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Abstract We consider a pair of stochastic integrate and fire neurons receiving
correlated stochastic inputs. The evolution of this system can be described by the
corresponding Fokker–Planck equation with non-trivial boundary conditions result-
ing from the refractory period and firing threshold. We propose a finite volume method
that is orders of magnitude faster than the Monte Carlo methods traditionally used to
model such systems. The resulting numerical approximations are proved to be accu-
rate, nonnegative and integrate to 1. We also approximate the transient evolution of
the system using an Ornstein–Uhlenbeck process, and use the result to examine the
properties of the joint output of cell pairs. The results suggests that the joint output of
a cell pair is most sensitive to changes in input variance, and less sensitive to changes
in input mean and correlation.
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1 Introduction

Noise is pervasive in the cortex and can have a significant impact on population cod-
ing and network dynamics (see Faisal 2008 for a review). Understanding coding and
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dynamics in the cortex therefore requires the use of stochastic models. The integrate
and fire (IF) model is used widely in mathematical biology (Burkitt 2006a; Keener
and Sneyd 2008). It is simple, yet versatile, and provides a good approximation of
the response of an excitable cell in a variety of situations. A stochastic version of the
IF model can describe the behavior of large populations of cells receiving stochastic
inputs through the evolution of the corresponding probability density (Knight 1972;
Nykamp and Tranchina 2000; Rolls et al. 2008). It can also be used to study the
response of a single cell subject to a large number of small, statistically independent
inputs (Lindner 2001; Renart et al. 2003).

There is an extensive literature on the marginal spiking statistics of integrate-
and-fire cells with stochastic inputs (Burkitt 2006a,b). These statistics are sufficient
to describe a population response when the activity of cells in a population is inde-
pendent (Renart et al. 2003). However, collections of excitable cells frequently do not
behave independently. The joint response of populations of electrically active cells is
of interest in a number of areas in biology: Pancreatic β-cells have to synchronize their
response to secrete insulin (Meda et al. 1984; Sherman and Rinzel 1991), and the coor-
dinated activity of cardiac cells is essential for their function (Keener and Sneyd 2008).

Our study is motivated primarily by cells in neural populations. Such cells typi-
cally fire action potentials (spikes) in response to synaptic inputs from other cells. The
spiking statistics of neurons in a population can exhibit various degrees of correlation.
These correlations can affect the output statistics of a neuronal population, and signif-
icantly impact the amount of information carried in the population response (Salinas
and Sejnowski 2000; Sompolinsky et al. 2001). Even weak correlations between indi-
vidual cells can significantly impact the ensemble activity of a population (Shadlen
and Newsome 1998; Rosenbaum et al. 2010). Recent studies explore the joint statistics
of integrate-and-fire receiving correlated stochastic inputs (Burak et al. 2009; de la
Rocha et al. 2007; Rosenbaum and Josić 2011; Schneider et al. 2006; Shea-Brown
et al. 2008; Tchumatchenko et al. 2010; Moreno-Bote and Parga 2006; Ostojić et al.
2009; Vilela and Lindner 2009; Moreno-Bote 2010). Here, we develop numerical and
asymptotic analytical techniques to study the joint response of two cell populations
(or a cell pair) receiving correlated inputs.

We first develop a Fokker–Planck equation that describes the evolution of the prob-
ability density for a pair of cells receiving correlated inputs. The response of cell
pairs receiving correlated inputs has been studied previously using linear response
theory (Ostojić et al. 2009; de la Rocha et al. 2007; Shea-Brown et al. 2008; Vilela
and Lindner 2009), and numerical simulations (Galán et al. 2007) in related models.
However, the boundary conditions in the presence of a refractory period are nontrivial,
and can impact the behavior of the system. We therefore present the model in some
detail.

Next we describe a finite volume method that can be used to solve the Fokker–Planck
equation numerically for the probability density. Previously, we proposed a fast and
accurate finite volume method for modeling a general IF neuron driven by a stochastic
input (Marpeau et al. 2009). This method was significantly faster than Monte Carlo
(MC) simulations and we proved several stability properties of the algorithm. Here
we extend this method to two neurons with correlated inputs. While the dynamics of
interacting populations has been examined previously (Nykamp and Tranchina 2000;
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Harrison et al. 2005), we are not aware of a numerical treatment of the Fokker–Planck
equation corresponding to stochastic IF neurons driven by correlated noise.

Finally, we develop a simple analytical approximation in terms of a related
Ornstein–Uhlenbeck process that captures the response of a cell pair to study the
behavior of cells, or cell populations receiving correlated inputs. This approach pro-
vides an alternative to the linear response techniques commonly in use (Lindner 2001;
Ostojić et al. 2009).

We use this approximation to examine the response of a single cell and a cell pair
to changes in the input parameters. The variance (noisiness), mean and synchrony
between the inputs are separate channels along which information can be communi-
cated to postsynaptic cells. We find that the spiking statistics of a single cell and the
cell pair are most sensitive to changes in the variance of the input. This suggests that
the joint response of a cell population most accurately tracks input noise intensity.

2 Model description

A single IF neuron with stochastic input is described by the Langevin equation:

dV

dt
= f (V ) + √

2Dξ(t), V ∈ (−∞, V T ). (1)

Here f defines the deterministic (drift) behavior, and ξ(t) a Gaussian white noise
processes with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′). When the voltage reaches a
threshold, V T , a spike is fired, and V is instantaneously reset to V R < V T . A spike may
be followed by an absolute refractory period τ , during which a neuron is insensitive
to inputs, and V is held fixed at V R .

This model can also be understood as the diffusive limit of a population of cells
receiving independent inputs (Omurtag 2000). To model a pair of cells receiving corre-
lated inputs, we assume that their membrane voltages V and W obey a pair of Langevin
equations:

V̇ = f (V, W ) + IV (t) ; IV (t) = μV + √
2D(

√
1 − cξV (t) + √

cξc(t))
(2)

Ẇ = g (W, V ) + IW (t) ; IW (t) = μW + √
2D(

√
1 − cξW (t) + √

cξc(t)).

The inputs, I j (t), received by the cells are comprised of statistically independent
stochastic processes ξV (t) and ξW (t), and a common input ξc(t) which is inde-
pendent from ξV (t) and ξW (t). The ξi are again assumed to be Gaussian with
〈ξi (t)〉 = 0 and 〈ξi (t)ξ j (t ′)〉 = δ(t − t ′)δi, j . The constant c, is the Pearson corre-
lation coefficient between the inputs and lies between 0 and 1. For instance, for two
leaky integrate-and-fire (LIF) neurons with common input, but no direct coupling,
f (V, W ) = −V +μV and g(V, W ) = −W +μW . Each cell spikes when the voltage
V crosses the threshold, V T and W T respectively. After each spike the voltage is reset
to V R < V T (W R < W T for cell 2), and is pinned to this value for the duration of the
refractory period, τV (τW for the second cell, see Fig. 1). For simplicity we will refer
to the two as neuron V and W , although this can be understood as “populations V and
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Fig. 1 (Left) Domain of simulation. (Right) Circulation of probability mass through populations P , RV ,
RW and R

W ” (Harrison et al. 2005). The joint density of the two voltages evolves on the domain
� = (V −∞, V T ) × (W −∞, W T ). In theoretical studies it is frequently assumed that
V −∞ = W −∞ = −∞. However, since we will be interested in numerical simulations,
we assume that these quantities are large and negative.

With U = (V, W ) and F = ( f, g) the Fokker–Planck equation corresponding to
Eq. (2) takes the form

∂t P(t, U ) + div (F(U )P(t, U ) − DM∇ P(t, U )) = 0, M =
(

1 c
c 1

)
, (3)

for V ∈ (V −∞, V T )\V R , W ∈ (W −∞, W T )\W R . Here D is the diffusion coefficient
and M is the correlation matrix. This equation is coupled with reflecting boundary
conditions at V = V −∞ or W = W −∞, and absorbing boundary conditions at both
thresholds (Gardiner 1985):

( f (U ) − D∂V − cD∂W ) P(t, U ) |V =V −∞ = 0,

(g(U ) − D∂W − cD∂V ) P(t, U ) |W=W−∞ = 0, (4)

P(t, U )|V =V T = P(t, U )
∣∣
W=W T = 0.

The presence of the refractory behavior in the IF model introduces additional
complexity. If either neuron enters its refractory state, the corresponding voltage
is fixed at the reset value, and the entire system effectively evolves according to a
one-dimensional Fokker–Planck equation. During this time, it is possible that the sec-
ond cell also crosses the threshold, fires and enters the refractory state. In this case the
voltages are fixed at (V R, W R) and both neurons are insensitive to inputs until one of
them exits the refractory state.

123



Finite volume and asymptotic methods

To capture the behavior of neurons in the refractory period, we model the evolu-
tion of densities using three separate, communicating sub-populations, in addition to
P(t, U ) (Sirovich 2008; Ly and Tranchina 2009):

• RV (t, r, V ), the density of the fraction of the population in which only neuron W
is in the refractory state,

• RW (t, s, W ) the corresponding density in which only neuron V is in the refractory
state, and

• R(t, s, r), the density corresponding to both neurons in the refractory state.

