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Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimoniousmodel
of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty
is overcome by incorporating the well-documented dependence of connection probability on distance.
Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal
patterns that can be trained to perform dynamical computations under a reservoir computing framework.
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Biological neuronal networks exhibit irregular and asyn-
chronous activity [1,2] that is oftenmodeled using randomly
connected networks of excitatory and inhibitory spiking
neurons. In these models, an approximate balance between
excitation and inhibition combines with random connec-
tivity to produce asynchronous-irregular spiking activity
similar to that observed in experimental recordings [3–6].
Despite their ability to explain the genesis of neural

variability, asynchronous-irregular spiking network models
have a critical shortcoming: Their microscopic dynamics—
at the level of spike times—are intricate and nonlinear, but
largely unreliable [3,4,7,8]. Their macroscopic dynamics—
at the level of firing rates—are reliable, but primarily track
network input [3,4,6,9,10]. Biological neural networks
must generate reliable, intricate responses to simple sensory
inputs, for example, to produce motor output [11,12]. This
raises the question of how neural circuits reliably produce
intricate firing rate dynamics for dynamical computations.
In this Letter, we show that the limited dynamical

complexity of firing rates in asynchronous-irregular spiking
networks is overcome by incorporating the widely reported
dependence of connection probability on distance [13–16].
Spiking networks with a spatial topology can undergo
symmetry-breaking Turing-Hopf bifurcations [17,18] to
generate intricate spatiotemporal dynamics that can be
trained to perform computations.
Results.—Following previous work [9], we consider a

recurrent neural network with 4 × 104 excitatory (e) and
104 inhibitory (i) model neurons arranged uniformly on a
square-shaped domain, Γ ¼ ½0; 1# × ½0; 1#, with periodic
boundaries, i.e., a torus. The synaptic input current to
neuron j in population a ¼ e, i is given by

Iaj ðtÞ¼
XNe

k¼1

Jaejk
X

n

δðt− tenkÞþ
XNi

k¼1

Jaijk
X

n

δðt− tinkÞþFa
j ðtÞ;

where tbnk is the nth spike of neuron k in population b¼ e, i.
Spikes are determined by a leaky integrate-and-fire

dynamic [19]. To model the widely observed distance
dependence of connection probability [13–16], the synaptic
weight from a neuron at coordinates y ∈ Γ in population b
to a neuron at x ∈ Γ in population a is chosen randomly
according to

Jabjk ¼
!
jab with prob: pabðx − yÞ
0 otherwise

;

where pabðuÞ¼ p̄abGðu;σbÞ and Gðu; σbÞ is a two-
dimensional wrapped Gaussian with width σb [9].
We first simulated a network in which external inputs

were constant across space and time and inhibitory pro-
jections were more localized than excitatory projections
[Fig. 1(a)]. Even though the model is deterministic, spiking
activity was irregular and asynchronous with no coherent
spatial patterning [Fig. 1(b), Supplemental Material at
Figs. 1 and 2 and Supplemental animation]. This spike-
timing variability is driven by chaoslike dynamics
[3,4,7–9].
Despite the complexity of spike-timing dynamics, firing

rates are amenable to mean-field analysis under a diffusion
approximation [9]. The mean input, ~μðxÞ ¼ ½μeðxÞ μiðxÞ#T ,
to e and i neurons near x ∈ Γ is

~μðxÞ ¼
Z Z

Γ
WðuÞ~rðx − uÞduþ ~FðxÞ;

where ~rðxÞ ¼ ½reðxÞ riðxÞ#T is the average firing rate
and ~FðxÞ the feedforward input to neurons near x ∈ Γ.
The matrix kernel WðuÞ captures synaptic divergence and
similarly for the input variance, vðxÞ¼∬UðuÞ~rðx−uÞdu
[20]. The mapping from input statistics to rates,
~r ¼ ϕð~μ; ~vÞ, is computed using a Fokker-Planck formalism
so fixed point rates can be computed numerically [21–24].
When ~FðxÞ ¼ ~F is spatially uniform, so are fixed point
rates [9].
To estimate local rates from simulations, we partitioned

the network into 100 squares, then averaged and low-pass
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filtered the spike trains of the 400 excitatory neurons in
each square [Fig. 1(a)]. These local rate readouts closely
matched the fixed point rates computed numerically from
the diffusion approximation [Fig. 1(c)] and fluctuations in
the rates were consistent with asynchronous, Poisson-like
spike timing variability [25].
Broad lateral inhibition is known to induce spatial

