
J Comput Neurosci
DOI 10.1007/s10827-012-0438-0

The impact of short term synaptic depression and stochastic
vesicle dynamics on neuronal variability

Steven Reich · Robert Rosenbaum

Received: 22 October 2012 / Revised: 17 December 2012 / Accepted: 26 December 2012
© Springer Science+Business Media New York 2013

Abstract Neuronal variability plays a central role in neu-
ral coding and impacts the dynamics of neuronal networks.
Unreliability of synaptic transmission is a major source
of neural variability: synaptic neurotransmitter vesicles are
released probabilistically in response to presynaptic action
potentials and are recovered stochastically in time. The
dynamics of this process of vesicle release and recovery
interacts with variability in the arrival times of presynaptic
spikes to shape the variability of the postsynaptic response.
We use continuous time Markov chain methods to analyze
a model of short term synaptic depression with stochas-
tic vesicle dynamics coupled with three different models
of presynaptic spiking: one model in which the timing of
presynaptic action potentials are modeled as a Poisson pro-
cess, one in which action potentials occur more regularly
than a Poisson process (sub-Poisson) and one in which
action potentials occur more irregularly (super-Poisson). We
use this analysis to investigate how variability in a presy-
naptic spike train is transformed by short term depression
and stochastic vesicle dynamics to determine the variabil-
ity of the postsynaptic response. We find that sub-Poisson
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presynaptic spiking increases the average rate at which vesi-
cles are released, that the number of vesicles released over a
time window is more variable for smaller time windows than
larger time windows and that fast presynaptic spiking gives
rise to Poisson-like variability of the postsynaptic response
even when presynaptic spike times are non-Poisson. Our
results complement and extend previously reported theo-
retical results and provide possible explanations for some
trends observed in recorded data.
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1 Introduction

Variability of neural activity plays an important role in pop-
ulation coding and network dynamics (Faisal et al. 2008).
Random fluctuations in the number of action potentials
emitted by a population of neurons affects the firing rate
of downstream cells (Shadlen and Newsome 1998a, b). In
addition, spike count variability over both short and long
timescales can impact the reliability of a rate-coded sig-
nal (Dayan and Abbott 2001). It is therefore important to
understand how this variability is shaped by synaptic and
neuronal dynamics.

Several studies examine the question of how intrinsic
neuronal dynamics interact with variability in presynaptic
spike timing to determine the statistics of a postsynap-
tic neuron’s spiking response, but many of these studies
do not account for dynamics and variability introduced
at the synaptic level by short term synaptic depression
and stochastic vesicle dynamics. Synapses release neuro-
transmitter vesicles probabilistically in response to presy-
naptic spikes and recover released vesicles stochastically
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over a timescale of several hundred milliseconds (Zucker
and Regehr 2002; Fuhrmann et al. 2002). The dynamics
and variability introduced by short term depression and
stochastic vesicle dynamics alter the response properties
of a postsynaptic neuron (Vere-Jones 1966; Abbott et al.
1997; Chance et al. 1998; Markram et al. 1998; Goldman
et al. 1999, 2002; Senn et al. 2001; Hanson and Jaeger
2002; de la Rocha and Moreno 2004; de la Rocha and
Parga 2005; Rothman et al. 2009; Branco and Staras 2009;
Rosenbaum et al. 2012) and therefore play an important
role in information transfer (Zador 1998; de la Rocha and
Nevado 2002; Goldman 2004; Merkel and Lindner 2010;
Rotman et al. 2011), neural coding (Tsodyks and Markram
1997; Cook et al. 2003; Abbott and Regehr 2004; Grande
and Spain 2005; de la Rocha and Parga 2008; Lindner
et al. 2009; Oswald and Urban 2012) and network dynam-
ics (Tsodyks et al. 1998, 2000; Galarreta and Hestrin 1998;
Bressloff 1999; Wang 1999; Barbieri and Brunel 2008).
Understanding how variability in presynaptic spike times
interact with short term depression and stochastic vesicle
dynamics to determine the statistics of the postsynaptic
response is therefore an important goal.

In this study, we use a model of short term synaptic
depression with stochastic vesicle dynamics to examine
how variability in a presynaptic input is transferred to
variability in the synaptic response it produces. We use the
theory of continuous-time Markov chains to construct exact
analytical methods for calculating the the statistics of the
postsynaptic response to three different presynaptic spik-
ing models: one model with Poisson spike arrival times,
one with more regular spike arrival times, and one with
more irregular spike arrival times. We find that depressing
synapses shape the timescale over which neuronal variabil-
ity occurs: the number of neurotransmitter vesicles released
over a time interval is highly variable for shorter time
windows, but less variable for longer time windows when
variability is quantified using Fano factors. Additionally,
we find that when presynaptic inputs are more irregular
(Fano factor greater than 1), synaptic dynamics cause a
reduction in Fano factor, consistent with previous studies
(Goldman et al. 1999, 2002; de la and Nevado 2002; de la
and Parga 2005). On the other hand, when presynaptic input
is more regular (Fano factor less than 1), synaptic dynamics
often cause an increase in Fano factor. This observation
suggests a mechanism through which irregular and Poisson-
like variability can be sustained in spontaneously spiking
neuronal networks (Tolhurst et al. 1983; Softky and Koch
1993; Britten et al. 1993; Buracas et al. 1998; McAdams
and Maunsell 1999; Churchland et al. 2010), which com-
plements previously proposed mechanisms (Van Vreeswijk
and Sompolinsky 1996; Vreeswijk and Sompolinsky 1998;
Stevens and Zador 1998; Harsch and Robinson 2000;
Litwin-Kumar and Doiron 2012).

2 Methods

We begin by introducing the synapse model used throughout
this study. We then proceed by analyzing the statistics of the
synaptic response to three different input models.

2.1 Synapse model

A widely used model of depressing synapses (Tsodyks and
Markram 1997; Abbott et al. 1997; Tsodyks et al. 1998;
Markram et al. 1998; Senn et al. 2001) does not capture
stochasticity in vesicle recovery and release. As a result,
this model underestimates the variability of the synaptic
response (de la Rocha and Parga 2005; Rosenbaum et al.
2012). For this reason, we use a more detailed synapse
model that takes stochastic recovery times and probabilis-
tic release into account (Vere-Jones 1966; Melkonian and
Kostopoulos 1996; Maass and Zador 1999; Wang 1999;
Fuhrmann et al. 2002; Rosenbaum et al. 2012).