For all densities, t refers to the time since the beginning of the simulation, while r
and s refer to relative times measured from the beginning of the refractory period
for neuron V and W , respectively. Therefore, RV (t, r, V0)�V �r is the fraction of
the population for which neuron W has been in the refractory period between r and
r + �r units of time, and the voltage of neuron V is between V0 and V0 + �V . The
quantity R(t, s, r)�s�r is the fraction of the population in which neurons V and W
have been in refractory periods for times in the intervals [s, s + �s] and [r, r + �r ]
respectively. The use of variables s and r is closely related to age-structured population
dynamics models (Iannelli 1994; Webb 1985). Indeed, s and r denote the “ages” of the
refractory states for neurons 1 and 2 respectively. Figure 1 summarizes the circulation
of probability mass between the different populations involved.

Since the entire population is described by these densities we have for any time t

V T∫
V −∞

W T∫
W−∞

P(t, V, W ) dW dV +
τW∫
0

W T∫
W−∞

RW (t, s, W ) dW ds

+
τV∫

0

V T∫
V −∞

RV (t, r, V ) dV ds +
τV∫

0

τW∫
0

R(t, s, r) ds dr = 1. (5)

We next describe the evolution of the main population and the three refractory pop-
ulations and how they are coupled to each other through boundary terms. The variable
s evolves according to ds/dt = 1 for s ∈ [0, τV ]. This assures that cell V remains
refractory exactly τV units of time after reaching threshold. Similarly, we assume that
dr/dt = 1 for r ∈ [0, τW ]. As a result, the refractory populations evolve according to
the equations,

∂r RV (t, r, V ) + ∂V ( f (V, W )RV (t, r, V ) − D∂V RV (t, r, V ))

+ ∂t RV (t, r, V ) = 0, r ∈ (0, τW ), (6)

∂s RW (t, s, W ) + ∂W (g(V, W )RW (t, s, W ) − D∂W RW (t, s, W ))

+ ∂t RW (t, s, W ) = 0, s ∈ (0, τV ), (7)

(∂t + ∂s + ∂r )R(t, s, r) = 0. (8)

The first term in Eq. (6) corresponds to the constant drift of r and the remaining
terms represent the drift and diffusion of V while W is refractory. Equation (7) is
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equivalent. When both cells are refractory, the variables r and s evolve with constant
drift as described by Eq. (8).

In addition, mass from the main population P(t, U ) is injected into populations
RV (t, r, V ) and RW (t, s, W ) at r = 0 and s = 0 as neuron V and W cross threshold
respectively. These source terms are described by

RV (t, 0, V ) = −D∂W P(t, V, W T ), RW (t, 0, W ) = −D∂V P(t, V T , W ). (9)

While either neuron is in the refractory state, the other neuron can enter its own refrac-
tory state as well, providing boundary conditions to Eq. (8) for inward characteristics:

R(t, s, 0) = −D∂W RW (t, s, W T ), R(t, 0, r) = −D∂V RV (t, r, V T ). (10)

Next, while both neurons are in the refractory state, neuron V or W may exit the
refractory state while the other neuron remains in the refractory state. To ease nota-
tion in the following expressions, we define the operator [ξ ] |z=Z := limz→Z+ ξ(z)−
limz→Z− ξ(z) that denotes the jump of a function ξ at a point Z ∈ R. We can then
express the contribution of population R(t, s, r) to the following source terms as
(Melnikov 1993; Lindner 2001)

[D∂V RV (t, r, .)]
∣∣
V =V R = R(t, τV , s),

[D∂W RW (t, s, .)]
∣∣
W=W R = R(t, r, τW ). (11)

As either neuron exits the refractory period, it re-enters the main population modeled
by the density P(t, U ). This is captured by adding the source terms:

[D∂V P(t, ., W )]
∣∣
V =V R = RW (t, τV , W ),

[D∂W P(t, V, .)]
∣∣
W=W R = RV (t, τW , V ). (12)

The densities are also continuous across the reset potentials, so that

[P(t, ., W )]
∣∣
V =V R = [P(t, V, .)]

∣∣
W=W R = [RV (t, r, .)]

∣∣
V =V R

= [RW (t, s, .)]
∣∣
W=W R = 0. (13)

Finally, reflecting and absorbing boundary conditions are imposed on Eqs. (6)–(8) by
requiring:

( f (U ) − D∂V ) RV (t, r, .)|V =V −∞ = (g(U ) − D∂W ) RW (t, s, .)|W=W−∞ = 0, (14)

RV (t, r, V T ) = RW (t, s, W T ) = 0. (15)

Notice that when there is no refractory period (τV = τW = 0), (9)–(12) reduce to the
single boundary condition

[D∂V P(t, ., W )]|V =V R = −D∂V P(t, V T , W ), [D∂W P(t, V, .)]|W=W R

= −D∂W P(t, V, W T ).
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3 Description of the numerical methods

The numerical methods used in simulating the solutions of the model described in the
previous section are not completely standard. The anisotropy of the diffusion operator
coupled with the absorbing boundary condition presents numerical challenges dif-
ferent from those encountered, for instance, when modeling phase oscillators (Galán
et al. 2007). We therefore give a brief description of our approach here.

3.1 Finite volume method

Three requirements in the numerical discretization of Eqs. (3)–(15) are obtaining
numerical probability densities which are accurate, nonnegative and integrate to 1.
We dealt with similar difficulties in Marpeau et al. (2009), and use an extension of that
approach here. To obtain numerical densities which integrate to 1, we use conservative
numerical schemes which ensure that the mass lost by a mesh-element is transmitted
exactly to its neighboring elements. This ensures preservation of mass of the initial
densities. Secondly, the drift operator is well known to be an obstacle when trying to
combine accuracy, non-negativity, and stability of the numerical densities. Therefore,
we use an operator splitting method (described below) that enables us to discretize the
drift and diffusion operators separately. The discretization of the drift term is carried
out by an upwind scheme whose accuracy is improved using flux limiters.

However, the two-dimensional nature of the problem induces further difficulties:

1. Extra numerical diffusion is generated in the cross directions from the drift oper-
ator, leading to a loss of accuracy.

2. Due to the correlation coefficient c, the diffusion matrix DM is anisotropic. The
discretization of the cross derivatives ∂2

V W P commonly involves the inversion of
matrices that are not unconditionally strongly diagonally dominant, which makes
it difficult to obtain nonnegative numerical densities.

3. Due to the refractory periods, the multiple boundary conditions (6)–(15) dras-
tically increase the algorithmic complexity, compared with the one-dimensional
model in (Marpeau et al. 2009). In particular, the densities RV and RW have to be
obtained by discretizing Eqs. (6) and (7) at each time step and age step. Moreover,
the code has to gather all the phenomena and assemble the circulation between
the four populations in an efficient manner.

The technical details of our approach are relegated to Appendix A, and what follows
is an outline. First, the time interval R+ on which the solution will be approximated
is partitioned into sub-intervals (tn, tn+1). We will denote the numerically obtained
approximation of the population P at time tn by Pn . As in (Marpeau et al. 2009),
Pn+1 is obtained from Pn by splitting Eqs. (3)–(5) into

∂t P + div ( f P) = 0, P |V =V −∞ = P |W=W−∞ = 0,
(16)

∂t P − div (DM∇ P) = 0,

(D∂V + cD∂V W ) P |V =V −∞ = (D∂W + cD∂V W ) P |W=W−∞

= P
∣∣
V =V T = P

∣∣
W=W T = 0. (17)
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The numerical solution is updated at time tn+1 using

Pn+1 = S2
(
S1(Pn)

)
, (18)

where S1 and S2 are approximation schemes for Eqs. (16) and (17) respectively,
along with split interior conditions specified later. This technique allows us to develop
specific numerical schemes which are adapted to each differential operator in Eq. (3).

Typically, first order accurate numerical finite volume schemes discretizing drift
operators produce very large numerical diffusion that completely destroys the solu-
tion. Higher order schemes are usually obtained by adding nonlinear flux limiters
to a first order accurate monotonic scheme, in order to reduce this numerical diffu-
sion. Since flux limiters are nonlinear and often nondifferentiable, they are calculated
explicitly. For this reason, and also because implicit schemes are known to increase
numerical diffusion, we construct a numerical scheme S1 that is nonlinear explicit.
A compromise between accuracy and stability is obtained by adding flux limiters to
the upwind scheme. As discussed in the Appendix, we use the numerical scheme
introduced in Marpeau et al. (2009) in each direction, V and W . The time step is
restricted by a Courant–Friedrichs–Lewy (CFL) condition (Courant 1928; Godlewski
and Raviart 1990), which provides stability and positivity preservation of the scheme
by ensuring that the drift term does not shift the numerical solution by more than one
mesh element per time step (Godlewski and Raviart 1990).

Using explicit schemes to discretize second order differential operators, such as dif-

fusion, require positivity and stability conditions in the order of �t = O
(

�V 2+�W 2

D

)
,

which can be over-restrictive if the mesh is very fine. Thus, we impose that our scheme
S2 be linear implicit. Using centered approximation of the derivatives ∂V V P , ∂W W P
and a semi-center discretization of the cross derivative (see A.2), the numerical solu-
tion is obtained by inverting a matrix that is strongly diagonally dominant as long as
the mesh-size does not change too sharply between two elements. The scheme will
remain stable and positivity preserving with any time step. The inversion of the linear
system is carried out by an LU pre-conditioned conjugate gradient procedure.

The one dimensional Fokker–Planck equations (6) are discretized by using the one-
dimensional scheme from (Marpeau et al. 2009) (see A.3). The main difference here
is the presence of the age variables, s and r . Since the age evolves simultaneously
with time, we just solve Eq. (6) at each time step, regardless of age, and shift the
age variable by one time step. Finally, Eq. (8) is solved exactly. The other boundary
conditions given in Eqs. (9)–(15) are discretized as in one space dimension. In our
computations, we say that our numerical solution has reached a steady state when the
residual ‖Pn+1 − Pn‖l∞ decreases to a pre-defined value, 10−6 in our study.