pattern formation [9,26–30]. We next modified the network
so that inhibitory projections were broader than excitatory
projections [Fig. 1(d)]. This produced a dramatic change in
the spiking activity, with spatially uniform activity giving

way to intricate, asymmetric spatiotemporal activity pat-
terns [Fig. 1(e) and Supplemental animation], despite the
spatial symmetry of connection probabilities in the net-
work. These spatiotemporal patterns were reflected in the
local rate readouts by irregular high-amplitude fluctuations
[Fig. 1(f)]. Despite their differences, both networks pro-
duced asynchronous, irregular spike trains with an approxi-
mate balance between excitation and inhibition [31],
though previous work suggests that the network would
not maintain balance as network size diverges [9].
The network with broad inhibition and the network with

local inhibition share the same spatially uniform fixed point
under the diffusion approximation, but rates strongly
deviated from this fixed point when inhibition was broader.
We conjectured that the fixed point was stable for the
simulation with local inhibition and unstable when inhib-
ition was broader.
Spatially extended neural networks are often described

using integrodifferential equations of the form

τr∂~r=∂t ¼ −~rþ ϕð~μ; ~vÞ; ð1Þ

or of a similar form. As in previous work [9], this approach
predicted stability of uniform firing rates for the network
with broad inhibition, despite the patterns observed in
simulations [32]. We conjectured that firing rate dynamics
observed when inhibition was broad arose in part from a
resonance in neurons’ membrane and spiking dynamics
[33] that is not captured by Eq. (1). To account for this
resonance, we generalized the stability analysis from recent
work [34] to spatial networks. Linear response theory gives
an integral equation for the dynamics of a perturbation from
the fixed point [35],

δ~rðx; tÞ¼
ZZ

Γ

Z
∞

0
AðτÞWðuÞδ~rðx−u; t− τÞdτdu

þ
ZZ

Γ

Z
∞

0
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FIG. 1. Intrinsic dynamics in a spatially extended spiking
network. (a) Schematic of spatially extended spiking network
model. Excitatory and inhibitory neurons arranged on a square
project randomly to one another. Lateral excitatory projections
(blue) are longer on average than lateral inhibitory projections
(red; σe ¼ 0.1, σi ¼ 0.05, FeðtÞ ¼ 3 V=s, FiðtÞ ¼ 2.3 V=s).
Each local rate readout (black) is computed by averaging the
activity of all excitatory neurons within a square patch then
low-pass filtering with a Gaussian kernel (σ ¼ 5 ms). (b) Raster
plot snapshots over 5 ms time windows starting at t ¼ 100 and
200 ms. (c) Five randomly chosen local rate readouts. Dashed
black line shows numerically computed fixed point rate. (d)–(f)
Same as (a)–(c), but inhibitory projections are broader than
excitatory (σe ¼ 0.05, σi ¼ 0.1). See Supplemental animation for
animated raster plots.
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FIG. 2. Stability of spatially extended spiking networks. (a) Schematic of stability analysis. A perturbation applied to the firing rates
(dashed lines, blue for excitatory and red for inhibitory) is filtered spatially by synaptic divergence (left boxes, showing connection
probability as a function of distance) to determine perturbations of synaptic currents (solid lines), which are filtered temporally by
neurons (right boxes, showing linear response kernels). (b) When inhibition is more local than excitation [as in Figs. 1(a)–1(c)], all
eigenvalues have negative real parts. (c) Same as (b), except for broad inhibition [as in Fig. 1(d)–1(f)]. Some eigenvalues have positive
real part (inset). (d) Maximum real part of the eigenvalues (green) and the average temporal variance of the firing rate readouts (purple;
units Hz2) as a function of the relative width of inhibitory projections (σi=σe).
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as schematicized in Fig. 2(a). The matrix kernels, AðτÞ
and BðτÞ, quantify excitatory and inhibitory neurons’ linear
response to perturbations in their input mean and variance
[36]. Equation (2) can capture an arbitrary linear depend-
ence of firing rates on their history, which is generally not
possible in a finite system of integrodifferential equations
like Eq. (1). Transitioning to the temporal Laplace
and spatial Fourier domains in Eq. (2) gives the Evans
function [37]