We consider a presynaptic neuron with spike train I (t) =∑
j δ(t − tj ) that makes M functional contacts onto a post-

synaptic cell. Here, tj is the time of the j th presynaptic
action potential. Define m(t) to be the number of contacts
with a readily releasable neurotransmitter vesicle at time t

(so that 0 ≤ m(t) ≤ M). For simplicity, we assume that
each contact can release at most one neurotransmitter vesi-
cle in response to a presynaptic spike. When a presynaptic
spike arrives, each contact with a releasable vesicle releases
its vesicle independently with probability pr . After releas-
ing a vesicle, a synaptic contact enters a refractory period
during which it is unavailable to release a vesicle again until
it recovers by replacing the released vesicle. The recovery
time at a single contact is modeled as a Poisson process with
rate 1/τu. Equivalently, the duration of the refractory period
is exponentially distributed with mean τu.

Define wj to be the number of contacts that release a
vesicle in response to the presynaptic spike at time tj (so that
0 ≤ wj ≤ m(t−j ) ≤ M where m(t−j ) = limt→t−j

m(t)). The

synaptic response is quantified by the marked point process

x(t) =
∑

j

wj δ(t − tj ).

Since the signal observed by the postsynaptic cell is deter-
mined by x(t), we quantify synaptic response statistics in
terms of the statistics of x(t) in our analysis. The pro-
cess x(t) can be convolved with a post-synaptic response
kernel to obtain the conductance induced on the post-
synaptic cell (Rosenbaum et al. 2012). The effects of
this convolution on response statistics is well understood
(Tetzlaff et al. 2008), so we do not consider it here.



J Comput Neurosci

This model can be described more precisely using the
equation (Rosenbaum et al. 2012)

dm(t) = −dNx(t) + dNu(t)

where dNu(t) = u(t)dt is the increment of an inhomoge-
neous Poisson process with instantaneous rate that depends
on m(t) through 〈dNu(t)〉 | m(t)〉 = dt (M−m(t))/τu (here,
〈· | ·〉 denotes conditional expectation), Nx(t) = ∫ t

0 x(s)ds

is the number of vesicles released up to time t , and each
wj is a binomial random variable with mean prm(tj ) and
variance m(tj )pr(1 − pr).

2.2 Statistical measures of the presynaptic spike train
and the synaptic response

We focus on steady state statistics in this article, and there-
fore assume that the presynaptic spike trains are stationary
and that the synapses have reached statistical equilibrium.
The intensity of a presynaptic spike train is quantified by
the mean presynaptic firing rate,

rin = 〈I (t)〉 = 〈NI (T )/T 〉
where 〈·〉 denotes the expected value and

NI (T ) =
∫ T

0
I (s)ds

represents the number of spikes in the time interval [0, T ].
Temporal correlations in the presynaptic spike times are
quantified by the auto-covariance,

Rin(τ ) = cov(I (t), I (t + τ)),

and the variability in the presynaptic spike train is quantified
by its Fano factor,

Fin(T ) = var(NI (T ))

T rin
.

For much of this work, we will focus on Fano factors
over large time windows which, through a slight abuse of
notation, we denote by Fin = limT →∞ Fin(T ). To com-
pute Fano factors, we will often exploit their relationship
to auto-covariance functions (Stratonovich and Silverman
1967; Cox and Isham 1980),

Fin(T ) = 1

rin

∫ T

−T

Rin(τ )(1 − |τ |/T )dτ (1)

and

Fin = 1

rin

∫ ∞

−∞
Rin(τ )dτ. (2)

The statistics of the synaptic response, x(t), are defined
analogously to the statistics of I (t). The steady state rate of
vesicle release is defined as

rx = 〈x(t)〉 = 〈Nx(T )/T 〉

where Nx(T ) = ∫ T

0 x(s)ds represents the number of
vesicles released in the time interval [0, T ]. Temporal cor-
relations in the synaptic response are quantified by the
auto-covariance,

Rx(τ) = cov(x(t), x(t + τ))

and response variability is quantified by the Fano factor of
the number of vesicles released,

Fx(T ) = var(Nx(T ))

T rx
.

As above, we define Fx = limT →∞ Fx(T ) and note that

Fx(T ) = 1

rin

∫ T

−T

Rx(τ)(1 − |τ |/T )dτ and

Fx =
∫ ∞

−∞
Rx(τ)dτ. (3)

2.3 Model analysis with Poisson presynaptic inputs

We first consider a homogeneous Poisson input, I (t), with
rate rin. The input auto-covariance for this model is given by
Rin(τ ) = rinδ(τ ) and the Fano factor is given by Fin(T ) = 1
for any T > 0. The mean rate of vesicle release for this
model is given by

rx = Mprrin

prrinτu + 1

which saturates to M/τu for large presynaptic rates, rin. A
closed form approximations to the auto-covariance function
of the response for this Poisson input model are derived in
Rosenbaum et al. (2012), Merkel and Lindner (2010) (see
also de la Rocha and Moreno 2004) and consist of a sum of
a delta function and an exponential,

Rx(τ) = Drxδ(τ) − Erxe
−|τ |/τ0, (4)

where the mass of the delta function is given by

D = 2pr(rinτu + M − 1) + 2 − pr
2rinτu

(2 − pr)prrinτu + 2
> 0, (5)

the timescale of the exponential decay is given by

τ0 = τu

1 + prrinτu

,

and the peak of the exponential is given by

E = prrin((M − 2)pr + 2)τu + 2(M − 1)pr + 2

M(2 − pr)prrinτu + 2M
rx. (6)

It can easily be checked that E > 0 whenever M ≥ 1,
0 ≤ pr ≤ 1, rin > 0, and τu > 0 so that the peak of
the exponential in Eq. (4) is negative. For finite T , the Fano
factor, Fx(T ), is given by

Fx(T ) = D − 2Eτ0 −
(

e
− T

τ0 − 1

)
2Eτ 2

0

T
(7)
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and, in the limit of large T ,

Fx = D − 2Eτ0. (8)

2.4 Model analysis with super-Poisson presynaptic inputs

Spike trains measured in vivo often exhibit irregular,
super-Poisson spiking statistics indicated by Fano factors
larger than 1 (Bair et al. 1994; Dan et al. 1996; Baddeley
et al. 1997; Churchland et al. 2010). To describe the synap-
tic response to super-Poisson inputs, we use a model of
presynaptic spiking in which the instantaneous rate of the
presynaptic spike train, I (t), randomly switches between
two values, rs and rf > rs , representing a slow spiking state
and a fast spiking state. The time spent in the slow state
before transitioning to the fast state is exponentially dis-
tributed with mean τs . Likewise, the amount of time spent
in the fast state before switching to the slow state is expo-
nentially distributed with mean τf . Transition times are
independent from one another and from the spiking activity.
Between transitions, spikes occur as a Poisson process.

To find rin, Rin(τ ), and Fin, we represent this model as
a doubly stochastic Poisson process. Define r(t) ∈ {rs, rf }
to be the instantaneous firing rate at time t . Then r(t)

is a continuous time Markov chain (Karlin and Taylor
1975) on the state space � = (rs, rf ) with infinitesimal
generator matrix

A =
[ −1/τs 1/τs

1/τf −1/τf

]

.

