also calculated using equation (20). When # has
been found as a function of £ the solution of equation (20) is of the form

2 .
sphere 7 represents ( ) . Correspondence between

z—2, = (function of £),

where z, is the constant of integration. If z, is chosen so that z = z, when

£ =1 then 20z = z—2zy = log,r/R. (23)

OUTER BOUNDARY CONDITIONS

At the outer boundary of the expanding air it must be possible to connect
the still air conditions with those which obtain in the disturbed region. This
can be done in two possible ways: either (a) it might be found that v = 0 at
radius r = at, so that the (£, %) curve passes through the point (§=0, 7=1);
or (b) it might be found that at some radius the pressure temperature and
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velocity are attained which correspond with the pressure, temperature and
velocity immediately behind a shock wave moving into still air with velocity
r/t. In case (b) the expanding region would be bounded by an expanding
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spherical shock wave and the air outside this sphere would be at rest. The
sound wave solution (equations (8) and (9)) satisfies condition (a), for at
v = at both v = 0 and p—p, = 0.

* The area of figure 9 is indicated by a broken line on the right of the area.
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For values of a larger than those to which sound wave analysis can be
applied it appears that it is not possible to satisfy condition (a). If the solu-
tion for a = 0-7 for instance is followed (see figure 1) for values of { decreasing
from £ = 1 it is found that z reaches a maximum while £ is still positive and
for smaller values of £, z decreases. Thus the same value of zwould correspond
with two different values of § which is physically impossible. It remains to
find out whether the alternative condition (b) can be satisfied. For this
purpose it is necessary to express the appropriate shock wave conditions in
terms of the variables £ and 7.

oty
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40(83%(
F1cure 2. Diagram of symbols.

A shock wave is an extremely thin region within which the pressure,
density, temperature and velocity change from one set of values to another.
The ratios of density and temperature on the two sides of a shock wave
depend only on the ratio of the corresponding pressures. If p, is the pressure
immediately behind a shock wave and p, is the atmospheric pressure in
front of it, y = p,/p, may be regarded as the independent variable in terms
of which all other changes occurring at the shock wave may be expressed.
Figure 2 shows the positions in the field to which the various symbols apply.
The shock wave formulae were first given by Rankine (1870) and later
independently by Hugoniot (1889). The ratio of densities on the two sides
of the shock wave is

Pr_Y— I+(y+1)y

, (24)
Po YHI+(y—-1y
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where v, the ratio of specific heats, is the same as the “y”” which appears in
equation (19). In the present calculations y is taken as 1-405. Continuity
requires that p;/p, must be equal to the ratio of the velocities of the air on
the two sides relative to the shock wave itself. Hence if U, is the velocity of
the shock wave and u, that of the air behind it

U —w, _Po
U P’
or, using equation (24), W 2y=b) (25)

U, y—1l+(y+1l)y’

The condition that the shock wave may expand uniformly with the rest of
the system is

U, =nt,
where 7, is the radius of the shock wave.
Hence uy /Uy = uytfr = &,
or £ = —2¢=1) (26)

= i+ o+ Dy
So far as this condition is concerned an appropriate value of y may be chosen
and a corresponding possible shock wave found at any point in the field.
Equation (26), however, is not the only necessary condition. The velocity
of sound in the air behind the shock wave must also satisfy the condition

Ny = cie?fr} = ¢}/ U, (27)

+14(y—- l)y}
and €3 = = a? {Y—W s 28
1=vp/p, Cf boy v g (28)

where a is the velocity of sound in the undisturbed atmosphere. U; may be
expressed in terms of ¢ making use of the momentum equation

PoUruy = p3—po = (Y — 1) Pos (29)
substituting a?/y for p,/p, and u,/U, from (25)

a? 2y

—_——— 30

Ui v—1+(+Dy’ (30)
hence from equations (27), (28) and (30)

_2yyly+1+ (v -y} (31)

L T e SV
Values of £ and % have been calculated from equations (26) and (31) for a
sequence of values of y. These are plotted in a curve in figure 1. The inter-
sections of this curve with those which describe the flow in the expanding
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air determine the values of £ and #, and hence the value of ¥, corresponding
with possible shock waves. These have been taken from figure 1 and are
given in cols. 2 and 3 of table 1 for values of  ranging from 0-5 to 2-1. The
corresponding values of 7,/ R obtained by numerical integration of equation
(20) are also given in col. 4 of table 1. Corresponding values of y are given
in col. 5 of table 1.

