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Correlations between neuronal spike trains affect network dynamics and
population coding. Overlapping afferent populations and correlations
between presynaptic spike trains introduce correlations between the in-
puts to downstream cells. To understand network activity and population
coding, it is therefore important to understand how these input correla-
tions are transferred to output correlations. Recent studies have addressed
this question in the limit of many inputs with infinitesimal postsynaptic
response amplitudes, where the total input can be approximated by gaus-
sian noise. In contrast, we address the problem of correlation transfer by
representing input spike trains as point processes, with each input spike
eliciting a finite postsynaptic response. This approach allows us to natu-
rally model synaptic noise and recurrent coupling and to treat excitatory
and inhibitory inputs separately. We derive several new results that pro-
vide intuitive insights into the fundamental mechanisms that modulate
the transfer of spiking correlations.

1 Introduction

The amount of information carried by neuronal populations can be strongly
modulated by correlations in neuronal activity (Zohary, Shadlen, & New-
some, 1994; Sompolinsky, Yoon, Kang, & Shamir, 2001; Averbeck, Latham,
& Pouget, 2006), and the structure of correlations can encode information
about a stimulus (Vaadia et al., 1995; Dan, Alonso, Usrey, & Reid, 1998;
Maynard et al., 1999; Shlens et al., 2006; Biederlack et al., 2006; Temereanca,
Brown, & Simons, 2008). An understanding of how correlated variabil-
ity is propagated is therefore central to understanding coding in neural
tissue.

Synaptic divergence introduces correlated variability between the activ-
ity of nearby cells (Shadlen & Newsome, 1998), and synaptic convergence
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Figure 1: An abstract representation of the input-output model. Two cells each
receive correlated excitatory, e j (t), and inhibitory, i j (t), inputs. These are com-
bined to obtain the total input currents, in j (t), which drive two integrate-and-fire
neurons, IF j , to produce output spike trains, out j (t). In some of our analysis,
we consider coupling between the cells. We seek to understand how the cor-
relation, ρout, between the output spike trains is related to the statistics of the
inputs and the dynamical properties of the neurons.

downstream can dramatically amplify correlations (Renart et al., 2010;
Rosenbaum, Trousdale, & Josić, 2010). In the absence of mechanisms to mod-
ulate these correlations, highly correlated activity can develop in deeper
layers (Reyes, 2003). However, correlations measured in vivo tend to be
small (Ecker et al., 2010; Renart et al., 2010). Some recent studies show
that correlations can be modulated by network effects (Hertz, 2010; Renart
et al., 2010). Here, we examine how stochastic dynamics at the cellular level
modulate correlations between the outputs of two cells (see Figure 1).

Earlier analytical approaches to this problem relied on the assumption
that inputs can be modeled by correlated Gaussian noise (Moreno-Bote
& Parga, 2006, 2010; de la Rocha, Doiron, Shea-Brown, Josić, & Reyes,
2007; Ostojić, Brunel, & Hakim, 2009; Vilela & Lindner, 2009). Such models
are obtained in the limit of a large number of inputs, each of vanishing
strength (Renart, Brunel, & Wang, 2003), and may not fully capture the
statistical properties of the neurons’ responses (Helias, Deger, Rotter, &
Diesmann, 2010).

In the models we consider, inputs are represented by point processes,
with each input spike having a finite impact on the membrane potential
of a cell. This approach allows us to examine the effects of synaptic fail-
ure, random synaptic amplitudes, and recurrent coupling between cells
while maintaining a more direct connection to physiology. Moreover, ex-
citatory and inhibitory inputs can be treated separately (see Figure 1). We
find that the effects of synaptic noise and excitatory-to-inhibitory correla-
tions, which are often ignored when inputs are modeled as gaussian noise,
can greatly reduce output correlations. Such reductions in correlation from
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Table 1: Notation for Parameters and Spike Train Statistics.

e j (t), i j (t), out j (t) Spike trains: excitatory input, inhibitory input,
and output for neuron j = 1, 2

in1(t), in2(t) Total input: in j (t) = e j (t) − i j (t)
Ne j (t), Ni j (t), Nin j (t), Nout j (t) Spike counts: NX(t) = ∫ t

0 X(s) ds
re, ri, rout Firing rates: excitatory, inhibitory, and output
q Excitation-to-inhibition balance: q = re

ri
σ 2

e , σ 2
i , σ 2

in, σ 2
out Asymptotic spike count variances

Fe, Fi, Fout Asymptotic Fano factors: Fx = σ 2
x

rx
CVout Output coefficient of variation
γee, γii, γei, γin, γout Asymptotic spike count covariances: Excitatory-to-

excitatory, inhibitory-to-inhibitory, excitatory-to-
inhibitory, total input, and output-to-output