Clearly, r(t) spends a proportion τs/(τs + τf ) of its time
in the slow state (defined by r(t) = rs) and a propor-
tion τf /(τs + τf ) of its time in the fast state (defined by
r(t) = rf ). This gives a steady-state mean firing rate of

rin = rsτs + rf τf

τs + τf

.

At non-zero lags (τ 	= 0), the auto-covariance of a
doubly stochastic Poisson process is the same as the auto-
covariance of r(t) (Rosenbaum et al. 2012), which we can
compute using techniques for analyzing continuous time
Markov chains. For τ > 0, we have

〈r(t)r(t + τ)〉 = rs Pr(r(t) = rs)〈r(t + τ) | r(t) = rs〉
+ rf Pr(r(t) = rf )〈r(t + τ) | r(t) = rf 〉

= rsτs

τs + τf

〈r(t + τ) | r(t) = rs〉

+ rf τf

τs + τf

〈r(t + τ) | r(t) = rf 〉 (9)

where 〈·|·〉 denotes conditional expectation and

〈r(t + τ) | r(t) = rs〉 = rs Pr(r(t + τ) = rs | r(t) = rs)

+ rf (1 − Pr(r(t + τ) = rs | r(t) = rs)).

The probability in this expression can be written in terms
of an exponential of the generator matrix, A, and then
calculated explicitly to obtain

Pr(r(t + τ) = rs | r(t) = rs) =
[

eAT τ

(
1
0

)]

1

= τf e
− τ

τf
− τ

τs + τs

τf + τs

where [v]k denotes the kth component of a vector, v. An
identical calculation can be performed to obtain an analo-
gous expression for 〈r(t + τ) | r(t) = rf 〉. Combining these
with Eq. (9) gives

〈r(t)r(t + τ)〉 = τf τs(rf − rs)
2

(τf + τs)2
e
− τ

τs
− τ

τf + r2
in.

For positive τ , we have Rin(τ ) = 〈r(t)r(t + τ)〉 − r2
in. As

with all stationary point processes Rin(τ ) = Rin(−τ) and
Rin(τ ) has a Dirac delta function with mass rin at the ori-
gin (Cox and Isham 1980). Thus, the auto-covariance of I (t)

is given by

Rin(τ ) = rinδ(τ ) + τf τs(rf − rs)
2

(τf + τs)2
e
− |τ |

τs
− |τ |

τf . (10)

For finite T , the Fano factor, Fin(T ), can be computed using
Eqs. (1) and (10). In the limit of large T , we can use Eqs. (2)
and (10) to obtain a closed form expression,

Fin = 1 + 2τ 2
f τ 2

s (rf − rs)
2

(τf + τs)2(rf τf + rsτs)
. (11)

Poisson spiking is recovered by setting rf = rs , τf = 0,
or τs = 0. For any other parameter values (i.e., when
rf 	= rs and τf , τs > 0), it follows from Eq. (11) that
Fin(T ) > 1 for any T . Therefore this input model, hereafter
referred to as the “super-Poisson” model, represents spiking
that is more irregular than a Poisson process.

The analysis in Rosenbaum et al. (2012) used to derive
closed form expressions for the response statistics with
Poisson inputs cannot easily be generalized to derive expres-
sions with non-Poisson inputs like those considered here.
Instead, we analyze the synaptic response for the super-
Poisson input model using techniques for analyzing con-
tinuous time Markov chains. First note that the process
b(t) = (m(t), r(t)) is a continuous-time Markov chain on
the discrete state space {0, 1, . . . ,M} × {rs, rf }. Here, m(t)

denotes the size of readily releasable pool and r(t) rep-
resents the instantaneous presynaptic rate (which switches
between rs and rf ). We enumerate all 2(M + 1) elements
of this state space and denote the j th element of this
enumeration as �j = (mj , rj ) for j = 1, . . . , 2(M + 1).
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The infinitesimal generator, B, of b(t) is a 2(M + 1) ×
2(M + 1) matrix with off-diagonal terms defined by the
instantaneous transition rates,

Bj,k = lim
h→0

1

h
Pr(b(t + h) = �k | b(t) = �j ), j 	= k (12)

and with diagonal terms chosen so that the rows sum to zero:
Bj,j = − ∑

k 	=j Bj,k (Karlin and Taylor 1975).
To fill the matrix B, we consider each type of transi-

tion that the process b(t) undergoes. Vesicle recovery events
occur at the instantaneous rate (M−m(t))/τu and increment
the value of m(t) by one vesicle. Therefore

lim
h→0

1

h
Pr(b(t + h) = (m + 1, r) | b(t) = (m, r)) = M − m

τu

for m ∈ {0, . . . , M − 1} and r ∈ {rs, rf }. Vesicle release
events occur at the instantaneous rate r(t) and decrement
the value of m(t) by a random amount k with a binomial
distribution so that

lim
h→0

1

h
Pr(b(t + h) = (m − k, r) | b(t) = (m, r))

= r
m!

(m − k)!pr
k(1 − pr)

m−k

for m ∈ {1, . . . , M}, k ∈ {0, . . . , m}, and r ∈ {rs, rf }. The
value of r(t) switches from rs to rf with instantaneous rate
1/τs so that

lim
h→0

1

h
Pr(b(t + h) = (m, rf ) | b(t) = (m, rs)) = 1

τs

and, similarly,

lim
h→0

1

h
Pr(b(t + h) = (m, rs) | b(t) = (m, rf )) = 1

τf

.

These four transition types account for all of the transitions
that b(t) undergoes. They can be used to fill the off-diagonal
terms of the matrix B. The diagonal terms are then filled to
make the rows sum to zero, as discussed above.

Once a the infinitesimal generator matrix, B, is obtained,
the probability distribution of b(t) given an initial distribu-
tion p(0) is given by

p(t) = etBT

p(0).

The stationary distribution, p0, of b(t) is given by the vector
in the one-dimensional null space of B with elements that
sum to one (Karlin and Taylor 1975).

The instantaneous rate of vesicle release, conditioned on
the current state of r(t) and m(t), is given by

〈x(t) | r(t) = r, m(t) = m〉 = rprm.