TaBLE 1
1 2 3 4 5 6 T 8
o & M ry/R Y A Y’ Da/Po
0 —_ — — — — — —
0-2 — — 493 . 1-000 0-203 0-928 1-075
0-4 0-0021  0-998 244 1:003 - . 0-410 0775  1.295

0-5 0-033 0-974 1-950 1-050 0-523 0-750 1-400
0-6 0-103 0-916 1-763 1-169 0-638 0-749 1-569
0-7 0-198 0-833 1-503 1-365 0-761 0-755 1-808
0-8 0-291 0-749 1-392 1-629 0-891 0-774 2-105
1-0 0-453 0-597 1-256 2-400 1-180 0-811 2-959

1-2 0-575 0-474 1-182 3-59 1-520 0-847 4-250
1-4 0-662 0-382 1-135 560 1-953 0-887 6-32
1-6 0-727 ° 0-313 1-103 9-06 2-560 0-917 9-89
1-8 0-779 0-256 1-083 17-95 3-598 0-92 19-7
2-1 0-832 0-197 1-060 © © 0-93 0

REDUCTION TO MORE FAMILIAR FORMS

The physical cause of the motion of the expanding air being the motion
of the sphere, the results are more comprehensible when expressed in terms
of the ratio

= velocity of expanding spherical surface U, (32)
" velocity of sound in undisturbed atmosphere ~ o’
rather than in terms of a. Since U,t/U;tis R/r, v
_LU _R y~1+(7+l)y)
i G| o
values of £ are given in col. 6 of table 1.
The ratio y = pressure behind shock wave _ p, (34)

" pressure at surface of sphere ~ p,’
is related to c,/c, by the equation

YOIl = ek (35)
Values of y’ are given in col. 7 of table 1. By definition of 7
G _mf_ R
¢ mri sy’
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R2 \7lr-D
so that P _Y _ ( ) . (36)

D Y Y riaty,

Values of p,/p, namely the pressure at the surface of the sphere expressed
in atmospheres, are given in col. 8 of table 1. The way in which p,/p, and
Po/P, vary with £ is shown in figure 3.

21

i //
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0 05 ) 15 8 20 25 30 35

Ficure 3. Pressure p, at sphere and p, behind shock wave
as multiples of atmospheric pressure p,.

LIMITING VALUES FOR VERY HIGH RATES OF EXPANSION

The limiting values of £; and %; when y o0 are

2
£=-—"_=0-8316,

T y+1
_2y(y-1) (37)
T= "y

Starting from these values equations (19) and (20) were integrated numeric-
ally for increasing values of §. At § = 1 the value of % so found was 0-226
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corresponding with o = (0-226)~2 = 2-103, and the value of 7,/ R was 1-0602.
These are given in the last line of table 1. It seems therefore that as the
velocity of expansion becomes infinitely great the pressure at the surface
becomes infinite, but the density remains finite. The thickness of the layer of
expanding air is never less than 6-0 % of the radius of the sphere.

VARIATION OF VELOCITY WITH RADIUS

The numerical solutions of equations (19) and (20) give  and /B in terms
of £. The most convenient variables for describing velocity distribution are
u/a and r/at which are connected with £, # and r/R by the relations

uja = fér/ R,}

rjat = fr/R. »
Some calculated values of u/a and r/at are given in table 2. These velocity
distributions are shown in figure 4 for values of £ ranging from 0-20 to 1-95.