det ½ÂðλÞ ~WðnÞ þ B̂ðλÞ ~UðnÞ − Id# ¼ 0; ð3Þ

where Id is the 2 × 2 identity matrix, ~WðnÞ and ~UðnÞ are
Fourier coefficients of WðuÞ and UðuÞ, and ÂðλÞ and B̂ðλÞ
are matrices of susceptibility functions [38], which can
be computed under the diffusion approximation using a
Fokker-Planck formalism [22–24,39]. Solutions, λ, to
Eq. (3) are eigenvalues of the rate dynamics and the
associated Fourier modes, n, are eigenmodes.
Numerical computation of the eigenvalues confirms that

the uniform fixed point rates are stable for the network with
local inhibition [Fig. 2(b)] and unstable for the network
with broad inhibition [Fig. 2(c)]. The eigenvalues with
positive real part are complex [Fig. 2(c)] and are associated
with nonuniform eigenmodes (n ≠ 0), implying a Turing-
Hopf bifurcation that produces spatially coherent, time-
varying patterns [17,18]. Varying the width of inhibition
shows that eigenvalues with positive real part emerge once
inhibition is about twice as broad as excitation, coinciding
with the emergence of high-amplitude firing rate variability
in simulations [Fig. 2(d), compare green and purple].
Stability can also be modulated by the strength of external
input to inhibitory neurons [40], showing that the network’s
dynamical state can be controlled by input.
So far, we have considered purely spontaneous rate

dynamics. We next added a time-varying external input
shared by all neurons [Fig. 3(a)]. For the stable network,
local rates approximately tracked the shared input with the
addition of irregular fluctuations [Fig. 3(b)], consistent with
Poisson-like spike-timing variability [41]. Applying prin-
cipal component (PC) analysis to the local rates revealed
that the majority of firing rate variability is captured by the
first PC projection [Fig. 3(c)], representing the variability
inherited from the one-dimensional external input. The
remaining variability was spread among higher PC pro-
jections, representing spatially unstructured variability.
The unstable network exhibited a starkly different

response to the external input. While local rates were
affected by the external input, they did not reliably track it
[Fig. 3(d)]. The input evoked a high-dimensional response,
with variability distributed across several PC projections
[Fig. 3(e)]. These results show that the unstable network
generates high-dimensional firing rate dynamics in
response to a one-dimensional input, while the stable
network simply tracks the input with Poisson-like spike
timing variability.

While local rate readouts of the unstable network did
not track the input, random global readouts from the same
network do track input. We computed firing rate readouts
generated from 400 excitatory neurons selected randomly
from the entire network [Fig. 3(f)], instead of locally.
These random readouts from both the stable and unstable
networks reliably tracked external input [Figs. 3(g)–3(j)].
This finding can be understood by noting that the
random readouts estimate the network-averaged rates.
Equation (3) is identical for the stable and unstable net-
works at the uniform eigenmode, n ¼ 0, so the networks
have the same eigenvalues at that mode. Hence, the global
average firing rate exhibits similar dynamics in both
networks.
For the rate dynamics generated by the unstable network

to perform reliable computations, the response of the
network should be consistent across repeated presentations
of the same input. We found that the transformation of
spatially uniform input considered in Figs. 3(d), 3(e) was
not reliable: While the first PC projection reliably tracked
the input, other components were highly unreliable from
trial to trial [Figs. 4(a), 4(b)]. We conjectured that this
unreliability is due to the spatial symmetry of the network:
Since the activity patterns generated by the unstable net-
work arise through a symmetry-breaking dynamic, there
are numerous firing rate patterns that are equally likely to
be evoked each time the input is presented. As a result, the

(a)

(f) (g)

(h) (j)

(i)

(b) (d)

(c) (e)

FIG. 3. Firing rate response to global input. (a) A spatially
uniform sinusoidal input was provided to all neurons in the
network [FeðtÞ ¼ 3þ 1.5 sinð2πtÞ, FiðtÞ ¼ 2.3þ 1.5 sinð2πtÞ].
(b) Five randomly chosen firing rate readouts (colored curves)
track the input (black curve) with Poisson-like variability. All
curves normalized by subtracting their mean and dividing by the
standard deviation. (c) Percent variance in the 100 firing rate
readouts explained by the first ten principal component projec-
tions. (d),(e) Same as (b) and (c), but for the unstable network.
(f)–(j) Same as (a)–(e) except that firing rates are read out
randomly and globally from the network.
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evoked response depends on small differences in the
network state when the input arrives.
We, therefore, considered an input that projects