Averaging over r and m in the steady state gives

rx =
2(M+1)∑

j=1

[p0]j rjprmj

where [·]j denotes the j th element. The auto-covariance,
Rx(τ), has a Dirac delta function at τ = 0. We separate this
delta function from the continuous part by writing Rx(τ) =
Axδ(τ)+R+

x (τ ) where R+
x (τ ) is a continuous function. The

area of the delta function can be found by conditioning on
the current state of r(t) in the steady state to get

Ax = lim
t→∞〈x(t)2dt〉

= lim
t→∞〈dN2

x (t)/dt〉

=
2(M+1)∑

j=1

rj [p0]j lim
k→∞〈w2

k | m(t−k ) = mj 〉 (13)

where wk is the number of vesicles released by the kth
presynaptic spike. Conditioned on the size, m(t−k ), of
the readily releasable pool immediately before the presy-
naptic spike arrives, wk has a binomial distribution with
second moment,

lim
k→∞〈w2

k | m(t−k ) = mj 〉 = mjpr(1 − pr) + m2
jpr

2

which can be substituted into Eq. (13) to calculate Ax .
All that remains is to calculate the continuous part,

R+
x (τ ), of Rx(τ). First note that, for τ > 0,

lim
t→∞〈x(t)x(t + τ)〉

=
2(M+1)∑

i,j=1

[p0]i Pr(b(t + τ) = �j | b(t) = �i)

× 〈dNx(t)dNx(t + τ) | b(t)

= �i, b(t + τ) = �j 〉/dt2. (14)

The second term in Eq. (14) can be computed as

Pr(b(t + τ) = �j | b(t) = �i) = [eτBT

ei]j = [eτBT ]j,i
where ei is the 2(M + 1) × 1 vector whose ith element is 1
and all other elements are zero, which represents an initial
distribution concentrated at �i . The last term in Eq. (14) is
given by

〈dNx(t)dNx(t + τ) | b(t) = �i, b(t + τ) = �j 〉/dt2

= rirjpr
2mimj .

Finally, R+
x (τ ) = limt→∞〈x(t)x(t + |τ |)〉 − r2

x for τ 	= 0
so that

Rx(τ) = Axδ(τ) − r2
x

+
2(M+1)∑

i,j=1

[p0]i[e|τ |BT ]j,irirjpr
2mimj

which can be computed efficiently using matrix multiplica-
tion. The response Fano factor, Fx , can then be found by
integrating Rx(τ) according to Eqs. (1) and (2).
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2.5 Model analysis with sub-Poisson presynaptic inputs

We now consider a spiking model that gives Fano factors
smaller than 1 and therefore spike trains that are more
regular than Poisson processes. We achieve this by defin-
ing a renewal process with gamma-distributed interspike
intervals (ISIs). Such a process can be obtained by first gen-
erating a Poisson process,

∑
k δ(t − sk) with rate r = θ rin

for some positive integer θ , then keeping only every θ th
spike to build the spike train I (t). More precisely, the first
spike of the gamma process is obtained by choosing an
integer, k, uniformly from the set {1, . . . , θ} and defining
defining t1 = sk . The remaining spikes are defined by
tj+1 = sjθ+k to obtain the stationary renewal process,
I (t) = ∑

j δ(t − tj ) (Cox 1962).
Clearly, this process has rate rin since the original Pois-

son process has rate θrin and a proportion 1/θ of these
spikes appear in I (t). The auto-covariance is given by
(Rosenbaum 2011)

Rin(τ ) = rinδ(τ ) + rin

( ∞∑

k=1

fk(τ ) − rin

)

. (15)

where

fk(t) = tkθ−1(θrin)
kθ e−θrint

(kθ − 1)!
is the density of the waiting time between the first spike and
the (k + 1)st spike (i.e., the duration of k consecutive ISIs).

For finite T , the Fano factor, Fin(T ), can be computed
using Eqs. (1) and (15). In the limit of large T , we can use
Eq. (2) or use the fact that, for renewal processes, Fin =
var(ISI)/〈ISI〉2 where var(ISI) = 1/(r2

inθ) is the variance
and 〈ISI〉 = 1/rin is the mean of the gamma distributed
ISIs (Cox 1962). This gives

Fin = 1

θ
.

Poisson spiking is recovered by setting θ = 1. When
θ > 1, we have that Fin(T ) < 1 for any T . There-
fore this model, hereafter referred to as the “sub-Poisson”
input model, represents spiking that is more regular than a
Poisson process.

The synaptic response with the sub-Poisson input model
can be analyzed using methods similar to those used for
the super-Poisson model. We introduce an auxiliary process,
q(t), that transitions sequentially through the state space
{1, . . . , θ}. Once reaching θ , q(t) transitions back to state
1. Transitions occur as a Poisson process with rate θrin. The
waiting times between transitions from q = θ to q = 1
are gamma distributed. Thus, to recover the sub-Poisson
input model, we specify that each transition from 1 = θ to

q = 1 represents a single presynaptic spike. The process
g(t) = (m(t), q(t)) is then a continuous time Markov chain
on the discrete state space {1, . . . , θ}×{0, . . . , M}. We enu-
merate all θ(M + 1) elements of this space and denote the
j th element as �j = (mj , qj ) for j = 1, . . . , θ(M + 1).

The infinitesimal generator, G, which is a θ(M + 1) ×
θ(M + 1) matrix is defined analogously to the matrix B in
Eq. (12) above. The elements of G can be filled using the
following transition probabilities. As for the super-Poisson
input model, vesicle recovery occurs as a Poisson process
with rate (M − m(t))/τu so that

lim
h→0

1

h
Pr(g(t +h) = (m+1, q) | g(t) = (m, q)) = M − m

τu

for m = 0, . . . ,M and q = 1, . . . , θ . Transitions that
increment q(t) occur with instantaneous rate, θrin so that

lim
h→0

1

h
Pr(g(t + h) = (m, q + 1) | g(t) = (m, q)) = θrin

for q = 1, . . . , θ − 1 and m = 0, . . . ,M . The only other
transitions are those from q(t) = θ to q(t) = 1, which
represent a presynaptic spike and are therefore accompa-
nied by a release of vesicles. The transitions contribute
the following,

lim
h→0

1

h
Pr(g(t + h) = (1, m − k) | g(t) = (θ, m))

= θrin
m!

(m − k)!pr
k(1 − pr)

m−k

for m ∈ {0, 1, . . . , M} and k ∈ {0, . . . , m}. These transition
rates can be used to fill the off-diagonal terms of the matrix
G. The diagonal terms are then filled so that the rows sum to
zero. The stationary distribution, p0, of g(t) = (m(t), q(t))

is given by the vector in the one-dimensional null space of
G with elements that sum to one.

A proportion [p0]γ (k) of time is spent in state
(m(t), q(t)) = (k, θ) where γ (k) represents the index of
the element (k, θ) in the enumeration chosen for � (i.e., the
index, j , at which �j = (k, θ)). In that state, the transition
to q(t) = 1 occurs with instantaneous rate θrin and releases
average of prm(t) vesicles. Thus, the mean rate of vesicle
release is given by

rx =
M∑

k=1

θrinprk [p0]γ (k).