ρee, ρii, ρei, ρin, ρout Asymptotic spike count correlations: ρxy = γxy/(σxσy)
Sout Output synchrony, Sout = rsynch

rout
, where rsynch is the

rate of synchronous output spikes
θ , β Threshold and lower boundary for IF models
τm Membrane time constant for the LIF model
ĪL Mean leak current for the dLIF model
τmem Memory timescale for the dLIF model

Note: We assume symmetry between cells (e.g., re1 = re2 = re) throughout the text, except
in the appendixes.

input to output may partly explain small correlations sometimes observed
in vivo (Ecker et al., 2010; Renart et al., 2010).

To obtain a clearer understanding of how the internal dynamics of spik-
ing neurons affect correlations, we study correlation transfer for random-
walk neuronal models. These models are drastic simplifications of detailed
neuron models; however, they have the advantage of being mathemati-
cally tractable while capturing essential features of the response of spiking
cells (Fusi & Mattia, 1999; Salinas & Sejnowski, 2000; Rauch, La Camera,
Luscher, Senn, & Fusi, 2003). Due to the simplicity of these models, our
results can be understood using intuitive and mechanistic explanations.
We verify that physiologically more realistic models behave similarly by
comparing our analytical results with simulations.

2 Methods

We start by introducing the formalism and notation used in this work (for
a concise summary of notation, see Table 1).

2.1 Spike Trains and Correlations. Spike trains are represented as sta-
tionary point processes, a (t) = ∑

i δ(t − ti ) where δ(t) denotes the Dirac
function and {ti }∞i=1 is the set of spike times (Cox & Isham, 1980; Daley &
Vere-Jones, 2003). The process Na (t) = ∫ t

0 a (s) ds counts the number of spikes
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in the interval [0, t], and Na (t1, t2) = ∫ t2
t1

a (s) ds counts the number of spikes
in [t1, t2]. Stationarity implies constant firing rates ra = E[a (t)] = E[Na (t)]/t,
where E[·] denotes expected value. The second-order statistics are quanti-
fied using the covariance and variance of spike counts,

γab(t) = cov(Na (t), Nb(t)) and σ 2
a (t) = γaa (t),

which are related to the cross-covariance functions by

γab(t) =
∫ t

−t
Rab(s)(t − |s|) ds, (2.1)

where Rab(τ ) = cov(a (t), b(t + τ )) = rb(Hab(τ ) − ra ) is the cross-covariance
function, and

Hab(τ ) = lim
δ→0

Pr(Nb(τ, τ + δ) > 0
∣∣ Na (0, δ) > 0)/δ

is the conditional firing rate (Cox & Lewis, 1972; Brody, 1999). The correla-
tion coefficient is then given by ρab(t) = γab(t)/ (σa (t)σb(t)). We mostly focus
on the asymptotic statistics,

γab = lim
t→∞ γab(t)

/
t, σ 2

a = γaa , and ρab = γab/ (σaσb) ,

which can alternately be defined using the relation γab = ∫ ∞
−∞ Rab(s) ds.

The Fano factor, Fa = σ 2
a /ra , is a measure of the variability, or random-

ness, in a spike train. For renewal spike trains, Fa = CV2
a where CVa is the

coefficient of variation (CV) of the interspike interval distribution (Cox,
1962; Nawrot et al., 2008).

A measure of exact synchrony between spike trains a and b is

Sab = ra ·b/
√

rarb = lim
t→0

ρab(t),

where ra ·b = limδ→0
∫ δ

−δ
Rab(s) ds is the rate of spikes occurring at precisely

the same time. Precisely synchronous spikes can occur in integrate-and-
fire models with finite, instantaneous synaptic responses whenever two
neurons receive exactly synchronous excitatory input spikes. Although ex-
actly synchronous spikes are a mathematical idealization, Sab models the
proportion of output spike pairs caused by a shared excitatory input in
physiological settings.