3.2 Computing spike train statistics

The statistics of the number of threshold crossings of an IF model are of special inter-
est. Using neuroscience terminology, we will refer to each threshold crossing as a
spike and the sequence of threshold crossings as a spike train. Let the stochastic set
functions NV (s, t) and NW (s, t) denote the number of spikes during the time interval
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[s, t] in cell V and W , respectively. The instantaneous firing rate of cell X = V, W is
defined as the instantaneous rate at which the corresponding population of cells spikes
at time t . In terms of the spiking probability of a single cell, this can be written as

νX (t) = lim
�t→0

1

�t
Pr (NX (t, t + �t) > 0).

The conditional firing rate, νV |W (τ, t), is defined as the firing rate of cell V at time
t + τ given that W has spiked at time t ,

νV |W (τ, t) = lim
�t→0

1

�t
Pr (NV (t + τ + �t, t + τ) > 0 | NW (t, t + �t) > 0)

and similarly for νW |V (τ, t). The conditional firing rate can be normalized by the rates
to obtain the spike train cross-covariance function

CV W (τ, t) = νW (t)
(
νV |W (τ, t) − νV (t + τ)

)
, (19)

which is a common measure of correlation between the activity of two neurons over
time. In the study of neural coding, it is often useful to know the propensity of one
cell to spike during some time interval after another cell has spiked. For this purpose,
we define the conditional mean rate,

SV |W (a, b, t) = 1

(b − a)

b∫
a

νV |W (t, τ )dτ (20)

When the distribution of membrane potentials is in steady state, the spike trains are
stationary and we can drop the explicit dependence on t to write νX , νV |W (τ ), CV W (τ ),
and SV |W (a, b) without ambiguity.

Since action potentials are not explicitly modeled in the Fokker–Planck formalism
described above, the spiking statistics must be calculated using properties of the prob-
ability density near threshold. The instantaneous firing rate of cell V can be obtained
from the solution of the Fokker–Planck equation by taking the marginal flux over
threshold,

νV (t) = −D∂V PV (t, V )
∣∣
V =V T (21)

where PV (t, V ) = ∫ W T

W−∞ P(t, V, W )dW is the marginal density of V . Thus, up to
terms of O((�t)2), the quantity νV (t)�t is the probability mass that crossed threshold
during the interval �t . Equivalently, it equals the probability that a cell fires during
this interval. The instantaneous firing rate of W is defined analogously.

The conditional firing rates are obtained by first calculating the conditional flux
immediately after a spike in cell W at time t ,

Jcond(t, V ) := −D ∂W P(t, V, W )
∣∣
W=W T (22)
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This conditional flux is then normalized to give the conditional density, Jcond(t, V ) →
Jcond(t, V )

/∫ V T

V −∞ Jcond(t, x)dx and used as an initial condition for the 1-dimensional

Fokker–Planck equation,

∂τ P1(V, τ ) = −∂V ( f (V ) − D ∂V P1(V, τ )). (23)

As the solution of this equation evolves, the conditional firing rate of V is given by
νV |W (τ, t) = −D ∂V P1(V, τ ). The conditional firing rate can then be normalized,
cf. Eq. (19), to get the cross-covariance function, or integrated, cf. Eq. (20), to get
the conditional expected mean rate. We experienced convergence problems with the
derivative of the finite volume solutions at the upper corner, (V T , W T ), of the spatial
domain. Due to the convergence issues discussed in Appendix A.7, the finite volume
approximation to the conditional firing rate does not converge when τ is very small.

4 Validation of the numerical solution

As the finite volume numerical scheme we developed is novel, we first compare its
output to that obtained using Monte Carlo (MC) simulations (see Appendix A.6). We
consider both stationary and non-stationary inputs.

As an example we choose the case of two LIF neurons which corresponds to setting
f (V, W ) = −V + μV , and g(V, W ) = −W + μW in Eq. (3) (Burkitt 2006a). When
μV < V T and μW < W T the cells are in the fluctuation dominated regime, and firing
is due to large excursions of membrane voltages from the mean. As shown in top and
middle panels of Fig. 2, the finite volume method provides an excellent approxima-
tion of the stationary distribution when the input to the two cells is constant in time.
As the correlation between the inputs to the two cells, measured by c, increases, the
membrane potentials become more correlated, and their joint probability density is
stretched along the diagonal.

When μV > V T or μW > W T it is the DC component of the input current that
drives the cells over threshold. This situation is somewhat more challenging to sim-
ulate, since much of the mass of the invariant distribution lies close to the threshold.
The gradient of the solution close to the boundary becomes large. Together with the
Dirichlet boundary conditions, this causes larger errors in the numerical approxima-
tion close to the boundary. Globally refining the mesh in this case did not improve the
accuracy of the solution (see bottom panel of Fig. 2). We also found that the accuracy
of the solution was not significantly improved by refining the mesh near the bound-
aries using a variable mesh size. The presence of a boundary that is only piecewise
differentiable decreases the order of accuracy. Our numerical results suggest that this
is only a problem in the corner of the domain and therefore only leads to significantly
reduced accuracy in parameter regimes for which probability mass is concentrated
at this corner. However, the bottom panel of Fig. 3 shows that the finite volume still
performs relatively well in this situation.

We can change the drift term in Eq. (2) to simulate a different integrate-and-fire
model. In particular, the quadratic integrate and fire (QIF) model is obtained by setting
f (V, W ) = V 2 + μV , g(V, W ) = W 2 + μW (Ermentrout and Kopell 1986; Brunel
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Fig. 2 Stationary probability densities for a pair of LIF neurons: results from finite volume simulations
(first), MC simulations (second), the difference between the two approximations (third column). To test
convergence of the finite volume method, we used a coarse (100 × 100 elements in the unit square), and
a fine grid (200 × 200 elements). The fourth column shows the L1 norm of the difference between the
equilibrium distributions obtained using the finite volume and MC simulations. Parameters: for the top,
μW = μV = 0.5, D = 0.05, c = 0.5, τ = 0.5; for the middle, μW = μV = 0.5, D = 0.05, c = 0.9,
τ = 0.5; for the bottom, μV = 1.2, μW = 0.6, D = 0.05, c = 0.3, τ = 0.2. The first three columns were
obtained using a coarse (100 × 100) grid

Fig. 3 Stationary probability densities for a pair of QIF neurons: finite volume method (left), MC simula-
tions (right) when μV = μW = −0.1, D = 0.1 and c = 0.3

and Latham 2003). Figure 3 demonstrates that the finite volume numerical scheme
performs well in computing the invariant distribution for this model.

The finite volume scheme was designed to compute the evolution of the joint
probability density of the two sub-threshold voltages in time. Stationary distribu-
tions were presented here for ease of visualization. A comparison of time depen-
dent solutions obtained using finite volume and MC methods is available online at
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http://www.math.uh.edu/~josic/myweb/research/papers/FV/. The animation shows
the time dependent density from t = 100 to t = 110 for a pair of LIFs with
μ = | sin(t)|, c = | sin(t)|/2, and D = 0.1| sin(t)|.

5 Gaussian approximation

The LIF model is ubiquitous in stochastic modeling of excitable systems primarily due
to its mathematical tractability. Closed form expressions have been obtained for the
stationary density, spiking statistics, and linear response properties of the one neuron
model (Lindner 2001). However, exact closed form expressions are not known for
the two neuron model with c �= 0 discussed in Sect. 2. The numerical methods we
describe here offer a way of exploring the behavior of the LIF model in the absence
of analytic solutions. However, even with fast numerical methods, exploring large
regions of parameter space may not be possible. Approximate analytic solution, are
therefore frequently necessary to gain a deeper understanding of the model.

Much recent work has focused on deriving such approximations using perturbative
methods. Linear response theory was used to study the dependencies in the output of
a call pair receiving correlated input (Lindner 2001; Ostojić et al. 2009; de la Rocha
et al. 2007; Shea-Brown et al. 2008). These solutions involve integrals that must be
evaluated numerically. Simpler approximations can be obtained by ignoring the thresh-
old and reset boundary conditions when the neurons are in the fluctuation dominated
regime, and firing rates are low. Neurons in the cortex may reside in this regime under
typical conditions (Ringach and Malone 2007). Previous approximations obtained in
this regime required smoothness assumptions on the trajectories of the membrane
potentials (Burak et al. 2009; Tchumatchenko et al. 2010). Since solutions to Eq. (2)
are nowhere differentiable when D > 0, a different approach must be used for the
LIF driven by white noise inputs. We next describe such an approximation. (We note
that a similar approach has been used to examine the response of integrate-and-fire
neurons driven by filtered Gaussian noise (Badel et al. 2010)).

When firing rates are small, the boundary conditions have a small impact on the
solution of Eq. (3) and an approximate solution can be obtained by solving the free
boundary problem (V T , W T → ∞). Since firing is rare, the amount of time spent in the
refractory states is negligible and the refractory period can be ignored (τ = 0). Under
this approximation, the stochastic process (V (t), W (t)) is an Ornstein–Uhlenbeck pro-
cess in R

2 (Gardiner 1985). Given bivariate Gaussian initial conditions, the solution to
the Fokker–Planck equation at any time is a bivariate Gaussian and can be computed
in closed form. This Gaussian approximation is accurate when X T −μX � √

2D for
X = V, W .