As above, we separate the auto-covariance into a delta
function and a continuous part by writing Rx(τ) =
Axδ(τ)+R+

x (τ ) where R+
x (τ ) is a continuous function. The

area of the delta function at the origin is given by

Ax =
M∑

k=1

θrin[p0]γ (k)

(
kpr(1 − pr) + k2pr

2
)
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by an argument identical to that used for the super-Poisson
input model above. Also by a similar argument used for the
super-Poisson input model, we have that

Rx(τ) = Axδ(τ) − r2
x + θ2r2

in

×
M∑

k,l=1

[p0]γ (k)[e|τ |GT ]γ (l),γ (k)pr
2kl.

2.6 Obtaining exact solutions for the Poisson input model

Equations (4–8) above give closed form approximations to
the response of a depressing synapse to a Poisson presynap-
tic spike train. To test the accuracy of these approximations,
exact solutions can be found numerically using the analysis
of the sub-Poisson input model with θ = 1, which yields
Poisson spiking. Alternatively, exact numerical results can
be achieved by taking rs = rf for the super-Poisson input
model. In figures showing results for the Poisson input
model, we plot the closed form approximations described in
Eqs. (4–8) along with exact numerical results obtained using
the sub-Poisson input model with θ = 1.

2.7 Parameters used in figures

Theoretical results are obtained for arbitrary parameter val-
ues, but for all figures we use a set of parameter values
that are consistent with experimental studies. For synaptic
parameters, we use τu = 700 ms and pr = 0.5 consistent
with measurements of short term depression in pyramidal-
to-pyramidal synapses in the rat neocortex (Tsodyks and
Markram 1997; Fuhrmann et al. 2002). We also choose
M = 5 which is within the range observed in several cortical
areas (Branco and Staras 2009).

The Poisson presynaptic input model is determined com-
pletely by its firing rate and the sub-Poisson input model
is determined completely by its firing rate and Fano fac-
tor. Presynaptic firing rates and Fano factors are reported on
the axes or captions of each figure. The super-Poisson input
model has four parameters that determine the firing rate and
Fano factor. In all figures, we set τf = τs = 1.315/c,
rf = 37c, and rs = 3c which gives a Fano factor of
Fin = 20.0017 ≈ 20 for any value of c (from Eq. (11)).
Changing c effectively scales the timescale of presynaptic
spiking, hence scaling rin, without changing Fin.

3 Results

We analyze the synaptic response to different patterns of
presynaptic inputs using a stochastic model of short term
synaptic depression in which a presynaptic neuron makes M

functional contacts onto a postsynaptic neuron (Vere-Jones

1966; Fuhrmann et al. 2002; Goldman 2004; de la Rocha
and Parga 2005). The input to the presynaptic neuron is a
spike train denoted by I (t). Neurotransmitter vesicles are
released probabilistically in response to each presynaptic
spike. Specifically, a contact with a readily available vesicle
releases this vesicle with probability pr in response to a sin-
gle presynaptic spike. After a synaptic contact has released
its neurotransmitter vesicle, it enters a refractory state where
it is unable to release again until the vesicle is replaced.
The duration of this refractory period is an exponentially
distributed random variable with mean τu, so that vesicle
recovery is Poisson in nature.

We are interested in how the statistics of the presy-
naptic spike train determine the statistics of the synaptic
response. The presynaptic statistics are quantified using
the presynaptic firing rate, rin, the presynaptic auto-
covariance function, Rin(τ ), and the Fano factor, Fin(T ),
of the number of presynaptic spikes during a window of
length T . Similarly, we quantify the statistics of the synaptic
response using the mean rate of vesicle release, rx , the auto-
covariance of vesicle release, Rx(τ), and the Fano factor,
Fx(T ), of the number of vesicles released during a win-
dow of length T . We will especially focus on Fano factors
over large time windows and define Fin = limT →∞ Fin(T ),
Fx = limT →∞ Fx(T ) accordingly. See Section 2 for
more details.

We begin by considering the effect of Fin on the mean
rate of vesicle release, rx . We then examine the depen-
dence of Fx(T ) on the length, T , of the time window over
which vesicle release events are counted. Finally, we show
that short term synaptic depression promotes Poisson-like
responses to non-Poisson presynaptic inputs.

3.1 Irregularity of presynaptic spiking reduces the rate
at which neurotransmitter vesicles are released

We first briefly investigate the dependence of the rate of
vesicle release, rx , on the rate and variability of the presy-
naptic spike train, as measured by rin and Fin respectively.
Vesicle release rate generally increases with rin, but satu-
rates to rx = M/τu whenever prrin � 1/τu since synapses
are depleted in this regime (Fig. 1).

When presynaptic spike times occur as a Poisson pro-
cess (so that Fin = 1), the mean rate of vesicle release
is given by rx = Mprrin/(prrinτu + 1) (Fuhrmann et al.
2002; de la Rocha and Parga 2005; Rosenbaum et al. 2012).
Interestingly, vesicle release is slower for super-Poisson
presynaptic spiking and faster for sub-Poisson presynaptic
spiking even when presynaptic spikes arrive at the same
mean rate (Fig. 1, also see de la Rocha and Nevado 2002).
This can be understood by noting that, for the super-Poisson
input model, spikes arrive in bursts of higher firing rate
followed by durations of lower firing rate. Vesicles are
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Fig. 1 Rate of vesicle release as a function of presynaptic firing rate
for various presynaptic Fano factors. The rate of vesicle release, rx , is
an increasing function of presynaptic firing rate, rin. Vesicle release is
slower for the super-Poisson spiking model than for the Poisson and
sub-Poisson spiking model

depleted by the first few spikes in a burst and subse-
quent spikes in that burst are ineffective and therefore
essentially “wasted” spikes (Fig. 2(A)). When presynaptic
spikes arrive more regularly, more vesicles are released on
average (Fig. 2(B)).

3.2 Variability in the number of vesicles released in a time
window decreases with window size

We now consider how the the variability of the synaptic
response to a presynaptic input depends on the timescale
over which this variability is measured. We quantify the
variability of the synaptic response using the Fano factor,
Fx(T ), which is defined to be the variance-to-mean ratio of
the number of vesicles released in a time window of length

T (see Section 2) and can be calculated from an integral of
the auto-covariance function, Rx(τ), using Eq. (3).