(38)

TABLE 2

o =02, 8=0203 o =04, f=0-410 a =05, f=0523
r/at ula P[Py rjat  wfa  p/p, rlat  ufa  p/p,
0-203 0-203 - 1-0752 0-410 0-410 1-295 0523 0-523 1-400
0-214 0-182 1.0745 0-430 0-369 1-293 0-544 0-481 1-397
0-228 0-159 1-0727 0-451 0-334 1-286 0-564 0-444 1-391
0-253 0127 1-0671 0471 0-303 1.280 0-586 0-411 1-386
0-300 0-090 1-0571 0-512 0-211 1-263 0-627 0-353 1-363
0-374 0-356  1-0431 0-614 0-162 1.213 0-669 0-304 1-338
0-425 0042 1-0362 0-697 0-113 1-173 0711 0-262 1:310
0-594 0-018 1-0196 0799  0-069 1-122 0774 0209 1-265
0-766  0-008 1-0087 0-901 0-035 1.068 0-836 0-162 1-219
1:000  0-000 1-0000 0-984 1-015 0-900 0-120 1-171
1:000 1-003 0-940 0-093 1-137
0-983 0-065 1-100
1017 0-031 1-050

o =06, 8 =0638 o =07, f=0-761 o =08, f =0-891
7/t ula  p/p, rlat  uja  p/p, r/at ula  p/p,
0-638 0-638 1-569 0-761 0-761 1-808 0-891 0-891 2-105
0-660 0597 1-566 0-782  0-717 0-935 0-805 2:096
0-723 0-489 1-539 0-826 0-640 1-786 0-980 0-729  2-067
0-787 0-405 1-494 0-890 0-541 1-736 1:025 0-662 2-022
0-850 0-332 1437 0-934 0-484 1-692 1-068 0-598 1-965
0-936 0-249 1-349 1:000 0404 1-612 1-114 0-537 1-898
0-978 0-209 1-300 1:043 0-353 1-550 1-158  0-478 1-820
1-020 0167 1-245 1-087 0302 1-480 1.203  0-417 1-733
1.042  0-145 1-186 1-109 0275 1-442 1225 0-384 1-677
1-067 0114 1-169 1-130  0-240 1-399 1-242 0357 1-630

1-145 0-225 1-365
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TABLE 2 (continued)
a =10, f=1180 a=12, f=1520 a =14, f=1953
rjat  ula P[P, v/t ufa  p[p, rjat  wja D[P,
1-180 1-180 2:959 1520 1520 4:250 1953 1-953  6:317
1-227 1-088  2-939 1570 1421 4231 2:010 1-843 6-286
1274 1-004 2-889 1-620 1-330 4-169 2:065 1742  6-191
1-321 0927 2-822 14671 1-233  4-067 2120 1643 6-033
1-368 0-853 2731 1722 1-157  3-927 2-175  1-544 5811
1416 0779 2-621 1772 1-071  3-747 2:215 1-470  5-607
1:463 0704 2-485 1-800 1-029 3-636
14482  0-670 2:413
a =16, f = 2560 a=18, =360
r/at ula  plpy  r/at uja  plp,
2:560 2-560 9-89 3-60 360 197
2-603 2:474 987 3-66 347 197
2-649 2-385 9-82 373 335 195
2-696 2-291 9-72 379 322 190
2750  2-198  9-50 3-86 3-09 183
2-824  2:050 9-07 3-90 303 179
2.0
e
7/
N
// =1-40|
16 ,//
A h¢
4 s - \
L, =1-20
AR
2
w /A \\)
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Ficurz 4. Distribution of velocity.
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The sudden jump in velocity which occurs at the shock wave is represented
in each case by a vertical line and the subsequent increase from the shock
wave to the sphere by a sloping curve behind it. The points corresponding
with the surface of the expanding sphere lie on the line % = /¢ because this
is the condition which must be satisfied at the sphere. For high rates of
expansion the velocity distribution is practically linear. When the thickness
of the layer of expanding air is small compared with the radius of the sphere
ldu
tdr
is, according to equation (17), equal to —2. The mean slope of the velocity
distribution curve for £ = 1-95 is in fact found from figure 4 to be tan—1(—1-8).
The mean slopes for f = 2-56 and 3-598 which are outside the range of
figure 4 are still closer to the approximate value tan—1(—2).