For simplicity, in this section we assume that the two neurons receive statistically
identical inputs so that μV = μW = μ. We further assume that the neurons are
dynamically identical so that gV = gW , Vrest = Wrest, and V T = W T . The analysis
is similar in the asymmetric case. Without loss of generality, we rescale space so that
Vrest = Wrest = 0 and V T = W T = 1. To simplify calculations, we also time in units
of the membrane time constants so that gV = gW = 1.

For instance, the marginal or conditional firing rates can be approximated by the flux
of the time dependent Gaussian distribution over threshold. As shown in Appendix B,
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Fig. 4 Left. Cross-covariance functions for μ = 0.1 and μ = 0.25 when D = 0.05 and c = 0.2. The solid
lines were obtained from the Gaussian approximation and the dashed lines from finite volume simulations.
Right. The relative L1 difference between the Gaussian and finite volume cross-covariance functions (L1

difference divided by the L1 norm of the finite volume result) for μ ∈ [0.075, 0.25] and c ∈ [0.075, 0.3].
The L1 norm was computed for τ > 0.15, due to the convergence issues of νV |W for small τ discussed in

Appendix A.7. The cross-covariance function has units Hz2 In this figure and in Figs. 5 and 6, the axes are
labeled assuming a membrane time constant of 1/gV = 1/gW = 5 ms

this flux can be written in terms of the mean (m) and the variance (σ 2) of the Gaussian,
and the input diffusion coefficient (D) as

J (m, σ 2, D) := (1 − m)D√
2πσ 3

e
−(μ−1)2

2σ2 . (24)

The steady state firing rate, ν∞ is obtained by taking m = μ and σ 2 = D to get
ν∞ = J (μ, D, D) = α√

π
e−α2

where α := (1 − μ)/
√

2D. This expression can also
be obtained using large deviation methods (Kampen 2007; Lindner 2001; Shea-Brown
et al. 2008).

From an approximation of the conditional firing rate, the cross-covariance function
can be obtained as (see Appendix B),

CV |W (τ ) = ν∞(H(τ ) − ν∞) = 1

π
α2e−α2

⎛
⎝ et− α2(eτ −c)

c+eτ√
1 − c2e−2τ (c + eτ )

− e−α2

⎞
⎠.

In Fig. 4, we compare this approximation to the cross-covariance function to the cross-
covariance function obtained from finite volume simulations. As expected, we find that
the two agree well when firing rates and correlations are small, but disagree when μ,
D or c are larger.

Further expressions for other stationary and non-stationary spiking statistics under
the Gaussian approximation are derived in Appendix B. We use these approximations
to examine the response of a pair of cells to time-varying inputs next.
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Fig. 5 Left. Instantaneous firing rate after a step change in input statistics. Result from the Gaussian
approximation are plotted as solid lines and finite volume simulations as dashed lines. For time t < 0, the
parameters were set to μ = 0 and D = 0.03. At time t = 0 the parameters were changed to μ = 0.1334
(grey) or D = 0.04 (black). The values of μ and D were chosen so that the steady state firing rate after the
change in parameters was the same whether μ or D was changed. Right. Instantaneous firing rate after a
pulse change in input statistics. Same as left, but the parameters were changed back to μ = 0 and D = 0.03
at time t = 2.5 ms. Note that a step change in the input variance, D, results in an instantaneous jump in the
firing rate, followed by a continuous relaxation to the steady state. To illustrate the quantitative accuracy of
the Gaussian approximation, we used parameters that resulted in low firing rates. Figure 6 illustrates that,
while the Gaussian approximation is less accurate when firing rates are moderate, the approximation can
still capture the qualitative behavior of the spiking statistics

5.1 Response to step changes in the input: single cell response

If a pair of cells responds rapidly to a change in an input parameter, then the output
of the cell pair can accurately capture the information present in a time-varying input
signal (Silberberg et al. 2004; Masuda 2006). It is therefore useful to understand how
the spiking statistics of a neuron or pair of neurons respond to changes in input param-
eters, μ, D, and c in Eq. (2). The response of the cell pair is measured by their joint
firing rate (νV , νW ), and we first examine how rapidly this response can track changes
in the inputs to the model.

We start by examining the response of a single cell. Figure 5 left shows the time
dependent firing rate after a step change in the mean, (μ, light line), and variance,
(D, heavy line). We compare the response for the Gaussian approximation, derived
in closed form in Appendix B, to the result from finite volume simulations. After a
change in parameters, the distribution of (V, W ), and therefore the spiking statistics,
relax exponentially to a new steady state. However, the speed of this relaxation depends
on the parameters that are changed. After a step change in the mean input, μ, the firing
rate relaxes to a new steady state with a time constant of 1 (i.e., one membrane time
constant). After a change in the variance, D, the firing rate jumps discontinuously, then
approaches the new steady state value with a faster time constant of 1/2 (see Appendix
B). The fact that changes in the variance of the input are tracked faster than changes in
input intensity is a fundamental property of the Ornstein–Uhlenbeck process (Gardiner
1985). Therefore, changes in variance can be tracked more faithfully than changes in
the DC component of the input. Related observations are made in Khorsand and Chance
(2008), Hasegawa (2009), Silberberg et al. (2004), Masuda (2006) where mainly the
discontinuous change in output firing rate in response to a step change in input variance
was examined.
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Fig. 6 Top row. The two-point time dependent firing rate, νcond(τ, t) after a step change in D with D = 0.1
for t < 0 and D = 0.2 for t > 0. Parameters μ = 0 and c = 0.1 were held constant. Values for τ ≤ 0.5ms
were omitted due to the convergence issues discussed in Appendix A.7. Bottom row. The conditional mean
rate, S, after a pulse change in parameters. The parameters changed from D, c, μ = 0.1, 0.1, 0 for t < 0
to D = 0.2 (black), c = 0.435 (dark grey), or μ = 0.293 (light grey) for t ∈ [0, 2.5]ms, then back to
D, c, μ = 0.1, 0.1, 0 for t > 2.5 ms. The conditional mean rate, calculated according to Eq. (20) with
a = 0.15 and b = 0.5 ms, measures the propensity for cell V to spike within the first 0.5 ms after cell
W spikes. We chose a = 0.15 ms to circumvent the convergence issues discussed in Appendix A.7. Left
column. Finite volume simulations. Right column. Gaussian approximation

It also follows that a transient pulse change in D results in a larger transient in the
firing rate than a comparable pulse change in μ. This prediction is verified for the
Gaussian approximation and for finite volume simulations in Fig. 5 right.

5.2 Response to step changes in the input: joint response

We next examine how joint response of the cell pair in response to a step change in the
input. The cross-covariance function, defined in Eq. (19), is commonly used to mea-
sure dependencies between two spike trains over time. Figure 4 compares the Gaussian
approximation of the cross-covariance function to that obtained using finite volume
simulations. As expected, the two results agree when firing rates are low. However,
as μ or D increase, the firing rate increases and the Gaussian approximation breaks
down.

Figure 6 top shows the two-point conditional firing rate after a step change in the
parameter D. This function completely characterizes the second order correlations of
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the two cells over time. Such a plot would be computationally prohibitively expensive
to obtain using direct Monte-Carlo simulations, especially when firing rates are low.
The parameters for Fig. 6 were chosen so that the Gaussian approximation does not
agree quantitatively with the finite volume simulations. However, as shown in Fig. 6
bottom, the Gaussian approximation successfully predicts the qualitative behavior of
the bivariate spiking statistics with changing input parameters.

A pulse change in D has a larger impact on the propensity of the cells to fire together
than a comparable pulse change in μ (compare to Fig. 5 right). A pulse change in c
has an intermediate impact. If a downstream cell that receives inputs from cells V and
W is sensitive to synchrony in its inputs (Salinas and Sejnowski 2000), then the cell
would response more quickly and strongly to changes in D or c than to changes in μ.

This suggests that downstream cells that act as coincidence detectors are most sen-
sitive to upstream changes in input variance, and respond more weakly to changes in
input intensity.

6 Discussion

Population density methods have a long history in neuroscience. They have been
used to study both the statistics of responses of single neuron (Tuckwell 1988), and
neural populations (Harrison et al. 2005). Studying the evolution of the ensembles,
rather than tracking individual neurons has several advantages: While the dynamics
of each individual cell is stochastic, their probability density evolves deterministi-
cally. The probability density is therefore easier to study analytically and numerically.
For instance, both linear response methods (Lindner 2001; de la Rocha et al. 2007;
Ostojić et al. 2009), and the Gaussian approximation discussed here (see also Burak
et al. 2009; Tchumatchenko et al. 2010; Badel et al. 2010), are obtained by considering
the evolution of large populations in the diffusive limit. For low-dimensional systems
such as the two-dimensional one considered here, simulating the evolution of popu-
lation densities is typically orders of magnitudes faster than simulating the evolution
of each individual cell in a population (Nykamp and Tranchina 2000; Omurtag 2000).
For instance, obtaining the two-point time dependent firing rate, νcond(τ, t) shown in
Fig. 6, would not be feasible using Monte Carlo methods on an average machine today.