2.2 The Leaky Integrate-and-Fire Model. Throughout this letter,
we compare analytical results to simulations of a current-based leaky
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integrate-and-fire model (the LIF). The membrane potential of the LIF is
described by Tuckwell (1988) and Burkitt (2006),

dV = − 1
τm

(V − Vrest) dt + dee(t) dt − dii(t) dt, (2.2)

where e(t) and i(t) are the excitatory and inhibitory input spike trains,
respectively, and τm > 0 is the membrane time constant (Burkitt, 2006).
When V(t) reaches threshold, θ , an output spike is produced, and V(t) is set
to Vreset. To simulate an inhibitory reversal potential, a lower barrier on the
membrane potential is imposed at β ≤ Vreset. For simplicity, we assume that
de = di. This assumption is relaxed in a later section and in the appendix
by allowing variable synaptic responses. Voltage is measured in units of
the postsynaptic amplitude so that de = di = 1. Due to our choice of units,
the leak current when the membrane potential is at V = v is given by v/τm.
The maximum leak current is therefore θ/τm. We set Vreset = Vrest = 0, and
in simulations we use θ = 30 and β = −2.

The output spike train, out(t), is a point process consisting of times at
which the membrane potential, V(t), reaches threshold. In all examples con-
sidered, V(t) is an ergodic process (Stratonovich, 1963), and in all analysis,
V(0) is assumed to be drawn from the stationary distribution of V(t) so that
the output spike train is stationary.

2.3 Statistics of the Input Spike Trains. We consider two cells, j = 1, 2,
each of which receives excitatory and inhibitory input spike trains, e j (t)
and i j (t). Although more general results are derived in the appendixes,
several assumptions are made in the text to keep the presentation less
burdensome. In particular, we assume that the inputs to the two cells are
statistically identical: re1 = re2 = re, ri1 = ri2 = ri, σ

2
e1

= σ 2
e2

= σ 2
e , σ 2

i1
= σ 2

i2
=

σ 2
i , γe1i2 = γi1e2 = γei, and γe1i1 = γe2i2 = 0. The assumption that γe1i1 = γe2i2 =

0 may not hold in general (Okun & Lampl, 2008). However, correlations
between the inputs to a cell simply change the input variances, σ 2

in, and their
effect has been studied (Salinas & Sejnowski, 2000, 2002). To incorporate
such correlations in our model, one substitutes σ 2

in = σ 2
e + σ 2

i − 2γe j i j .
We denote the excitation-to-inhibition ratio by q = re/ri. Due to our

choice of units, the excitatory and inhibitory input currents to cell j are
the point processes, e j (t) and −i j (t), with mean values re and ri, respec-
tively. The total input current is given by in j (t) = e j (t) − i j (t) with mean
μin = E[in j (t)] = re − ri, variance σ 2

in = σ 2
e + σ 2

i , and correlation

ρin = ρin1in2 = ρeeσ
2
e + ρiiσ

2
i − 2ρeiσeσi

σ 2
e + σ 2

i
, (2.3)
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where ρee = ρe1e2 , ρii = ρi1i2 , and ρei = ρe1i2 = ρe2i1 are the excitatory-to-
excitatory, inhibitory-to-inhibitory, and excitatory-to-inhibitory correla-
tions (Shadlen & Newsome, 1998; Salinas & Sejnowski, 2000). To generate
pairs and quadruples of correlated spike trains for simulations, we used the
algorithms outlined in appendix A.

2.4 Statistics of the Output Spike Trains. In addition to symmetry
between the input statistics, we also assume that the two neurons are
dynamically identical (this is also relaxed in the appendixes). Hence,
the output spike trains, out j (t), are statistically identical. Define the
rate, variance, covariance, Fano factor, synchrony, and correlation of
the two output spike trains as rout = rout j , σ 2

out = σ 2
outj

, γout = γout1out2 ,
Fout = σ 2

out/rout, Sout = Sout1out2 , and ρout = ρout1out2 = γout/σ
2
out, respec-

tively. When the outputs are renewal processes, the output coefficient of
variation is given by CVout = √

Fout.
In appendix C, we use the renewal properties of the output spike trains

and the Markov properties of the membrane potentials for the LIF and
dLIF models with Poisson inputs to derive the following expression for the
output correlation:

ρout = CV2
out + 1

CV2
out

(
E[τ1] − E[τ1|V2 ↗ θ ]

E[τ1]

)
+ Sout

CV2
out

. (2.4)

Here E[τ1|V2 ↗ θ ] is the expected time until the next spike in neuron 1

given that neuron 2 has just spiked, and E[τ1] =
(

CV2 + 1
)

/ (2rout) is the
expected time until the next spike in neuron 1 starting from an arbitrary
initial time (referred to in Cox, 1962, as the expected recurrence time). This
expression is exact for uncoupled integrate-and-fire models and instanta-
neous synapses and white inputs. It is approximately valid for coupled
models receiving nonwhite inputs or noninstantaneous synapses in the
fluctuation-dominated regime. We are unaware of a similar expression in
the literature, and we use it in section 4 to analyze the transfer of corre-
lations in the fluctuation-dominated regime. The expression is also useful
for calculating asymptotic correlations in simulated data. We found it to be
much faster and more accurate than standard methods for calculating the
correlation between two LIF neurons (see the discussion in appendix C).