The auto-covariance of a Poisson presynaptic spike train
is simply a delta function at the origin, Rin(τ ) = rinδ(τ ),
and the Fano factor over any window size is therefore
equal to one, Fin(T ) = 1 (Figs. 3(C) and 4(C)). The auto-
covariance of the synaptic response when presynaptic inputs
are Poisson consists of a delta function at the origin sur-
rounded by a double-sided exponential with a negative peak
(see Eq. (4) and Fig. 3(D)) that decays with timescale τ0 =
τu/(1 + prrinτu). The fact that the auto-covariance is nega-
tive away from τ = 0 implies that the Fano factor, Fx(T ), is
monotonically decreasing in the window size, T (see Eq. (7)
and Fig. 4(D)). For small T , the mass of the delta function at
the origin dominates the integral in Eq. (3) so that the Fano
factor is approximately equal to the ratio of this mass to the
mean rate, rx , at which vesicles are released. As T increases,
the negative mass of the exponential peak subtracts from the
positive contribution of the delta function and decreases the
Fano factor. In particular, Fx(T ) ≈ D−ET +O(T 2) where
Drx is the mass of the delta function in Rx(τ) and −Erx is
the peak of the exponential in Rx(τ) (see Eqs. (5) and (6)).
As T continues to increase, Fx(T ) monotonically decreases
towards its limit, Fx := limT →∞ Fx(T ) = D−2Eτ0. Thus,
short term synaptic depression converts a Fano factor that is
constant with respect to window size into one that decreases
with window size (Fig. 4(C, D)).

When presynaptic spike times are not Poisson, the statis-
tics of the postsynaptic response cannot be derived analyti-
cally using the methods utilized for the Poisson input model.
Instead, we use the fact that the synapse model can be repre-
sented using a continuous time Markov chain, which can be
analyzed to derive expressions for the response statistics in
terms of an infinitesimal generator matrix (see Section 2).
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Fig. 2 Synaptic response to an super-Poisson and a sub-Poisson
presynaptic spike train. (A) An irregular, super-Poisson spike train,
I (t), drives a depressing synapse. Each vesicle release event is indi-
cated by a vertical bar with height indicating the number of vesicles
released (here, all events release just one vesicle). Each time a vesi-
cle is released, the number of available vesicles, m(t), is decremented
accordingly. Vesicle recovery increments m(t) and occurs randomly in

time (vesicle recovery events indicated by filled triangles). (B) Same
as (A) except for a more regular, sub-Poisson presynaptic spike train.
Note that, even though the same number of presynaptic spikes occur
in (A) and (B), the super-Poisson spike train is less effective in releas-
ing vesicles. This occurs because all vesicles are depleted by the first
few spikes in a burst and subsequent spikes in that burst are unable to
release vesicles. For illustrative purposes, we set M = 3 in this figure
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Fig. 3 Presynaptic auto-covariance functions and auto-covariance of
vesicle release for three input models. Auto-covariance functions of
presynaptic spike trains (top row) and the synaptic response they
evoke (bottom row) for three different presynaptic input models:
(A, B) super-Poisson (Fin = 20), (C, D) Poisson (Fin = 1) and (E, F)
sub-Poisson (Fin = 0.1). Each auto-covariance function has a Dirac
delta function at the origin that is not depicted here. Dotted line in (D)

is from the approximation in Eq. (4) and solid line is from exact calcu-
lation obtained using numerics for the sub-Poisson input model with
θ = 1 (see Section 2), but the two are nearly indistinguishable. Rin(τ )

has units (spikes/sec)2 and Rx(τ) has units (vesicles/sec)2. Short term
depression introduces negative temporal correlations even when presy-
naptic spike trains are temporally uncorrelated (C, D) or positively
correlated (A, B)

Irregular, super-Poisson presynaptic spiking (i.e., inputs
with Fin > 1) is achieved by varying the rate of presynap-
tic spiking randomly in time to produce a doubly stochastic
Poisson process (see Section 2). For this model, the input
auto-covariance is a delta function at the origin surrounded
by an exponential peak (see Eq. (10) and Fig. 3(A)).The
input Fano factor therefore increases with window size (see
Eq. (11) and Fig. 4(A)). The positive temporal correlations
exhibited in the input auto-covariance function are canceled
by the temporal de-correlating effects of short term synaptic
depression (Goldman et al. 1999, 2002; Goldman 2004). For

the parameters chosen in this study, this de-correlation out-
weighs the positive presynaptic correlations so that the auto-
covariance function of the response is negative away from
τ = 0 (Fig. 3(B)), although parameters can also be chosen
so that temporal correlations in the response are small and
positive (Goldman et al. 2002). As with the Poisson input
model, negative temporal correlations cause the response
Fano factor to decrease with window size (Fig. 4(B)).
Thus short term synaptic depression and stochastic vesi-
cle dynamics can convert a presynaptic Fano factor that
increases with window size into one that decreases.
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Fig. 4 Presynaptic and response Fano factor as a function of window
size for three input models. Presynaptic and response Fano factors,
Fin(T ) and Fx(T ), as a function of the window size over which inputs
or vesicles are counted (see Section 2), obtained by applying Eq. (1) to
the auto-covariance functions in Fig. 3. Short term depression causes

response Fano factor to decrease with window size even when presy-
naptic Fano factor increases with window size (A, B) or is independent
of window size (C, D). Also, response Fano factors are near 1 even
when presynaptic Fano factors are not (B and F)
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Sub-Poisson presynaptic spiking is achieved by generat-
ing a renewal process with gamma-distributed interspike-
intervals. The input auto-covariance function for this model
exhibits temporal oscillations (Eq. (15) and Fig. 3(E))
and the Fano factor generally decreases with window size
(Fig. 4(E)). Perhaps unsurprisingly, the auto-covariance
function of the synaptic response exhibits oscillations and
the response Fano factor decreases with window size
(Figs. 3(F) and 4(F)).

For all three input models, the variability of the synap-
tic response is larger over shorter time windows and smaller
over larger time windows. A postsynaptic neuron that is
in an excitable regime will generally respond most effec-
tively to inputs that exhibit more variability over short time
windows (Salinas and Sejnowski 2000, 2002; Moreno-Bote
et al. 2008; Moreno-Bote and Parga 2010). In addition,
rate coding is often more efficient when spike counts over
larger time windows are less variable (Zohary et al. 1994).
Thus, the dependence of Fx(T ) on window size is espe-
cially efficient for the neural transmission of rate-coded
information (Goldman 2004).

In addition to the temporal dependence of Fx(T ) intro-
duced by short term depression, note that the response Fano
factor for the super-Poisson input model is substantially
smaller than the input Fano factor (Fig. 4(A, B)). Con-
versely, the response Fano factor for the sub-Poisson input
model is larger than the input Fano factor (Fig. 4(E, F)).
For both models, the response Fano factor is substantially
nearer to 1 than the input Fano factor. We explain this
phenomenon next.

3.3 Depleted synapses exhibit Poisson-like variability
even when presynaptic inputs are highly non-Poisson

We now investigate the dependence of the variability in
synaptic response on the rate and variability of the presynap-
tic input. Since we have already discussed the dependence
of Fx(T ) on T above, we will focus here on the Fano factor
calculated over long time windows, Fx = limT →∞ Fx(T ).