We have concentrated on a simple version of the model to keep the presentation rel-
atively concise. For instance, it is easy to consider cells receiving different, potentially
time dependent drives, μV (t), μW (t), DV (t) and DW (t). We have mainly considered
drift terms of the form, f (V, W ) = f (V ), and g(W, V ) = g(W ), in Eq. (2), so that
the two populations were uncoupled. Coupled populations have been considered ear-
lier (Nykamp and Tranchina 2000). We hence concentrated on examining the effects of
anisotropic diffusion. However, the numerical methods we described can easily handle
coupling between cells in the sub-threshold regime. This could be used to examine the
interplay of correlated inputs and cell coupling (Schneider et al. 2006). However, we
do not know whether there is a direct way to include super-threshold coupling in the
present diffusive approximation. We also note that high firing rates can lead to steep
gradients of the probability density close to the boundary and convergence problems
in the numerical methods we used. This suggests that numerical techniques will have
to be developed further to accurately capture the response of IF neurons in this regime.
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We have used our numerical and analytical approach to examine the best way to
transmit information in a pair of cells. We found that both the single cell response
and the joint response tracks changes in noise intensity more accurately than changes
in the mean drive or correlations in the cell inputs. Thus input variance appears to
provide the best channel to code information at the single cell and population level.

The numerical methods we have developed can be used to further examine how
the output of a cell pair reflects their interactions and dependencies in their inputs.
It is of particular interest how cells respond to signals that vary in time. The finite
volume method we described is well suited to this task, as it is designed to capture the
time-dependent response of a cell pair.

Acknoweldgments This work was supported by NSF Grants DMS-0604429 and DMS-0817649 and a
Texas ARP/ATP award.

Appendix A: Numerical schemes

In the following we provide a description of the finite volume method used in the
numerical simulations. Some of the details of the implementation are not standard. As
we are not aware of a similar treatment of this type of equation, we give a detailed
discussion of the novel aspects of the algorithm.

The time steps are defined by �tn = tn+1 − tn . When there is no ambiguity, the time
step is denoted by �t . The intervals (V −∞, V T ) and (W −∞, W T ) are partitioned into
NV and NW sub-intervals respectively. We denote �Vi as the i th step in the V -direc-
tion and �W j as the j th step in the W -direction, for i = 1, . . . , NV , j = 1, . . . , NW .
Our quadrilateral mesh elements, Qi, j , are then defined by

Qi, j =
(

Vi− 1
2
, Vi+ 1

2

)
×

(
W j− 1

2
, W j+ 1

2

)
,

with Vi− 1
2

= ∑i−1
l=1 �Vl , W j− 1

2
= ∑ j−1

l=1 �Wl . Our mesh-points (Vi , W j ) are the

centroids of the cells, thus Vi = Vi− 1
2
+ 1

2�Vi , W j = W j− 1
2
+ 1

2�W j . We make sure

that there exist two indices iR and jR such that ViR = V R and WiR = W R , which
means that the two reset potentials fall exactly on some mesh-points, see Fig. 7. For
every function ξ defined on (0, T )×�, the notation ξn

α,β stands for the approximation

of ξ
(
tn, (Vα, Wβ)

)
, for α = i, i ± 1

2 , β = j, j ± 1
2 . We denote ξn as the sequence

{ξn
i, j }i, j .

A.1 Treatment of the drift operator: scheme S1

The advection equation in (16) is discretized by using the one-dimensional numerical
fluxes in Marpeau et al. (2009) in each direction. We set

Pn+1
i, j = Pn

i, j − �t

�Vi

(
A n

i+ 1
2 , j

− A n
i− 1

2 , j

)
− �t

�W j

(
A n

i, j+ 1
2

− A n
i, j− 1

2

)
, (25)
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Fig. 7 A schematic depiction of the subdivision of the domain (V −∞, V T ) into subintervals
(V

i− 1
2
, V

i+ 1
2
). The reset voltage V R is at ViR . Similar notations are used for the second neuron volt-

age W

where the numerical fluxes are defined by

A n
i+ 1

2 , j
= f +

i+ 1
2 , j

Pn
i, j + f −

i+ 1
2 , j

Pn
i+1, j

+1

2

�Pn
i+ 1

2 , j

�Vi+ 1
2

(
f +
i+ 1

2 , j
�Viϕ

(
r p

i+ 1
2 , j

,
�Vi+ 1

2

�Vi

)

− f −
i+ 1

2 , j
�Vi+1ϕ

(
rm

i+ 1
2 , j

,
�Vi+ 1

2

�Vi+1

))
, (26)

for 1 ≤ i ≤ NV − 1, 1 ≤ j ≤ NW and

A n
i, j+ 1

2
= g+

i, j+ 1
2

Pn
i, j + g−

i, j+ 1
2

Pn
i, j+1

+ 1

2

�Pn
i, j+ 1

2

�Wi, j+ 1
2

(
g+

i, j+ 1
2
�W jϕ

(
r p

i, j+ 1
2
,
�W j+ 1

2

�W j

)

− g−
i, j+ 1

2
�W j+1ϕ

(
rm

i, j+ 1
2
,
�W j+ 1

2

�W j+1

))
, (27)

for 1 ≤ i ≤ NV , 1 ≤ j ≤ NW − 1, with notations �Pn
i+ 1

2 , j
:= Pn

i+1, j − Pn
i, j ,

�Pn
i, j+ 1

2
:= Pn

i, j+1 − Pn
i, j ,

r p
i+ 1

2 , j
=

f +
i− 1

2 , j
�Pi− 1

2 , j

f +
i+ 1

2 , j
�Pi+ 1

2 , j

, rm
i− 1

2 , j
=

f −
i+ 1

2 , j
�Pi+ 1

2 , j

f −
i− 1

2 , j
�Pi− 1

2 , j

,

r p
i, j+ 1

2
=

g+
i, j− 1

2
�Pi, j− 1

2

g+
i, j+ 1

2
�Pi, j+ 1

2

, rm
i, j− 1

2
=

g−
i, j+ 1

2
�Pi, j+ 1

2

g−
i, j− 1

2
�Pi, j− 1

2

,
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where the limiter function ϕ is defined by ϕ(a, b)=2b max (0, min(1, 2a), min(a, 2)).
This limiter is a variable mesh version of well known Roe’s “Superbee” limiter, see
Godlewski and Raviart (1990).

To comply with Dirichlet boundary conditions in (16), we further impose A n
0, j =

A n
NV + 1

2 , j
= A n

i,0 = A n
i,NW + 1

2
= 0, for 1 ≤ i ≤ NV , 1 ≤ j ≤ NW .

Proposition 1 The numerical scheme (25) is non-negativity preserving under the cfl
condition

�t

⎛
⎝ f +

i− 1
2 , j

− f −
i+ 1

2 , j

�Vi
+

g+
i, j− 1

2
− g−

i, j+ 1
2

�W j
+

(
fi+ 1

2 , j − fi− 1
2 , j

�Vi

)+

+
(

gi, j+ 1
2

− gi, j− 1
2

�W j

))+
≤ 1. (28)

The proof of this proposition is similar to the proof of the corresponding one-
dimensional result in Marpeau et al. (2009), and we therefore omit it here.

A.2 Treatment of the diffusion operator: scheme S2

Our approximation of the solutions to (17) in two space dimensions is given by the
implicit scheme

�Vi�W j

�t
Pn+1

i, j − �W j (B
n+1
i+ 1

2 , j
− Bn+1

i− 1
2 , j

)

−�Vi (B
n+1
i, j+ 1

2
− Bn+1

i, j− 1
2
) = �Vi�W j

�t
Pn

i, j + δi,iR Sn+1
W, j + δ j, jR Sn+1

V,i , (29)

where δk1,k2 is the symbol of Kronecker. From Eqs. (11) and (12) we see that the
probability mass exiting the refractory period of V is re-injected into P at VR . This
results in a jump condition in the equations for P (Gardiner 1985; Richardson 2007)
and a discontinuity in the flux of P at VR , which is captured by the last two terms in
Eq. (29), see Appendix A.4. The numerical diffusive fluxes are defined by

Bn+1
i+ 1

2 , j
= D

Pn+1
i+1, j − Pn+1

i, j

�Vi+ 1
2

+ cD

2

(
Pn+1

i+1, j+1 − Pn+1
i+1, j

�W j+ 1
2

+ Pn+1
i, j − Pn+1

i, j−1

�W j− 1
2

)
, (30)

for 1 ≤ i ≤ NV − 1, 1 ≤ j ≤ NW and

Bn+1
i, j+ 1

2
= D

Pn+1
i, j+1 − Pn+1

i, j

�W j+ 1
2

+ cD

2

(
Pn+1

i+1, j+1 − Pn+1
i, j+1

�Vi+ 1
2

+ Pn+1
i, j − Pn+1

i−1, j

�Vi− 1
2

)
, (31)

for 1 ≤ i ≤ NV , 1 ≤ j ≤ NW − 1.
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Remark 1 Notice that the second term of the right-hand side in (30) stand for a cen-
tered finite difference discretization of the cross derivative cD∂2

vw P on the right ver-
tical interface of Qi, j . Other numerical schemes have been implemented in Bruneau
et al. (2005), Rasetarinera (1995), Bourgeat and Kern (2004) but yield unconditionally
positive off-diagonal coefficients in the diffusion matrix, therefore producing negative
undershoot near sharp solution gradients. When the neurons are strongly correlated
(i.e.: when c ≈ 1), the gradients of the solution can be very sharp. The advantage of
our method is that all the off-diagonal coefficients are nonnegative where the mesh
is uniform, which means, the region where the solution is not 0 in practice. Using a
similar remark in (31), the resulting numerical scheme (29) is nonnegative in realistic
applications. For more details, see Appendix A.5.