to the network with weights that vary across space [42]
[Figs. 4(a), 4(c)]. This modification had a striking effect
on the network response. Unlike the response to spatially
uniform input, the response to spatially heterogeneous
input was highly reliable from one presentation of the
stimulus to another [Fig. 4(c)].
We next asked whether the unstable network could

be trained to implement dynamical computations using
the local rate readouts as the “reservoir” in a reservoir
computing framework. Local rate readouts were linearly
combined to produce an output time series. Readout
weights were trained using a recursive least-squares algo-
rithm [43] that iteratively updates weights to mold the
output to a target time-series [44] [Fig. 4(a)].
When this algorithm was applied to firing rates

produced by spatially uniform inputs [from Fig. 4(b)],
the outputs did not produce the target time series
[Figs. 4(d), 4(e), blue curves], due to the unreliability
of the network response. When the same algorithm was
applied to the rates produced by spatially heterogeneous
inputs [from Fig. 4(c)], the outputs closely matched
the target [Figs. 4(d), 4(e), red curves]. Further simu-
lations show that the network can learn a variety of
target outputs from a variety of inputs and that a slow
adaptation current improves the networks’ computational
capabilities [45].

Discussion.—There is extensive literature on spatially
extended neural fields [26–28] and the dynamics of spiking
neuron models [46,47], but these topics are rarely com-
bined. Previous studies found spatiotemporal dynamics
in spiking networks with synaptic kinetics or delays
[29,48,49]. Since the resonance for a Turing-Hopf bifur-
cation arises primarily from synaptic dynamics in these
models, their stability is captured by differential neural field
equations. The Turing-Hopf bifurcation observed here and
in previous work [9] arises from the resonance of spiking
neurons, which is not captured by differential neural field
equations. Spatial dynamics arising from the resonance of
neurons are rendered mathematically tractable by extending
linear response techniques developed for homogeneous
networks [34]. This approach is applicable to the growing
class of neuron models for which the linear response
function can be computed [22–24].
A few studies have implemented reservoir computingwith

spiking networks. Maass et al. [50] used a spatially extended
spiking network for reservoir computing, but did not explain
the role of spatial topology, which we have clarified. More
recent studies [51,52] showed that precisely tuning a subnet-
work of slow synapses offline can produce intricate rate
dynamics in spiking networks. One of those studies [52],
implemented reservoir computingwith a spiking network. In
the other study [51] this was only done for a rate network
version of themodel. It remains to be shown how this precise
tuning of synapses could be achieved biologically, but
inhibitory plasticity is one possibility [53].
Ostojic [54] showed that spiking networks can produce

high-dimensional rate dynamics when synapses are strong,
analogous to rate networks [55], but the reliability of these
dynamics and their computational capabilities were not
explored. The combination of strong coupling with spatial
network topology is a promising direction for future study.
Distance-dependent connectivity is ubiquitous in the

brain [13–16]. We showed that this spatial topology imparts
spiking neural networks with the ability to perform
dynamical computations (Fig. 4) while maintaining the
ability to accurately track network input [Figs. 3(i), 3(j)].
Hence, spatial network architecture provides a critical link
between biological realism and computational capability in
recurrent neural network models.
Spatially extended networks are often modeled with

integrodifferential equations that do not capture the history
dependence of rate dynamics. We showed that this short-
coming is overcome using linear response theory to replace
the integrodifferential equation (1) with an integral equa-
tion, (2). This approach has applications in any stochastic
system with spatially and temporally nonlocal interactions
such as models of social networks, population dynamics,
and epidemiology.

We thank Ashok Litwin-Kumar, Bard Ermentrout, and
Brent Doiron for helpful comments. This work was
supported by NSF Grant No. DMS-1517828.

FIG. 4. Reliable computations require heterogeneous input.
(a) Schematic. Same as Fig. 3(a) except the input was repeated
for 100 consecutive trials and multiplied by fixed, location-
dependent weights. Readouts were multiplied by output weights
that were trained to produce a target output. (b) Overlaid plots of
the first five PC projections of untrained readouts (uniform
readout weights) over ten randomly selected trials when inputs
were spatially uniform [same model as Fig. 3(d)]. (c) Same as (b)
with spatially heterogeneous input weights. (d) Trained output
from last ten trials with uniform (blue) and heterogeneous (red)
input weights, compared to target (dashed black). (e) Mean-
squared error of readouts.
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Supplementary Figure 1: Comparison of stable network to population of Poisson-spiking neurons. a) Same as
Fig. 1b of main text, except all spike trains were replaced by homogeneous Poisson processes with firing rates equal

to the population-wide average excitatory firing rate. Average temporal variance of readout = 3.4 Hz2 in (a) and
3.6 Hz2 in Fig. 1b. b,c) Same as Fig. 3b,c except all spike trains were replaced by inhomogeneous Poisson processes

with firing rates equal to the time-dependent population-wide average excitatory firing rate.
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Supplementary Figure 2: Input currents and spike train rasters from stable and unstable networks. a) Excitatory
(blue), inhibitory (red) and total (black/gray) input currents to excitatory neurons in the stable network from