The velocity distribution is shown on a larger scale in figure 5 for the case
when o = 0-7, # = 0-761. The calculated points are marked in figure 5. The
calculation has been carried beyond the point where the shock wave occurs
and the corresponding part of the velocity distribution curve is marked in
figure 5 with a broken line. It will be seen that in the virtual part of the curve
the velocity for a given radius is no longer single-valued.

does not differ appreciably from its value at the spherical surface which

PRESSURE DISTRIBUTION

The pressure p at any point is given by

P Y 777*2052 vly—1)
G (39)

Values of p/p, for a selection of values of 7/at are given in table 2. The pres-
sure distributions for « = 0-2, 0-4, 0-5, 0-6, 0-7, 0-8, 1-0 and 1-2 are shown in
figure 6. It will be noticed that those for @ = 1-0 and 1-2 appear to be nearly
parabolic. It can be shown in faet that the distribution is parabolic near the
sphere so that when the thickness of the layer of expanding air is small com-
pared with the radius of the sphere the distribution is nearly parabolic
through the layer. If

s = (r—R)/r sothat x= Uy(l+s), (40)
and s is supposed small the approximate linear distribution of velocity is

U= 172(1 - 28)’
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Ficure 5. Distribution of velocity for a = 0-7.

equation (15) therefore takes the form

dc?
% = —6(7_ 1) U%S,

2

so that c2—c?=3(y—1)U%s* or 1 —Z—g = 3(y—1) a2

1-20

285

(41)
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Pe—p _ ¥ G=¢
Py Y-l ¢

If s is small

_ R\2
so that 1— 1%”; = 3yats? = 3ya2(’ RR) , (42)
which represents a parabolic pressure distribution.

As an example of the application of the approximate expression (42) the
values of ¥’ and o« corresponding with infinite rate of expansion may be

45
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at

Ficure 6. Distribution of pressure.

calculated. In this case .£; = 0-8316, 7, = 0-1968 (see equation (37)) so
that s;, the value of s at the shock wave is given by

£ =utfr=1-3s8 = 08316 and 7, = c%?/r? = a~%(1-2s,).
Hence s, = 0-056, so that
ry/R=1-056 and 7; = 0-1968 = a~3{1—2(0-056)},

so that o = 2-12. The approximate value of ¥’ is 1 —3ya2s? or 0-94. These
values may be compared with those given in table 1 which were found by
numerical integration of the full equations, namely, »;/R = 1-060,a = 2:103,
y' = 0-93.
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COMPARISON WITH SOUND WAVE SOLUTION
FOR LOW RATES OF EXPANSION

For small values of a the sound wave solution of equations (8) and (9)
may be expected to afford a good approximation to the true motion. The
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Freure 7. Comparison between velocity and pressure distributions calculated
"by the theory of sound and by the complete equations.

velocity and pressure distributions calculated from the complete equations
and from the approximate equations of the theory of sound are com-
pared in figure 7 for the case a = 0-2. So far as the velocity distribution is
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concerned the agreement is good but the pressure distributions are distinctly
different near the sphere. The true pressure distribution is in fact parabolic
near the sphere and initially dp/dr = 0. According to the sound wave equa-
2p (Of) The reason
1—a2\R)"

for the discrepancy is evidently that it is not justifiable to apply the
equations- of the theory of sound in the neighbourhood of the sphere
owing to the neglect of the term uou/or in the equation of motion in
comparison with ou/of. In the correct equation w ou/ox is equal to — ou/o¢
at the sphere.