2.5 The Drift-Dominated Regime and the Perfect Integrate-and-Fire
Model. In drift-dominated regimes, where the excitatory current domi-
nates the inhibitory and leak currents (re � ri + θ/τm), the lower reflect-
ing barrier at β is visited rarely. In addition, the dynamics of the neu-
ron are dominated by the input, and a good approximation is obtained
by ignoring the leak current (see Figure 2C). We therefore approximate
the LIF in drift-dominated regimes by the analytically tractable perfect
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Figure 2: An LIF in the drift-dominated regime can be approximated with a
PIF. (A) Typical behavior of an LIF in a drift-dominated regime (re = 2.5 KHz,
ri = 1 KHz, τm = 20 ms, and θ = 15). (B) Same as A, except time was rescaled
using the fast-input timescale, so that B represents the region inside the gray
box in A. (C) The response of a PIF driven by the same input.

integrate-and-fire (PIF) model, which is obtained by setting 1/τm = 0 in
equation 2.2 and ignoring the lower boundary at β (Gerstein & Mandel-
brot, 1964; Knight, 1972).

Note that the PIF model is a good approximation when the membrane
time constant is slow compared to inputs and the cells integrate their inputs.
It is not a good approximation when the membrane time constant is fast and
the membrane potentials track their inputs, as occurs in conductance-based
models in high-conductance states.

The output statistics of the PIF can be obtained analytically. When μin =
re − ri > 0, the output rate is rout = μin/θ , and when μin ≤ 0, the output
rate is zero. Thus, the rate transfer function of the PIF is threshold linear.
Hereafter, we assume that μin > 0 when considering the PIF model. The
total variances of the output spike trains and Fano factor are σ 2

out = (σ 2
e +

σ 2
i )/θ2 and Fout = (σ 2

e + σ 2
i )/[θ (re − ri)], respectively (see appendix B). For

Poisson inputs, this yields CVout =
√

(q + 1)
/

[θ (q − 1)] where q = re/ri > 1
measures the excitation-to-inhibition balance. In Figure 3, the output rate
and CV are plotted as dashed lines.

2.6 Discrete LIF Model. Outside the drift-dominated regime, spiking
is increasingly due to fluctuations of the membrane potential around its
mean value (Salinas & Sejnowski, 2000; Ringach & Malone, 2007). In such
regimes, the PIF no longer provides a good approximation, and we instead
use the analytically tractable discrete LIF (dLIF) model, which is defined by

dV = e(t) dt − i(t) dt − IL (t) dt, (2.5)
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Figure 3: Univariate spiking statistics for the dLIF. (A) The output firing rate
and (B) the output CV as functions of the excitatory input rate, re, for β = −2
and for θ = 20, 30, 50, and 120. The dashed lines show the output statistics of the
PIF when θ = 20 and ri = 1. Both re and rout are in units of ri + ĪL (equivalently,
ri + ĪL = 1 is fixed) so that q̂ = re.

with a threshold at θ , reset at 0, and a reflecting lower boundary at β ≤ 0.
Here, IL (t) = ∑

i δ(t − ti ) is a Poisson point process with rate ĪL that models a
leak current. Using Poisson jumps to model leak may at first seem unnatural.
However, the dLIF can be thought of as a noisy integrate-and-fire model
with constant leak (Fusi & Mattia, 1999). We use the dLIF because it is
analytically tractable and captures the fundamental properties of correlation
transfer in more realistic leaky models.

In parameter regimes where the input currents dominate the leak current,
the dLIF provides a good quantitative approximation to the LIF. Outside
such regimes, it captures the qualitative dependence of the spiking statistics
on parameters. We emphasize that the purpose of the model is not to quan-
titatively approximate the LIF (which is itself a simplified model). Instead,
the dLIF serves as an analytically tractable leaky model that can be used to
understand the principal mechanisms that shape correlation transfer.