In (17), the Neumann boundary conditions at the pseudo-infinite boundaries are
implemented as

Bn+1
1
2 , j

= Bn+1
i, 1

2
= 0. (32)

On the other hand, the 0-Dirichlet boundary condition at the thresholds is discretized
by

Bn+1
NV + 1

2 , j
= D

0 − Pn+1
NV , j

�VNV /2
, Bn+1

i,NW + 1
2

= D
0 − Pn+1

i,NW

�WNW /2
. (33)

On the mesh elements that touch the threshold boundary W T , the Dirichlet bound-
ary condition is also used in the discretization of the cross derivatives on the vertical
interfaces,

Bn+1
i+ 1

2 ,NW
= D

Pn+1
i+1,NW

− Pn+1
i,NW

�Vi+ 1
2

+ cD

2

(
0 − Pn+1

i+1,NW

�WNW /2
+ Pn+1

i,NW
− Pn+1

i,NW −1

�WNW − 1
2

)
.

(34)

In the same way, the mesh elements that touch the threshold boundary V T involve the
dirichlet boundary condition on their horizontal interfaces, leading to

Bn+1
NV , j+ 1

2
= D

Pn+1
NV , j+1 − Pn+1

NV , j

�W j+ 1
2

+ cD

2

(
0 − Pn+1

NV , j+1

�VNV /2
+ Pn+1

NV , j − Pn+1
NV −1, j

�VNV − 1
2

)
.

(35)

A.3 Treatment of the one neuron boundary condition (6)–(11)

Since the time variable t and the age variable s ∈ (0, τV ) evolve together, the domain
(0, τV ) is dynamically partitioned into sub-intervals (sn

k , sn
k+1) such that sn

k = 0 and
sn

k+1 = min(sn
k +�sn

k , τV ), where the age steps�sn
k match the time steps as follows: for

all n, �sn
1 = �tn and �sn

k = �tn−k , k = 1, . . . , n−1. We set K s
n = max{k, sn

k < τV },
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Fig. 8 A schematic depiction of the time dependent subdivision of the domain (0, τV ) into subintervals
(sn

k , sn
k+1)

see Fig. 8. In the same way, we discretize (0, τW ) into sub-intervals (rn
k , rn

k+1) such
that rn

k = 0 and rn
k+1 = min(rn

k + �rn
k , τV ), with �rn

1 = �tn , �rn
k = �tn−k ,

k = 1, . . . , n − 1. We set K r
n = max{k, rn

k < τ2}.
Let k be such that sn

k + �tn ≤ τW , meaning that the population Rn,k
V will not exit

its refractory state earlier than tn+1. Equations (6) and (7) are discretized with the one-
dimensional numerical scheme in Marpeau et al. (2009). We use the operator splitting
technique

R
n+ 1

2 ,k+ 1
2

V,i = Rn,k
V,i − �tn

�Vi
(A n

i+ 1
2

− A n
i− 1

2
), and Rn+1,k+1

V,i − �tn
�Vi

(Bn+1
i+ 1

2
−Bn+1

i− 1
2
)

= R
n+ 1

2 ,k+ 1
2

V,i + δi,iR

�Vi
Sn+1,k+1

W , (36)

where the advective and diffusive numerical fluxes are

A n
i+ 1

2
= f +

i+ 1
2 ,NW

Rn,k
V,i + f −

i+ 1
2 ,NW

Rn,k
V,i+1

+
�Rn,k

V,i+ 1
2

2�Vi+ 1
2

(
f +
i+ 1

2 ,NW
�Viϕ

(
r p

i+ 1
2
,
�Vi+ 1

2

�Vi

)

− f −
i+ 1

2 ,NW
�Vi+1ϕ

(
rm

i+ 1
2
,
�Vi+ 1

2

�Vi+1

))
, (37)

Bn+1
i+ 1

2
= D

Rn+1,k+1
V,i+1 − Rn+1,k+1

V,i

�Vi+ 1
2

for i = 1, NV − 1, and A n
1
2

= A n
NV + 1

2
= Bn+1

1
2

= 0, Bn+1
NV + 1

2
= − D

�VNV /2 Rn+1,k+1
V,NV

.

We use similar arguments to discretize Eqs. (6) and (7).
Equation (8) is solved exactly by propagating a discrete version of the boundary

conditions (10) along the characteristics lines, namely,
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R(t, s, r) ≈ R̃(t, s, r) :=
{

R̃(t − s, 0, r − s) if r > s
R̃(t − r, s − r, 0) if r < s

, (38)

with discretized boundary conditions R̃(t, 0, r) := D
�VNV /2 Rn,l

V,NV
, R̃(t, s, 0)

D
�WNW /2 Rn,k

W,NW
, for all t ∈ (�tn−1,�tn), r ∈ (�rn

l−1,�rn
l ), s ∈ (�sn

k−1,�sn
k ).

Finally, the first re-injection condition in (11) is taken into account by setting

Sn+1,l+1
W := 1

�rn+1
l

tn+1∫
tn

rn+1
l+1∫

rn+1
l

R̃(t, τV , r) dr dt

into (37).
The second re–injection condition in (11) is discretized in a similar fashion.

A.4 Treatment of the re-injection condition (12)

Let K̂ n
r = min{k, sn

k +�tn > τW }. For k ≥ K̂ n
r , the population RV will evolve accord-

ing to (6) and (7) until the age of τW , but will leave its refractory state during a time
of rn

k + �tn − τW . This mass of RV , that leaves its refractory state, is discretized for
each i as Sn+1

V,i and is re-injected into the main population P in (29). In this paragraph,

we define this quantity Sn+1
V,i .

Similarly to the previous paragraph, we denote Rk+1,n+1
V,i as the population RV that

will evolve until the age of τW , defined by formulas (36), but using K̂ n
r ≤ k ≤ K n

r , and
�t = τW − rn

k . Also, notice that a portion of the population with age in (rn
K̂ n

r −1
, rn

K̂ n
r
)

will exit its refractory state at the next time step: the portion whose age is within
the interval (τW − �tn, rn

K̂ n
r
). From the definition of rn

k , the length of this interval is

�rn
K̂ n

r
− �rn+1

K n+1
r +1

.

We finally set

Sn+1
V,i := R

K̂ n
r +1,n+1

V,i (�rn
K̂ n

r
− �rn+1

K n+1
r +1

) +
K n

r∑
k=K̂ n

r

Rk+1,n+1
V,i �rn+1

k+1 . (39)

The term Sn+1
W, j in (29) is defined in a similar fashion, but using the refractory state of

the first neuron.

A.5 Properties of the numerical scheme S2 ◦ S1

We summarize the properties of accuracy, positivity preservation and mass conserva-
tion obtained by construction of the full numerical scheme S2 ◦ S1.
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Proposition 2 The numerical scheme S2 ◦ S1 constructed through Appendix
( A.1)–(A.3) is

1. first order accurate in time, almost second order accurate in space;
2. nonnegativity preserving: if the cfl condition (28) is satisfied, the mesh elements

have constant dimensions �Vi = �V , and �Wi = �W , satisfying

c2 ≤ c
�V

�W
≤ 1, (40)

then Pn
i, j ≥ 0 for all i, j implies Pn+1

i, j ≥ 0 for all i, j .
3. mass preserving: the numerical densities satisfy the following discrete formulation

of (5): the mass

Mn :=
∑
i, j

�Vi�W j Pn
i, j +

∑
k, j

�W j�rn
k Rn,k

W, j +
∑
i,l

�Vj�sn
l Rn,l

V,i

+
τV∫

0

τW∫
0

R̃(tn, s, r) dr ds, (41)

where R̃ is defined by (38), is constant, regardless of n. If M0 = 1, then Mn = 1
for all n.

Remark 2 Condition (40) is obviously satisfied if c = 0, and is equivalent to c ≤
�V
�W ≤ 1

c otherwise. It means that the allowed stretch of our mesh elements is restricted
by correlation.

Proof of Proposition 2

1. Accuracy:
The fact that the numerical scheme S2 ◦ S1 is first order accurate in time is a
consequence of the Euler-type time discretization in both S1 and S2 and the use
of first order operator splitting.
The centered finite difference scheme S2 is second order accurate in space, while
S1 is only first order accurate. Thus, in theory, S2 ◦ S1 is only first order accu-
rate in space. However, the flux lighting technique in (A.1) reduces the numerical
diffusion drastically compared to a standard upwind scheme (see for e.g Bruneau
et al. 2005; Marpeau et al. 2010). The scheme S1 is second order accurate where
the solution is regular, and diffuses to first order where the solution is not. It is
common to say that S1 is almost second order accurate in space, as stated in part
1 of the present proposition.

2. Positivity preservation:
If the cfl condition (28) holds, then as stated above, S1 is non-negativity preserv-
ing (see Proposition 1). It only remains to show that S2 is also non-negativity
preserving.
To do so, we recursively assume that the right hand-side of (29) is non-negative and
ensure that its left-hand side, coupled with boundary conditions (33)–(35), defines
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a strongly diagonally dominant M-matrix. The only difference when comparing
to the diffusion matrix in Marpeau et al. (2009) is again the terms derived from
the cross derivatives ∂2

V W P . Assume that the mesh dimensions are both constant,
�Vi = �V and �W j = �W .
Re-writing (29) as

Pn+1
i, j

(
�V �W

�t
+ 2D

(
�W

�V
+ �V

�W
− c

))
− Pn+1

i+1, j D

(
�W

�V
− c

)

− Pn+1
i−1, j D

(
�W

�V
− c

)
− Pn+1

i, j+1 D

(
�V

�W
− c

)
− Pn+1

i, j−1 D

(
�V

�W
− c

)

− Pn+1
i+1, j+1 Dc − Pn+1

i−1, j−1 Dc, (42)

away from the boundaries, we notice that under condition (40) the off-diagonal
entries of our matrix are all nonpositive. Moreover, since �W

�V + �V
�W − c =

�W
�V + 1

�W/�V − c ≥ 0 for c ≤ 1, the diagonal coefficient is nonnegative. Then,
summing the absolute values of the off-diagonal coefficients in (42), we notice
that our matrix is also strongly diagonally dominant.
Taking into account the boundary conditions (32)–(35), we obtain modified ver-
sions of (42) for the mesh-elements that touch the boundaries. Using similar argu-
ments as above, the strongly dominant feature of the matrix is not violated.