We first consider parameter regimes where the effective
rate of presynaptic inputs is much slower than the rate
of vesicle recovery (prrin � 1/τu). In such a regime,
each contact is likely to recover between two consecutive
presynaptic spikes and therefore all M contacts are likely
to have a vesicle ready to release when each spike arrives
(Fig. 6(A)). In this limit, the number of vesicles released by
each spike is an independent binomial variable with mean
〈wj 〉 = prM and variance var(wj ) = Mpr(1 − pr). The
number, Nx(T ), of vesicles released in a time window of
length T can then be represented as a sum of Nin(T ) inde-
pendent binomial random variables (i.e., a random sum).
The mean of this sum is given by 〈Nx(T )〉 = 〈Nin(T )〉〈wj 〉,
which implies that rx = Mprrin in this limit. Similarly, the

variance of this sum is given by (Karlin and Taylor 1975)
var(Nx(T )) = 〈Nin(T )〉var(wj ) + 〈wj 〉2var(Nin(T )),
which implies

lim
rin→0

Fx(T ) = 〈wj 〉Fin(T ) + var(wj )/〈wj 〉
= 1 + pr(MFin(T ) − 1). (16)

Equation (16) is verified for the Poisson input model by
taking rin → 0 in Eq. (7). For the super-Poisson and
sub-Poisson input models, Eq. (16) should be interpreted
heuristically, as it was derived heuristically. A counterex-
ample to Eq. (16) for the super-Poisson input model can
be constructed by fixing rf and τf , then letting τs → ∞
and rs → 0 to achieve the rin → 0 limit. In this case,
our assumption that each contact is increasingly likely to
recover between two consecutive spikes is violated and
Eq. (16) is not valid (not pictured). Regardless, we verify
numerically that Eq. (16) is accurate when rin is decreased
toward zero while keeping Fin fixed (Fig. 5).
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Fig. 5 Response Fano factor as a function of presynaptic firing rate
for three input models. Response Fano factors calculated over large
windows for (A) the super-Poisson input model (B) Poisson input
model and (C) sub-Poisson input model. Fano factors approach 1 at
high presynaptic firing rates regardless of the presynaptic Fano factor
(triangle on right is placed at Fx = 1). At low presynaptic firing rates,
response Fano factors approach the value given in Eq. (16) (indicated
by triangle on left). Dotted line in (B) is from closed form approx-
imation in Eq. (8) and dashed line is from the expansion given in
Eq. (17)
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Fig. 6 Vesicle release dynamics at low and high presynaptic firing
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returns to M = 3) between presynaptic spikes. Thus, the number
of vesicles released by each presynaptic spike is approximately an
independent binomial random variable with mean prM and variance

prM(1 − M). (B) At high presynaptic rates, vesicles are released
almost immediately after they are recovered. Thus, the number of
vesicles released over a time window of length T is approximately a
Poisson random variable with mean and variance T M/τu.

We now discuss the statistics of the postsynaptic response
when the effective presynaptic spiking is much faster than
vesicle recovery (prrin � 1/τu). In such a regime, incom-
ing spikes occur much more frequently than recovery events
and synapses becomes depleted. As a result, the number of
vesicles released over a long time window is determined
predominantly by the number of recovery events in that
time window and largely independent from the number of
presynaptic spikes (Fig. 6(B)) (de la Rocha and Parga 2005;
Rosenbaum et al. 2012). The synaptic response therefore
inherits the Poisson statistics of the recovery events so that

lim
rin→∞ Fx(T ) = 1.

For the Poisson input model, this limit can be made more
precise in the T → ∞ limit by expanding Eq. (8) in terms
of the parameter α = 1/(prrinτu) to obtain

Fx = 1 − 2α + 4α2 + O(α3) (17)

which converges to 1 as rinτu → ∞. For the super-Poisson
and sub-Poisson input models, we verify in Fig. 5 that
Fx → 1 when rin is increased while keeping Fin fixed.

The time constant, τu, at which a synapse recov-
ers from short term depression has been measured in a
number of experimental studies and is often found to
be several hundred milliseconds (Tsodyks and Markram
1997; Varela et al. 1997; Markram et al. 1998; Galarreta
and Hestrin 1998; Fuhrmann et al. 2002; Hanson and Jaeger
2002; Rav-Acha et al. 2005). Therefore, for even moder-
ate presynaptic firing rates, synapses are often in a highly
depleted state. As discussed above, this promotes Poisson-
like variability in the synaptic response. This provides one
possible mechanism through which irregular Poisson-like
firing can be sustained in neuronal populations (Churchland
et al. 2010).

4 Discussion

We used continuous time Markov chain methods to derive
the response statistics of a stochastic model of short term
synaptic depression with three different presynaptic input
models. We then used this analysis to understand how the
mean presynaptic firing rate and the variability of presy-
naptic spiking interact with synaptic dynamics to determine
the mean rate of vesicle release and variability in the num-
ber of vesicles released. This analysis revealed a number
of fundamental, qualitative dependencies of response statis-
tics on presynaptic spiking statistics. Some of the depen-
dencies have been previously noted in the literature and
some have not.

The number of vesicles released over a time window
is smaller for irregular inputs than for more regular inputs
(Figs. 1 and 2) given the same number of presynaptic
spikes. Thus, more regular presynaptic spiking is more effi-
cient at driving synapses. This mechanism competes with a
well-known property of excitable cells: that they are driven
more effectively by irregular, positively correlated synaptic
input currents (Salinas and Sejnowski 2000, 2002; Moreno-
Bote 2008; Moreno-Bote and Parga 2010). In addition, a
population of presynaptic spike trains drives a postsynaptic
neuron more efficiently when the population-level activity
is more irregular, for example due to pairwise correla-
tions (de la Rocha and Parga 2005). Together, these results
suggest that a postsynaptic neuron is most efficiently driven
by presynaptic populations that exhibit small or negative
auto-correlations, but positive pairwise cross-correlations.

Our model predicts that the de-correlating effects of
short term depression and stochastic vesicle dynamics can
produce negative temporal auto-correlations in the synap-
tic response even when presynaptic spiking is temporally



J Comput Neurosci

uncorrelated or positively correlated, in agreement with
previous studies (Matveev and Wang 2000b; Goldman
et al. 2002; de la Rocha and Parga 2005). This yields a
response Fano factor that decreases with window size, as
observed in some recorded data (Kara et al. 2000). We note,
though, that some parameter choices can yield positively a
correlated synaptic response when presynaptic inputs
are positively correlated (Goldman et al. 2002) or peri-
odic (Matveev and Wang 2000b) and neuronal membrane
dynamics can introduce positive correlations to a postsy-
naptic spiking response even when synaptic currents are
not positively correlated in time (Moreno-Bote and Parga
2006). This is consistent with several studies showing
positive temporal correlations in recorded spike trains
(Bair et al. 1994; Dan et al. 1996; Baddeley et al. 1997;
Churchland et al. 2010).