When e(t) and i(t) are Poisson, the membrane potential V(t) for the dLIF
model is a continuous-time Markov process on a discrete state-space, and
we can compute the univariate and bivariate spiking statistics exactly (see
appendix D). It is hereafter assumed that e(t) and i(t) are Poisson when
referring to the dLIF model. The stationary firing rate and CV for the dLIF
are derived in closed form in appendix D,

rout = (q̂ − 1)2

q̂ ((q̂−θ − 1) q̂β + θ (q̂ − 1))
re, (2.6)

and

CV2
out = 4(q̂ (θ − β + 1) − θ + β)q̂ θ+β + q̂ 2β + q̂ 2θ (−(q̂ 2β − 4(q̂ (β − 1) − β)q̂β − q̂ 2θ + θ))

(q̂β − q̂ θ (q̂β − q̂θ + θ))2 ,

(2.7)
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where q̂ = re/(ri + ĪL ). Throughout the text, we take β = −2 and θ = 30.
Figure 3 shows that the input-to-output rate curve has the threshold-
linear shape that is typical of integrate-and-fire neurons. In the fluctuation-
dominated regime, CVout ≈ 1, while in the drift-dominated regime, CVout

is decreased.
We were unable to derive closed-form expressions for the bivariate and

time-dependent univariate spiking statistics. However, since the membrane
potentials are a Markov process on a discrete state-space, their exact time-
dependent distributions can be found by exponentiating their infinitesimal
generator matrix, and the stationary distribution is given by the domi-
nant eigenspace of the generator. (These methods are discussed in detail in
appendix D, and a suite of Matlab programs that implement these meth-
ods can be found online at http://www.mathworks.com/matlabcentral/
fileexchange/28686.)

2.7 Memory Timescale of the dLIF Model. The membrane potential
of the dLIF model with Poisson inputs is an ergodic Markov process. The
infinitesimal generator for such a process has exactly one zero left eigen-
value, and the remaining left eigenvalues have negative real part (Karlin
& Taylor, 1975). The nonzero left eigenvalue with the real part nearest to
zero, λ1, determines the timescale at which the membrane potential relaxes
to its stationary distribution. In particular, defining τmem = −1/Re(λ1), the
distribution relaxes to its steady state exponentially as e−t/τmem . We use this
result in sections 4 and 7 to analyze the asymptotic correlation and estimate
the tail of the cross-covariance function for the dLIF model. (See appendix D
for a fuller discussion.)

3 Correlations Are Nearly Preserved in Drift-Dominated Regimes

When excitation is stronger than inhibition and leak, the membrane dy-
namics of a leaky model can be approximated by the PIF (see section 2 and
Figure 2). Input to the model neurons, in j (t) = e j (t) − i j (t), j = 1, 2, is a
sum of excitatory, e j (t), and inhibitory, i j (t), components. When re − ri > 0,
the output firing rate of the PIF is positive, with spike count

Nout j (t) = Ne j (t) − Ni j (t) − Vj (t) + Vj (0)
θ

= 1
θ

Nin j (t) + O(1), j = 1, 2, (3.1)

where O(1) represents terms bounded in time. Thus, for large t, the input
and output spike counts are linearly related.

This implies that σ 2
out = σ 2

in/θ
2 and γout = γin/θ2. The covariance and vari-

ance are scaled by the same factor, and therefore the correlation coefficient
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is unchanged by a layer of PIFs:

ρout = ρin = ρeeσ
2
e + ρiiσ

2
i − 2ρeiσeσi

σ 2
e + σ 2

i
. (3.2)

The fact that ρout = ρin is valid for a pair of PIFs with arbitrary stationary
inputs with positive mean (see appendix B for a detailed proof). Thus, the
result does not depend on the assumption of instantaneous postsynaptic
potentials and remains true when inputs are modeled as continuous (e.g.,
white) noise (Vilela & Lindner, 2009). It follows that a threshold mechanism
or a threshold-linear f -I curve alone is not enough to reduce correlations.

We conclude that a pair of LIFs in the drift-dominated regime nearly pre-
serves correlations. This conclusion is consistent with previous observations
for LIF models driven by correlated, positively biased white noise (de la
Rocha et al., 2007; Shea-Brown, Josić, de La Rocha, & Doiron, 2008; Tchu-
matchenko, Malyshev, Geisel,Volgushev, & Wolf, 2008; Vilela & Lindner,
2009) and is verified for the LIF with discrete postsynaptic potentials in
Figure 4. In the drift-dominated regime, output correlations for a pair of
LIFs approximately match the theoretical values obtained for PIFs. Outside
of this regime, the LIF output correlations are reduced in magnitude. We
investigate this reduction of correlations next.

4 Correlations Are Reduced in Fluctuation-Dominated Regimes

When input to the cells is weaker and firing rates lower, correlations are
reduced in the output (Stroeve & Gielen, 2001, de la Rocha et al., 2007, Shea-
Brown et al., 2008; Tchumatchenko et al., 2008). In this section, we provide
a mechanistic explanation of this reduction in correlations, which can be
observed in the LIF simulations in Figure 4. Although our explanation
applies to a wide class of neuron models, we illustrate the results with the
dLIF model described in section 2. This model is simple enough that the
output correlation and other quantities of interest can be computed exactly,
yet it captures the overall features of correlation transfer in both the drift-
and fluctuation-dominated regimes.