Apart from this difference at the inner boundary the chief contrast
between the sound wave solution and the true solution for values of «
greater than 0-5 lies in the fact that the former involves no shock wave at
the outer boundary. The true solution for a = 0-2 appears in figure 7 to
resemble the sound wave solution in this respect. If this resemblance were
true then some limiting value of & would exist below which no shock wave
would be produced. Assuming that such a limit exists the author’s rough
attempts to determine its value placed it between « = 0-4 and « = 0-5.
The matter was, however, examined later by Dr J. W. Maccoll using more
accurate methods of numerical solution, and he came to the conclusion not
only that a shock wave is formed when « is less than 0-4 but that no lower
limit of the assumed type would be found. Subsequent analysis shows that
this prediction is correct. ’

tion (9) the value of dp/dr close to the sphere is —

FORM OF SOLUTION NEAR (§=0, =1)
Near the point (§=0, 7=1) equation (19) takes the form
d¢ _E+(r+1)§

dg - g H (43)
where { = 3 — 1. The solution of equation (43) is
&= (y+1)&log(4f), ‘ (44)

where 4 is the constant of integration. As § -0, {— 0 but is negative when
£<1/A. Multiplying both sides of (44) by A4 it will be seen that A{ is a
function of A& so that the shape of the (£, ) curve does not depend on the
constant of integration though its scale is proportional to 1/4.

In the neighbourhood of (£§;=0, 7, =1) the relationship between &, and
7, at a shock wave is found by taking y — 1 as small in equations (26) and (31).

Hence L h=l_ 3= _ggr, (45)
£1—>0 gx 2
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Comparing equations (45) with (44) the shock wave condition is satisfied if

3 3—Y_ .
log, A& = Sy 1) —0-3316. (46)
Hence AE = +0-718,
(47)
AL = A(p—1) = —0-572.
+35

+
w
=

+ 4
n
n

\

AT
o 0 vafAE 16 2
SHOCK WAVE
o N /"Eaff‘;?ﬁ; _
\"/\F% -3Y=-07s7
-0
Ficure 8

Figure 8 shows the form of the solution near (£ =0, #= 1) and the shock wave
line intersecting the (§,%) curve at the point (+0-718, —0-572). It may be
concluded that provided the numerical solution brings the (§%) curve into
the neighbourhood of the point (£=0, =1) the expanding air must be
bounded by a shock wave. This indeed proves to be the case, but, as will
be seen later, the shock wave is of very small intensity when a is less than 0-5..

FITTING THE NUMERICAL SOLUTION TO THE
SOLUTION VALID NEAR £=0

Writing = 7 — 1 equation (19) becomes

df _2(1+8) &+ (y+1)E—yE? 48
¢~ £ 2+4+30+2E—¢g2° (48)

Vol. 186. A. 19
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In the approximate solution (44) {/£ decreases as § decreases. In fitting the
approximate solution to the numerical solution a pair of values of £ and ¢
may be taken and the value of 4 found by inserting these in equation (44).
To find the error committed in using equation (43) instead of (48) suppose
that the solutions are joined where {/§ = B the true value of d{/d& at this
point is

df _(1+BE)(B+y+1—v{)

d¢~ 2+(8B+2)¢-£

expanding this expression in powers of § the first two terms are

[e],= Brrevfi=(1eame g 7))

The value of [d{/d§]y in the approximate solution is B+7y+1. The pro-
portional error is therefore

_ ) ; T A
e—(1+2B+B+7+1)§

and since in the approximate solution
B = (y +1)log, (4),
the error in d{/d§ is given by

= 1Br— 7V \uv+vB
Ae (1+2B+B+7+1)67 . (49)

Values of Ae for a series of values of B are given in table 3.

TABLE 3

B -1 0 1 2 3 4 5 6 7 10
Ae  0-96 1-58 2-9 5 9-6 169 294 502 844 387-0

[

o = 0-4. When a = 0-4 values of £ and { given in lines 1 and 2 of table 4
were calculated numerically. Values of A calculated from equation (44) are
given in line 3, and the proportional error calculated from equation (49) in
line 5. The error € is less than 5 9, in the first three points.