3. Mass conservation:
Mass preservation is the key feature of conservative finite volume methods, as
numerical mass fluxes are transmitted from one mesh element to another, across
their common boundary.
First, multiply (25) by �Vi�W j . Then, summing for all i and j , all the fluxes
A n

i± 1
2 , j

and A n
i, j± 1

2
that are inside the domain cancel out. Only remain the fluxes

across the boundary, A n
1
2 , j

, A n
NV + 1

2 , j
, A n

i, 1
2

and A n
i,NW + 1

2
, that have been defined

to be equal to 0. We obtain
∑

i, j �Vi�W j P
n+ 1

2
i, j = ∑

i, j �Vi�W j Pn
i, j .

Next, multiply (29) by �tn , sum for all i and j and use boundary conditions
(33)–(35) to obtain:

∑
i, j

�Vi�W j Pn+1
i, j + 2D�tn

∑
i

�Vi
Pn+1

i,NW

�WNW

+ 2D�tn
∑

j

�W j
Pn+1

NV , j

�VNV

=
∑
i, j

�Vi�W j Pn
i, j + �tn

∑
j

Sn+1
W, j + �tn

∑
i

Sn+1
V,i . (43)

This equation states that the mass of P at time tn+1 is equal to the mass of P at
time tn , minus the mass of P that crossed each threshold, plus the mass of RV and
RW that reached the end of their respective refractory period and was re-injected
at their reset potentials.
Let us get a similar result for the population RV . Using similar flux cancella-
tion arguments, multiply (36) by �Vi , sum for all i and use discrete boundary
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conditions to obtain:

∑
i

�Vi Rn+1,k+1
V,i =

∑
i

�Vi Rn,k
V,i + Sn+1,k+1

W − 2D�tn
�VNV

Rn+1,k+1
V,NV

. (44)

Then, multiplying by �rn+1
k+1 , summing for k from 1 to K n+1

r , and using “�rn
k =

�rn+1
k+1 ”, and re-aranging the k index,

K n+1
r∑

k=2

�rn+1
k

∑
i

�Vi Rn+1,k
V,i =

K n+1
r∑

k=1

�rn
k

∑
i

�Vi Rn,k
V,i

+
K n+1

r∑
k=1

�rn
k

(
Sn+1,k+1

W − 2D�tn
�VNV

Rn+1,k+1
V,NV

)
. (45)

On another hand, from the conservation (44) and definition (39),

K n
r∑

k=1

�rn+1
k+1

∑
i

�Vi Rn,k
V,i =

K n+1
r∑

k=1

�rn+1
k+1

∑
i

�Vi Rn,k
V,i −

∑
i

�Vi Sn+1
W,i . (46)

Moreover,

K n+1
r∑

k=1

�rn+1
k

∑
i

�Vi Rn+1,k
V,i =

K n+1
r∑

k=2

�rn+1
k

∑
i

�Vi Rn+1,k
V,i

+ 2
∑

i

�Vi
D�tn

�WNW

Pn+1
i,NW

+�rn+1
1 (Sn+1,1

W − 2D�tn Rn+1,1
V,NV

). (47)

Plugging (46)–(47) into (45), we get:

K n+1
r∑

k=1

�rn+1
k

∑
i

�Vi Rn+1,k
V,i =

K n
r∑

k=1

�rn
k

∑
i

�Vi Rn,k
V,i

+
∑

i

�Vi

(
2

�tn D

�WNW

Pi,NW − Sn+1
W,i

)

+
K n+1

r∑
k=1

�rn+1
k

(
Sn+1,k

W − 2D�tn
�VNV

Rn+1,k
V,NV

)
.

(48)

This numerically translates the fact that the total RV population at time tn+1 is the
same as time tn , plus the P population that crossed the threshold V T , minus the
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R population that reached the end of the refractory period, at an age of τW , plus
the R population that reached the end of the refractory period τV , minus the RV

population that crosses the threshold V T to enter population R. Similarly, for the
population RV ,

K n+1
s∑

k=1

�sn+1
k

∑
j

�W j Rn+1,k
W, j =

K n
s∑

k=1

�sn
k Rn,k

W, j +
∑

j

�W j

(
2

D�tn
�VNV

Pn+1
NV , j − Sn+1

V, j

)

+
K n+1

s∑
k=1

�sn+1
k

(
Sn+1,k

V − 2D�tn
�WNW

Rn+1,k
W,NW

)
. (49)

Finally, since the R population is approximated by the exact solution of its trans-
port equation with approximate boundary conditions, we get:

τV∫
0

τW∫
0

R̃(tn+1, s, r) dr ds =
τV∫

0

τW∫
0

R̃(tn, s, r) dr ds

+
K n+1

r∑
k=1

�rn+1
k

(
2D�tn
�VNV

Rn+1,k
V,NV

− Sn+1,k
V

)

+
K n+1

s∑
k=1

�sn+1
k

(
2D�tn
�WNW

Rn+1,k
W,NW

− Sn+1,k
W

)
. (50)

Summing (43), (48), (49) and (50), we obtain Mn+1 = Mn , where Mn is defined
by (41). ��

A.6 Comparison with solutions obtained using Monte Carlo methods

Monte Carlo simulations were performed by integrating the Langevin equations (2)
using the Euler–Maruyama method with time step 10−3 (Kloeden and Platen 1992).
Histograms in the V − W plane were typically created using 2 × 107 points sam-
pled from a long, simulated trajectory and using the same grid on the domain � =
(V −∞, V T )× (W −∞, W T ) as in the finite volume simulation. To compare the results
of the finite volume and Monte Carlo methods, we computed the L1 norm of their dif-
ference by taking the absolute value of the difference at each grid point and summing
over the domain �.

A.7 Calculating spike train statistics from finite volume simulations

To obtain spike train statistics from finite volume simulations, we used the def-
initions from Sect. 3.2. We solved the two-dimensional Fokker–Planck equation
using the numerical scheme described above. To solve the one-dimensional Fokker–
Planck equation (for example, to obtain instantaneous or conditional firing rates cf.
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Eq. (23)), we used the one-dimensional scheme described in Marpeau et al. (2009)
or we used the two-dimensional scheme and calculated the marginal density from the

two-dimensional density as P1(t, V ) = ∫ W T

W−∞ P(t, V, w)dw.
However, we met with convergence problems in calculating the conditional flux

Jcond(t, V ) using Eq. (22). These are due to the fact that when W is close to the thresh-
old value W T , and the two neurons fire nearly synchronously, the re-injection process
in the V and W directions is relatively complicated. Given these convergence issues,
we ignored the first 0.5 ms in the left panel of Fig. 4 and 0.75 ms in right panel of
Figs. 4 and 6 when we computed the conditional firing rate νV |W (τ, t).

Appendix B: Gaussian approximation of the LIF

In this section we derive an approximation of the spiking statistics for the LIF in low
firing rate regimes. Recall that the LIF is defined by taking f (V, W ) = −gV (V −Vrest)

and g(V, W ) = −gW (W − Wrest) in Eq. (2). For simplicity, in this section we assume
that the two neurons receive statistically identical inputs so that μV = μW = μ.
We further assume that the neurons are dynamically identical so that gV = gW ,
Vrest = Wrest, and V T = W T . The analysis is similar in the asymmetric case. Without
loss of generality, we rescale space so that Vrest = Wrest = 0 and V T = W T = 1.
To simplify calculations, we also time in units of the membrane time constants so that
gV = gW = 1.

When α := (1 − μ)/
√

2D is large, firing rates are low and the boundary condi-
tions at threshold have a small impact on the density. Also, since the cells only spike
rarely, the refractory period has a small impact. In such regimes, the solution of the
full problem is approximated by ignoring the impact of reset and refractoriness on the
probability density, i.e. by solving the free boundary problem. This approximation,
which we call the Gaussian approximation, is accurate in the limit α → ∞. In this
case the membrane potentials (V (t), W (t)) are described by an Ornstein–Uhlenbeck
process on R

2. Such processes are well-understood and the spiking statistics can be
computed exactly, as we show below.

Assume that the initial distribution P(0, U ) is a bivariate Gaussian with marginal
means m(0) = E[V (0)] = E[W (0)], variance σ 2(0) = var(V (0)) = var(W (0)),
and covariance γ (0) = cov(V (0), W (0)). Then the solution at any time t ≥ 0 (in
the absence of boundary conditions) is Gaussian with mean, variance and covariance
given respectively by Gardiner (1985)

m(t) = e−t m(0) + (
1 − e−t) m(∞),

σ 2(t) = e−2tσ 2(0) +
(

1 − e−2t
)

σ 2(∞), and

γ (t) = e−2tγ (0) +
(

1 − e−2t
)

γ (∞)

where

m(∞) = μ, σ 2(∞) = D, and γ (∞) = cD

are the steady state mean, variance, and covariance.