The fact that the PIF preserves correlations relies on an asymptotically
linear and deterministic relation between the input and output spike counts
(see equation 3.1). The same relation holds approximately for the LIF in drift-
dominated regimes since leak has a small effect, and the lower boundary of
the membrane voltage is visited rarely (see Figure 2).

However, in the fluctuation-dominated regime where spiking is caused
by random fluctuations of the membrane potential, the output spike count
over large windows depends on the timing of input spikes instead of
the input spike count alone. As a result, the relationship between input
and output spike counts is stochastic and nonlinear so that equation 3.1
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Figure 4: Correlation transfer for the LIF model. In each panel, a set of input
correlations, ρee, ρii, and ρei is fixed. Output correlations, ρout, are shown as
functions of the excitatory input rate when ri = 1 KHz. Thick dashed lines
represent the output correlation for the PIF (see equation 3.2). Thin solid lines
represent output correlation from simulations of the LIF with correlated Poisson
inputs. Along each dashed line, the membrane time constant is held fixed and
is larger for darker lines (see legend). As the rate of excitation increases relative
to inhibition and relative to leak, the LIF is better approximated by the PIF. The
output rates for the LIF varied from less than 10−3 Hz to 216 Hz. The PIF and LIF
agree well (equivalently, correlations are nearly preserved) for moderate firing
rates, for example, |ρLIF − ρPIF| ≤ 0.1ρPIF when rout ≥ 40 Hz and τm = 20 ms in
A. Correlation parameters are (A) ρee = ρii = 0.2 and ρei = 0, (B) ρii = 0.2 and
ρee = ρei = 0, (C) ρei = 0.2 and ρee = ρii = 0, and (D) ρee = ρii = ρei = 0.2. Here,
and in all subsequent figures, sample points from simulations are marked with
dots, and error bars are not drawn when the standard errors are smaller than the
diameter of the dots. Otherwise, error bars have radius of one standard error.

is no longer valid. To understand correlation transfer in the fluctuation-
dominated regime, we instead consider the following equation for the out-
put correlation derived in appendix C:

ρout = CV2
out + 1

CV2
out

(
E[τ1] − E[τ1 | V2 ↗ θ ]

E[τ1]

)
+ Sout

CV2
out

.

Here E[τ1 | V2 ↗ θ ] is the expected time until the next spike in neuron

1 given that neuron 2 has just spiked, and E[τ1] =
(

CV2 + 1
)

/ (2rout) is
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the expected time until the next spike in neuron 1 starting from an ar-
bitrary initial time (referred to in Cox, 1962, as the expected recurrence
time).

When the excitatory inputs are correlated synchronously (Se1e2 > 0),
there is a nonzero probability of an exactly synchronous spike in neurons 1
and 2. This leads to positive values of Sout and thereby increases ρout. How-
ever, in the fluctuation-dominated regime, Sout is small and can be ignored
(see the Figure 6 inset). Also, in this regime, firing is approximately Poisso-
nian so that CV2

out ≈ 1 (see Figure 3B) and (CV2
out + 1)/CV2

out ≈ 2. Therefore,
in the fluctuation-dominated regime, changes in ρout are dominated by the
“memory,”

M = E[τ1] − E[τ1 | V2 ↗ θ ]
E[τ1]

,

which quantifies the relative impact of a spike in neuron 2 on the time
until the next spike in neuron 1. In particular, ρout ≈ 2M in the fluctuation-
dominated regime.

When V1 and V2 are independent, E[τ1 | V2 ↗ θ ] = E[τ1] and Sout = 0 so
that ρout = 0. When V1 and V2 are positively correlated, conditioning on V2

being at threshold increases the probability that V1 is near threshold. This
decreases the expected time for V1 to reach threshold, yielding E[τ1 | V2 ↗
θ ] ≤ E[τ1] and a positive value of M. A positive value of M implies a
positive value of ρout since Sout ≥ 0. Similarly, when V1 and V2 are negatively
correlated, the expected time until V1 reaches threshold is lengthened by
conditioning on V2 being at threshold. Therefore, E[τ1 | V2 ↗ θ ] ≥ E[τ1],
resulting in negative output correlations when Sout is sufficiently small.