TABLE 4. aa=0-4

0-0081 0-0122 0-160 0-0231 0-0306 0-0384 0-0446 0-0536 0-0651
0-020 0-044 0-065 0-115 0-170  0-226  0-287 0-351 —
342 367 337 342 327 301 325 248 227
2-46 3-61 4-0 53 5-5 59 6-4 6-3 6-5
0-021 0-038  0-046 0-105 0-12 0-16 0-19 0-24 0-29

o O R oo



The avr wave surrounding an expanding sphere 291

Taking A = 340 the (£,7) curve shown in figure 9 was calculated. The
first three values of 7, namely, those corresponding with § = 0-0081, 0-0122
and 0-160 are shown in figure 9. It will be seen that though the curve
calculated using equation (44) passes very nearly through these three points
the existence of a portion of the (%) curve for which { is negative would not
have been suspected from simple inspection of the

apparent trend of the curve calculated step by step . 110
through 99 9%, of the range § = 1 to 0. This point
may perhaps be appreciated more clearly if the area 109
covered by figure 9 is compared with the same area _ /
(marked with broken line) on the much smaller 108
scale of figure 1. /
It appears from equation (47) that when o = 0-4 07
the expanding air is bounded by a shock wave for .,
which 1odl /
£, = 0-718/340 = 0-0021, /
#—1=—0572/340 = —0-0017. 105 /
The corresponding change in pressure at the shock vo I
wave is y— 1 = y&; = 0-003 of an atmosphere. )
o = 0-5. When « = 0-5 the four lowest values of 103
7 calctlated numerically give A4 =24, 21, 21
and 21. Taking 4 = 21 the shock wave corresponds joeb— 1
with ‘
£, = 0-718/21 = 0-034, o
By —1=—0-572/21 = —0-027, [é“fi'.‘o‘f.:f
& ==0-0016B.
so that y—1 = 0034y = 0-048, I-o
which agrees well with the value y = 1-05 deter- ;.99 > 2e

mined graphically by means of figure 1.
a = 0-2. When o = 0-2 the lowest values of { cal-  5.08 ‘ -
culated numerically are e o °

Ficurz 9. &, 5 curve near

3 0-0002-  0-0003 0-0005 £=0, 7 = 1, when a=0-4.

¢ 400175 +0:026  +0-043

When inserted in equation (44) these give values of £ and 7 at the shock
wave of order 10-1°, So far as the equations of a non-viscous fluid are con-
cerned this shock wave seems to be real enough in spite of its extreme small-
ness but from the physical point of view such a minute shock wave has no
meaning. The effect of viscosity and conductivity would in fact become
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292 G. I. Taylor

appreciable long before a shock wave with pressure change 10~ atm. could
be formed. Nevertheless it is curious that there is this definite mathematical
difference between a wave of finite intensity and the equivalent sound wave.
It is especially curious that the point where the solution of the complete
equation differs from the approximate solution of the theory of sound is in
the region of very small velocities and pressure changes, the region in fact
where the theory of sound might be expected to be most accurate.

In conclusion I wish to express my thanks to Mrs H. Glauert who carried
out some of the calculations and to Dr J. W. MacColl for some valuable
suggestions.

SuMMARY

The only case in which the motion of a gas at high speed in three dimen-
sions has so far been discussed mathematically is that of the disturbance
produced by a cone moving with velocity greater than that of sound. In
the present work another case is analysed, namely, the radial outward flow
produced by a uniformly expanding sphere. The region of expanding air is
bounded by a shock wave outside which the air is undisturbed. As the radial
velocity of the sphere increases the thickness of the layer of disturbed air
decreases till at infinite rate of expansion it is only 6 9, of the radius of the
sphere. The distributions of velocity and pressure are given for a range of
rates of expansion. When the radial velocity of the sphere is small an approxi-
mate analysis based on the theory of sound yields results which are inaccurate
near the sphere and also at the shock wave which forms the outer boundary
of the expanding air. ‘
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