Fig. 1a–c. Thicker, dark curves are from averaging the input currents to 100 randomly selected excitatory neurons.
Thinner, lighter curves are from a single randomly selected excitatory neuron. All currents were low-pass filtered
(Gaussian kernel with width parameter � = 2ms). b) Raster plot from 200 randomly selected excitatory neurons.

c,d) Same as a and b, except for the unstable network from Fig. 1d-f.
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Supplementary Figure 3: Stability achieved by increasing external input to inhibitory neurons. a,b,c) Same as
Fig. 1e, Fig. 1f and Fig. 2c of the main text respectively, except the external input to inhibitory neurons was

increased by 25% (Fi = 2.875V/s), which caused the uniform fixed point to become stable.

imaginary
part

real
part

eigenvalues of rate equation
(broad inhibition)

-0.1

-0.2

-0.1

0

0.1

0.2

-0.1
0

-0.2

-0.1

0.1

0.2

imaginary
part

real
part

eigenvalues of rate equation
(local inhibition)

-0.1

-0.2

-0.1

0.1

0.2

imaginary
part

real
part

eigenvalues of rate equation
(broader inhibition)

a) b) c)

Supplementary Figure 4: Eigenvalues of heuristic rate model. a) Eigenvalues of rate model from Eq. (S.1) for the
network with narrow inhibition from Figure 1a-c. a) Same as (a), but for the network with broad inhibition from

Figure 1d-f. c) Same as (b), but with even broader inhibition, �i = 0.15.

S.1. STABILITY ANALYSIS OF THE INTEGRO-DIFFERENTIAL NEURAL FIELD MODEL

A heuristic stability analysis is given by considering the system of integro-differential equations [1–3]

⌧
∂~r(x, t)

∂t
= �~r +�(~µ,~v)

= �~r +�

✓ZZ

�
W(u)~r(x � u)du + ~F(x),

ZZ

�
U(u)~r(x � u)du

◆ (S.1)

where ⌧ > 0 can be set to the membrane time constant of the neurons, ⌧ = ⌧m, but does not affect stability. The
matrix integral kernels, W and U, are given by [2]

W =


wee(u) wei(u)
wie(u) wii(u)

�
and U =


uee(u) uei(u)
uie(u) uii(u)

�

with wab(u) = jab pab(u)Nb and uab(u) = jabwab(u). This system of integro-differential equations has the same
fixed point firing rates computed through the diffusion approximation, but we next show that it does not accurately
predict stability of this fixed point.

The stability of a fixed point to Eq. (S.1) is given by transitioning to the Fourier domain and computing the Jacobian
matrix

eJ(n) = 1
⌧

h
�Id �n + G eW(n) + H eU(n)

i

at each spatial two-dimensional Fourier mode, n = (n1, n2) where Id is the 2 ⇥ 2 identity matrix and �n = 1 when
n = (0, 0) and 0 otherwise. Spatial synaptic filtering is captured by the matrices

eW(n) =


ewee(n) ewei(n)
ewie(n) ewii(n)

�
and eU(n) =


euee(n) euei(n)
euie(n) euii(n)

�
.
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Here, ewab(n) = jabNb pab exp(�2⇡2knk2�2
b ) is the two-dimensional spatial Fourier series of wab(x) at Fourier mode,

n and similarly for euab(n) = j2abNb pab exp(�2⇡2knk2�2
b ) [2]. The matrices G and H represent the sensitivity of

�(µ, v) with respect to changes in µ and v,

G =


ge 0
0 gi

�
and H =


he 0
0 hi

�

where

ga =
∂�
∂µ

����
µ,v=µ0

a ,v0
a

and ha =
∂�
∂v

����
µ,v=µ0

a ,v0
a

where µ0
a and v0

a are the fixed point input mean and variance for population a = e, i.
Applying this stability analysis to both of the networks in Figure 1 of the main text gives eigenvalues with neg-

ative real part (Supplementary Figure 4a,b). Increasing the width of inhibition further causes an instability, but the
eigenvalues with positive real part are real (Supplementary Figure 4c), indicating a Turing bifurcation instead of a
Turing-Hopf. This Turing bifurcation gives rise to static patterns as observed in previous work [2].