When excitation is weak in relation to inhibition and leak, firing is due to
rare excursions of the membrane potential across threshold (Paninski, 2006;
Ringach & Malone, 2007). The stationary distribution of the membrane
potentials is concentrated near rest, but conditioning on a spike in neuron 2
pushes the distribution of V1 closer to threshold. The distribution of V1 then
relaxes back to its stationary distribution. The timescale of this relaxation is
given by the memory timescale, τmem (see section 2). In Figure 5A, we show
that the memory timescale is much faster than the spiking timescale (τmem �
E[τ1]) in the fluctuation-dominated regime. This is due to the fact that the
spiking dynamics are much slower than the subthreshold dynamics in this
regime. The result of this effect is illustrated in Figure 5B: the distribution
of V1 settles to its stationary state long before the next spike. Neuron 1
effectively forgets the effects of the spike in neuron 2 before it has a chance
to spike (Knight, 1972). Therefore, a spike in cell 2 has a small impact on the
waiting time to the next spike in cell 1 and the output spike trains are nearly
independent. As a result, E[τ1] ≈ E[τ1 | V2 ↗ θ ] (the arrows in Figure 5B are
close together) so that M ≈ 0, and therefore ρout ≈ 0.
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Figure 5: Forgetfulness of cells in the fluctuation-dominated regime. (A) The
memory timescale (τmem) and the spiking timescale (E[τ1]) plotted as a function
of re when ri = 1 and ĪL = 0.5. The filled circles indicate the boundary between
the fluctuation and drift-dominated regimes: re = ri + ĪL . (B) Top: The mean
membrane potential of neuron 1 conditioned on a spike in neuron 2 at time
t = 0 (solid line). The shaded region represents the mass within one standard
deviation of the mean, and the dashed line indicates the stationary mean. Bot-
tom: The cumulative probability distribution of the waiting time, τ1, of the next
spike in neuron 1, conditioned on a spike in neuron two at time t = 0 (solid line)
and in the stationary case (dashed line). Arrows indicate the expected value
of τ1 in the stationary (solid) and conditional (dashed) cases. The distance be-
tween the two arrows is M = (E[τ1] − E[τ1|V2 ↗ θ ])/E[τ1]. Parameters in B are
re = 1.25, ri = 1, ĪL = 0.5, ρee = ρii = 0.5 and ρei = 0.

As re increases toward the drift-dominated regime, conditioning on V2

being at threshold has an increasing relative impact on the expected wait-
ing time until V1 spikes, and as a result, |M| increases (see Figure 6). Since
|M| dominates in equation 2.4, |ρout| also increases as the drift-dominated
regime is approached. Inside the drift-dominated regime, ρout ≈ ρin, as dis-
cussed previously. The dependence of ρout on the level of excitation is illus-
trated for the dLIF in Figure 7 and is consistent with the LIF simulations in
Figure 4.

The reduction of dependencies between the output spike trains in the
fluctuation-dominated regime does not depend on our choice of the Pearson
correlation coefficient as a measure. When firing is rare, output spike trains
become nearly independent. Thus, any reasonable measure of dependence
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Figure 6: Dependence of M on re for the dLIF model. Here ρee = ρii = ρin and
ρei = 0 for lines in the upper half. For lines in the lower half, ρee = ρii = 0,
and ρei is chosen so that ρin = −0.2 and −0.1, respectively. For all four lines,
ri = 1 and ĪL = 0.5 are fixed (so that re and ĪL are given in units of ri). The
inset shows the output synchrony, Sout, as a function of re with ρee = ρii = 0.2
and ρei = 0. Filled circles indicate the values for which re = ri + ĪL = 1.5, which
defines the boundary between the fluctuation and drift-dominated regimes.
When re � ri + ĪL , M is approximately 0. As the cell approaches the drift-
dominated regime, |M| increases. Interestingly, |M| decreases with re in the
drift-dominated regime. However, in this regime, S is no longer negligible and
CVout decreases with re (see the inset and Figure 3B), so that the value of M
alone is no longer a good indicator of the value of ρout.

between output spike trains tends to zero in the fluctuation-dominated
limit. We revisit this observation in section 9.

Some combinations of the correlation parameters can lead to nonmono-
tonic behavior of ρout with respect to re. For instance, in Figure 7B, ρin > 0
so that ρout initially increases with re from 0 toward ρin > 0. However, as
re continues to grow, uncorrelated excitation dominates and ρout decreases
toward ρin ≈ ρee = 0. The opposite occurs in Figure 7C: correlation initially
decreases from 0 toward ρin < 0 and then increases toward ρee = 0.