We predict that moderate or high firing rates can induce
a Poisson-like synaptic response even when presynaptic
inputs are non-Poisson (Fig. 5, see also Matveev and Wang
2000a; de la Rocha and Nevado 2002). This is because even
moderate firing rates can deplete synapses and depleted
synapses inherit the Poisson-like variability of synaptic
vesicle recovery (Fig. 6(B), see also de la Rocha and
Parga 2005; Rosenbaum et al. 2012). At lower firing rates,
short term depression and synaptic variability can increase
or decrease Fano factor. For example, in Fig. 5(B), the
response Fano factor is larger than the presynaptic Fano fac-
tor (Fin = 1) at low firing rates, decreases at higher firing
rates, then approaches Fx = 1 at higher firing rates. This
complex dependence of firing rate on Fano factor might be
related to the stimulus dependence of Fano factors observed
in several cortical brain regions (Churchland et al. 2010).

Our conclusion that fast presynaptic spiking causes
Poisson-like variability in the synaptic response relied on
the assumption that vesicle recovery times are exponen-
tially distributed. The exponential distribution is a justifiable
choice for recovery times only if recovery times obey a
memoryless property: having already waited t units of time
for a recovery event, the probability of waiting an additional
s units of time does not depend on t . The precise mechanics
of vesicle re-uptake and docking determine whether this is
an appropriate assumption. If recovery times have a differ-
ent probability distribution, then the synaptic response will
inherit the properties of this distribution at high presynaptic
firing rates instead of inheriting the Poisson-like nature of
exponentially distributed recovery times.

Previous methods have been developed to analyze
the response of the synapse model used here. In de la
Rocha and Nevado (2002), Goldman (2004), the model
restricted to the M = 1 case is analyzed for presynaptic
spike trains that are renewal processes. This includes the
Poisson and the regular input model discussed here, but
excludes the irregular input model in which the spike train

is a non-renewal inhomogeneous Poisson process. In
Rosenbaum et al. (2012) approximations are obtained for
the case where the presynaptic spike train is an inhomoge-
neous Poisson process, but the approximation is only valid
when the rate-modulation of the Poisson process is small
compared to the average firing rate. Thus, these approxi-
mations are only valid for the irregular input model when
rf − rs � rs . Other studies (Lindner et al. 2009; Merkel
and Lindner 2010) use a deterministic synapse model that
implicitly treats the number of available vesicles as a con-
tinuous rather than a discrete quantity. This deterministic
model represents the trial average of the model consid-
ered here and can vastly underestimate the variability of a
synaptic response (Rosenbaum et al. 2012).

A more detailed synapse model allows for multiple dock-
ing sites at a single contact (Wang 1999; de la Rocha
and Parga 2005). This model can yield different response
properties than the model used here in certain parameter
regimes (de la Rocha and Parga 2005). Even though this
more detailed model can be represented as a continuous-
time Markov chain, the analysis of this model would be
significantly more complex than the analysis considered
here since it would be necessary to keep track of the number
of readily releasable vesicles at each contact separately. This
would result in a Markov chain with K × NM states where
M is the number of contacts, N is the number of docking
sites per contact and K is the number of states used for
the presynaptic input model (K = 1 for the Poisson input
model, K = 2 for the irregular input model, and K = θ for
the regular input model).

We focused on the effects of short term synaptic
depression and ignored the effects of facilitation. Previ-
ous theoretical studies show that facilitation can introduce
positive temporal correlations to the synaptic response in
regimes where depression introduces negative temporal
correlations (Lindner et al. 2009; Merkel and Lindner
2010). These positive correlations cause the Fano factor of
the synaptic response to be much larger than one in regimes
where a depressing synapse predicts Fano factors near
one (Matveev and Wang 2000a).

Our model of irregular presynaptic spiking involves an
inhomogeneous firing rate that switches randomly between
two states. If one state is taken to be much faster than
the other (rf � rs), this model can be used to repre-
sent bursty or “chattering” neuronal spiking. We focused
on the analysis of the auto-covariance and Fano factor of
the synaptic response, but our analytical techniques also
yield the full distribution of dynamical variables in each of
these two states. This could be used, for example, to analyze
burst and spike transmission in the presence of short term
depression (Matveev and Wang 2000a).

We used two specific models of non-Poisson presynap-
tic spiking statistics, one for irregular and one for regular
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spiking. There are a number of possible alternative mod-
els of irregular and regular spiking, but not all of them can
be analyzed using the methods presented here. Nonetheless,
insights gained from the models studied here are applica-
ble to more general presynaptic spiking models. The fact
that positive temporal correlations in the input are reduced
in the synaptic response is consistent across all models we
studied and has also been observed using different models
of irregular presynaptic spiking and also for irregular spike
trains taken from experimental recordings (Matveev and
Wang 2000a; Goldman et al. 2002). Our observation that
depleted synapses respond in a Poisson-like fashion regard-
less of whether their inputs are Poisson relies on the fact that
the response of depleted synapses inherit the Poisson-like
dynamics of their vesicle recovery processes (see Fig. 6(B)),
an explanation which we expect to apply to other models
of presynaptic spiking. Indeed, Poisson-like responses to
non-Poisson inputs have been observed in studies that use
different presynaptic spiking models (Matveev and Wang
2000a; de la Rocha and Nevado 2002).

We focused on the effects of synaptic dynamics on the
first- and second-order moments of the synaptic response
(i.e., the rate, auto-covariance and Fano factor of vesicle
release) since these quantities are the focus of many the-
oretical and experimental studies. However, higher order
statistics can play a role in neural coding and network
dynamics (Kuhn et al. 2003; Stratton and Wiles 2007). Since
our analytical methods yield the full distribution of dynam-
ical variables, they can be used to calculate higher order
statistics of the synaptic response.

To quantify the synaptic response to a presynaptic spike
train, we focused on the statistics of the number of vesicles
released in a time window. Postsynaptic neurons observe
changes in synaptic conductance in response to presynaptic
spikes. The synaptic conductance are often modeled in
such a way that they can be easily derived from our pro-
cess x(t) through a convolution: g(t) = ∫ t

0 x(t − s)α(s)ds

where g(t) is the synaptic conductance elicited by a presy-
naptic spike train and α(s) is a kernel representing the
characteristic postsynaptic conductance elicited by the
release of a single neurotransmitter vesicle. Since this
mapping is linear, the statistics of g(t) can easily be derived
in terms of the statistics of x(t) (Tetzlaff et al. 2008;
Rosenbaum et al. 2012).
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