S.2. DERIVATION OF STABILITY ANALYSIS USING LINEAR RESPONSE THEORY.

Consider a perturbation away from the uniform fixed point,~r(x, t) = r0 + �~r(x, t). Since synaptic integration is
linear, this firing rate perturbation produces a resulting perturbation in the mean and variance of neurons’ inputs
according to

�~µ(x, t) =
ZZ

�
W(x � u)�~r(u, t)du

�~v(x, t) =
ZZ

�
U(x � u)�~r(u, t)du

where W(u) and U(u) are the same 2 ⇥ 2 matrix integral kernels introduced in the main text. The mapping from a
perturbation of neurons’ input mean and variance to a perturbation of their firing rates is given to linear order by

�~r(x, t) =
Z 1

0
[A(⌧)�~µ(x, t � ⌧) + B(⌧)�~v(x, t � ⌧)]d⌧

where

A(⌧) =


Ae(⌧) 0

0 Ai(⌧)

�
and B(⌧) =


Be(⌧) 0

0 Bi(⌧)

�

and Ax(⌧) and Bx(⌧) are the linear response to perturbations in the input mean and variance of excitatory and
inhibitory neurons (x = e, i). Combining these equations gives Eq. (2) from the main text, from which Eq. (3) of
the main text is derived through a Fourier and Laplace transform. The susceptibility functions were computed
numerically using the threshold-integration scheme [4–6]. Eq. (3) of the main text is a transcendental equation in the
complex plane, which we numerically solved at each wave number, |n|, using Newton’s method with a lattice of
different initial values, �.

S.3. REVIEW OF RECURSIVE LEAST SQUARES PROCEDURE FOR TRAINING SYNAPTIC WEIGHTS

Learning in Fig. 4 of the main text was implemented using the same recursive least squares (RLS) scheme used in
previous reservoir computing models [7], except there was no feedback from the output to the reservoir network in
our model. The output was defined as

y(t) = Â
k

wkxk(t)

where

xk(t) = Â
ti2Gk

⌘(t � ti), k = 1, . . . , 100,
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⌘(t) =
1p
2⇡�

e�t2/(2�2),

ti are the spike times of neurons in group k and� = 30 ms. During learning, weights were updated at each time step
according to

�~w = �E~xP

where E(t) = y(t)� f (t) is the error, f (t) is the target and the matrix P(t) is updated by

�P = � �

1 +~xP~xT P~x~xTP

using time step of 1 ms and learning rate of � = 1. Learning was turned off halfway through each simulation by
freezing ~w after the 50th trial.
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Supplementary Figure 5: Additional reservoir computing examples. a) Same as Fig. 5b of the main text, but
sinusoidal input was replaced with a sawtooth (top) with the same amplitude. Accuracy improved when inputs

were heterogeneous (average post-learning relative MSE = 0.021 in (a, red) and 0.11 in Fig. 5b red). b) Same as (a),
but two sets of readout weights were trained simultaneously to produce two target outputs. c) Same as (a), but
target was zero before 250 ms and input is zero after 250 ms. The network with heterogeneous input performed

poorly (red), indicating a lack of short term memory in the spontaneous dynamics of the network. However,
adding an adaptation current to the neuron models improved performance (green). Adaptation was added by

changing membrane potential equation to V0 = �(V � EL)/⌧m + I � w where ⌧ww0 = �w and w ! w + b at each
spike with ⌧w = 150 ms and b = 0.3 V/s. d) Same as Fig. 5b red except using the network connectivity from

Fig. 1a,b, in which inhibition projects more narrowly than excitation. Average post-learning relative MSE increased
to 0.28 (from 0.11 in Fig. 5b red). We conjecture that the network with narrow inhibition was able to approximate
the target because the spatially heterogeneous input de-stabilizes network dynamics by changing neurons’ linear

response functions in a spatially heterogeneous way. e) Same as (d) except for network with spatially unstructured
recurrent connectivity and input. In particular, we used a network with random, spatially unstructured connections
(with the same network-averaged connection probabilities as the spatial networks) and we used spatially uniform
input weights. Average post-learning MSE was 1.2. We conclude that spatially coherent dynamics overcome the

difficulty of reservoir computing with spiking networks.
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