123



R. Rosenbaum et al.

B.1 Conditional firing rate and spike count correlation in the steady state

The results above can be used to derive an approximation of the steady state condi-
tional firing rates. Since the joint distribution of (V, W ) is a bivariate Gaussian, the
distribution of V given that W = W T = 1 is a univariate Gaussian. The conditional
mean and variance are mc(0) = c(1 − μ) + μ and σ 2

c (0) = D(1 − c2) respectively.
As time evolves, the conditional density of V relaxes to its steady state. The density
during this relaxation is a univariate Gaussian with mean

mc(τ ) = e−τ mc(0) + (
1 − e−τ

)
mc(∞)

and variance

σ 2
c (τ ) = e−2τ σ 2

c (0) +
(

1 − e−2τ
)

σ 2
c (∞)

where mc(∞) = μ and σ 2
c (∞) = D are the stationary mean and variance. Note that

for c near 1, mc(0) is near V T = 1 which violates the assumptions of the Gaussian
approximation, namely that the mass near threshold is small. In this case, the condi-
tional flux across threshold is large even if the marginal fluxes across threshold are
small. Thus, for the approximation of the conditional firing rate to be accurate, we
must assume that α is large and that c is small.

The conditional firing rate is simply

νV |W (τ ) = J (μc(τ ), σ 2
c (τ ), D)

where J (μ, σ 2, D) is as defined in (24). This expression does not depend on t because
we have assumed that the two-dimensional distribution is in its steady state. Later, we
look at the two point conditional firing rate outside of the steady state.

The steady state cross-covariance function is obtained from the conditional firing
rate cf. Eq. (19) to obtain

CV |W (τ ) = ν∞(H(τ ) − ν∞) = 1

π
α2e−α2

⎛
⎝ et− α2(eτ −c)

c+eτ√
1 − c2e−2τ (c + eτ )

− e−α2

⎞
⎠

To first order in c this gives,

R(τ ) = c

π
α2

(
2α2 − 1

)
e−2α2−τ + o(c2). (51)

The asymptotic spike count correlation, defined by

ρ := lim
t→∞

cov(NV (t), NW (t))√
var(NV (t))var(NW (t))

,
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can be written in terms of the conditional firing rate as Shea-Brown et al. (2008)

ρ = 2
∫ ∞

0

(
νV |W (τ ) − ν∞

)
dτ

CV 2

where CV is the coefficient of variation of the spike train inter-spike intervals. In the
low firing rate, α → ∞ limit, CV → 1 and therefore, to first order in c and ν∞,

ρ ≈ 2

∞∫
0

(
νV |W (τ ) − ν∞

)
dτ

= c√
π

2α
(

2α2 − 1
)

e−α2
. (52)

Since both ν∞ and the correlation susceptibility, T := ρ
c , are functions of the single

parameter α and since ν∞ is monotonic with α, we may conclude that T is a function
of ν∞ to first order in c and ν∞. This same conclusion was reached in Shea-Brown
et al. (2008) using linear response theory, though the expression derived for ρ,

ρ ≈ c√
π

α

(
2α − 1

α

)2

, e−α2
(53)

differs from Eq. (52). For both expressions, ∂ρ
∂ν∞ ∼ 4cα2 as α → ∞ (i.e., as ν∞ → 0).

Comparing these two approximations to a more accurate linear response approxima-
tion (also from Shea-Brown et al. 2008), we found that Eq. (53) is more accurate than
Eq. (52).

B.2 Time dependent input statistics

We will now investigate how the spiking statistics track time dependent changes in
the inputs. When the input parameters to the neurons are time dependent, the two
dimensional density p(t, V, W ) at any time t is a bivariate Gaussian whenever the ini-
tial condition is a bivariate Gaussian. Thus we can use the same methods as above to
derive the time dependent spiking statistics. To illustrate the effects of time-dependent
inputs, we concentrate on a simple time-dependent input model. We assume that each
cell receives input with mean μ0, diffusion D0, and correlation c0 for t < 0 and, at
time t = 0, the input parameters change instantaneously to μ1, D1, and c1. At some
later time t0 > 0, the inputs change back to the original values, μ0, D0, and c0. A small
value of t0 models a pulse change in the inputs. Taking t0 = ∞ models a step change.
The discussion here can easily be generalized to arbitrary time-dependent input (e.g.,
sinusoidally varying inputs) by solving a simple linear ODE for the time dependent
mean, variance, and covariance (Gardiner 1985).

123



R. Rosenbaum et al.

We assume that for time t ≤ 0, the distribution is in its steady state so that

m(t) = μ0,

σ 2(t)= D0

γ (t) = cD0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t ≤ 0

At time t = 0, the input statistics change and the mean and covariance matrix begin
to track this change. In particular,

m(t) = e−tμ0 + (
1 − e−t

)
μ1,

σ 2(t) = e−2t D0 + (
1 − e−2t

)
D1

γ (t) = e−2t c0 D0 + (
1 − e−2t

)
c1 D1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t ∈ [0, t0]

At time t0, the input statistics change back to μ0, D0, and c0 and the distribution
relaxes back to its steady state. In particular,

m(t) = e−(t−t0)m(t0) + (
1 − e−(t−t0)

)
μ0,

σ 2(t) = e−2(t−t0)σ 2(t0) + (
1 − e−2(t−t0)

)
D0

γ (t) = e−2(t−t0)γ (t0) + (
1 − e−2(t−t0)

)
c0 D0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t ≥ t0

where μ(t0), σ 2(t0) and γ (t0) are given by the previous set of equations. The var-
iance and covariance of the solutions change with a time constant that is twice as
fast as the time constant with which mean changes. This is a known property of
Ornstein–Uhlenbeck processes (Gardiner 1985).

B.2.1 The time-dependent firing rate

We now investigate how the firing rate changes in response to a pulse or a step change
in the input statistics. The firing rate at time t is given by ν(t) = J (μ(t), σ 2(t), Dt )

where J (μ, σ 2, D) is defined in (24), μ(t) and σ 2(t) are as derived above and

Dt =
⎧⎨
⎩

D0 t < 0
D1 t ∈ [0, t0]
D0 t > t0

is the time dependent diffusion coefficient.
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We can simplify the expression to get

νV (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α(t)√
π

e−α2(t) t < 0(
D1

e−2t D0+(1−e−2t)D1

)
α(t)√

π
e−α2(t) t ∈ [0, t0](

D0(
1+e−2t −e−2(t−t0)

)
D0+(

e−2(t−t0)−e−2t
)
D1

)
α(t)√

π
e−α2(t) t > t0

where

α(t) = 1 − m(t)√
2σ 2(t)

.

Note that α(t) changes continuously with t . Thus any discontinuities in the expression
above are from the factors multiplying the α(t)√

π
e−α2(t) term. In particular, the firing rate

jumps discontinuously by a factor of D1
D0

at time 0 and by a factor of D1
e−2t0 D0+(1−e−2t0)D1

at time t0. If we change the mean of the input signal, but do not change the variance of
the input signal ( μ0 �= μ1 and D0 = D1), then the firing rate changes continuously
with time constant 1

g = 1. If, instead, we change D and keep μ constant (by setting
μ0 = μ1 and D0 �= D1), the firing rate has jump discontinuities at time 0 and t0, and
changes with a faster time constant of 1

2g = 1
2 .

B.2.2 The time dependent cross-covariance

We now look at the effects of changes in the input parameters on the conditional
firing rate, νV |W (τ, t). We first derive look at lag τ = 0. The quantity νV |W (0, t)
quantifies the tendency of the neurons to fire together. The conditional distribution,
P(t, V | W (t) = 1), of V (t) given that W crossed threshold at time t is a Gaussian
with mean and variance given respectively by

mc(0, t) = m(t) + ρ(t)(1 − m(t))

and

σ 2
c (0, t) = σ 2(t)(1 − ρ(t))

where ρ(t) = γ (t)
σ 2(t)

is the sub-threshold correlation and m(t), σ 2(t), and γ (t) are
derived in the previous subsection. The firing rate at lag τ = 0 is then given by

νV |W (0, t) = ν(mc(0, t), σ 2
c (0, t), Dt ).

We now derive the conditional firing rate for times t > 0 and lags τ > 0. We break
the derivation into three cases. The distribution of V (t + τ) conditioned on a spike in
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W at time t is a one dimensional Gaussian. If t + τ < t0, the mean and variance of
this Gaussian are given by

mc(τ, t) = e−τ mc(0, t) + (1 − e−τ )μ1

σ 2
c (τ, t) = e−2τ σ 2

c (0, t) + (1 − e−2τ )D1

}
t ∈ [0, t0], t + τ ≤ t0

If t ∈ [t, t0], but t + τ > t0, the mean and variance are

mc(τ, t) = e−((t+τ)−t0)mc(t0 − t, t) + (1 − e−((t+τ)−t0))μ0
σ 2

c (τ, t) = e−2((t+τ)−t0)σ 2
c (t0 − t, t) + (1 − e−2((t+τ)−t0))D0

}
t ∈ [0, t0], t + τ > t0.

Finally, when t > t0, the mean and variance are

mc(τ, t) = e−τ mc(0, t) + (1 − e−τ )μ0

σ 2
c (τ, t) = e−2τ σ 2

c (0, t) + (1 − e−2τ )D0

}
t > t0.

The conditional firing rate is then given by

νV |W (τ, t) = J (mc(τ, t), σ 2
c (τ, t), Dt+τ ).
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