A nonmonotonic relationship between re and ρout yields a nonmonotonic
relationship between rout and ρout since rout increases with re. Therefore,
correlations do not necessarily increase with firing rate (de la Rocha et al.,
2007). Such mechanisms could underlie the attention-induced decreases in
correlations accompanied by increases in firing rates (Cohen & Maunsell,
2009). This result is not necessarily in opposition to the central result in
de la Rocha et al. (2007), which implies an increase in the correlation sus-
ceptibility, ρout/ρin, with respect to firing rates. In Figures 7A to 7C, the
correlation susceptibility increases with rout. However in Figure 7D, ρin = 0
when re = ri, but ρout > 0 so that the correlation susceptibility is undefined
at this point. This phenomenon is explored further in section 8.1.
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Figure 7: Correlation transfer for the dLIF model. The output correlation as
a function of the excitatory input rate, re, for different combinations of the
correlations parameters, ρee, ρii, ρei, and the mean leak current, ĪL . We fixed
ri = 1 and varied re and ĪL ; thus, re and ĪL are given in units of ri. The solid lines
represent the output correlations for the dLIF, and the dashed lines represent
values for the PIF (equivalently the input correlation, ρin). The mean leak current,
ĪL , decreases with the darkness of the solid lines. The darkest solid line is
obtained by setting ĪL = 0, eliminating the leak current altogether. In this case,
the dLIF differs from the PIF only by the presence of a lower reflecting barrier
at β. When re < ri, this lower barrier has a decorrelating effect. When excitation
is stronger, the lower barrier has an insignificant effect on correlations since
it is visited rarely. The filled circles indicate the boundary between the drift-
and fluctuation-dominated regimes, re = rii + ĪL . The correlation parameters
are (A) ρee = ρii = 0.2 and ρei = 0, (B) ρii = 0.2 and ρee = ρei = 0, (C) ρei = 0.2
and ρee = ρii = 0, and (D) ρee = ρii = ρei = 0.2.

5 Synaptic Variability Reduces Correlations

Synapses can have a range of efficacies, and spikes in presynaptic neu-
rons can elicit a variety of postsynaptic response amplitudes. Furthermore,
synaptic failure and random response amplitudes result in variability at the
level of single synapses. Release probabilities at a synapse range between
less than 0.1 and up to 0.9 (Allen & Stevens, 1994; Thomson, 2000), and the
magnitude of the postsynaptic response, evoked by the same cell, can vary
with a CV from .25 to 1.5 (Mason, Nicoll, & Stratford, 1991; Hessler, Shirke,
& Malinow, 1993; Brémaud, West, & Thomson, 2007).
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Figure 8: Effects of synaptic variability on correlation transfer. Solid lines in-
dicate theoretical values for a pair of PIFs (see equation 5.1), and thin dashed
lines were obtained from simulations of a pair of LIFs. For the LIF simula-
tions, ri = 1 KHz and τm = 20 ms are fixed, and the excitatory input rate, re,
increases with the darkness of the lines (see legend). The correlation parameters
are ρee = ρii = 0.2 and ρei = 0. Inputs are renewal with gamma-distributed ISIs
(see appendix A) and postsynaptic amplitudes are random, with peak values
drawn independently from a gamma distribution with mean 1 and coefficient
of variation CVd . In the drift-dominated limit, the PIF accurately approximates
the LIF (see the darkest dotted lines). Outside this regime (the lighter lines), cor-
relations are reduced but obey the same dependence on the parameters. (A) The
input Fano factor, F , is fixed at unity (inputs are Poisson), and the magnitude
of synaptic noise, CVd , is varie. (B) The degree of synaptic variability is fixed at
CVd = 1, and F is varied.

To model synaptic variability, assume that an excitatory (inhibitory)
spike at time tk

e (tk
i ), causes a random “jump” dk

e (dk
i ) in the membrane

potential of the postsynaptic cell. Assume that the jumps are drawn inde-
pendently from a distribution with mean de (d i) and variance σ 2

de
(σ 2

di
). For

simplicity, we let de = d i = d and σ 2
de

= σ 2
di

= σ 2
d (more general results are

given in appendix E.1).
Synaptic noise adds stochasticity to the relationship between input and

output spike counts given for the PIF by equation 3.1, but randomness is
introduced only at each input spike. As a result, the variance is increased by
an amount that depends on the input rates. In particular, for the PIF, σ 2

out =
(σ 2

in + CVd
2(re + ri))/θ̂2 where θ̂ = θ/d is the average number of excitatory

kicks needed to reach threshold and CVd = σd/d . Since synaptic noise was
assumed to be independent, the covariance of the outputs is not changed
by the noisiness of the synapses, γout = γin/θ̂2. Correlations are therefore
reduced as (see appendix E.1)

ρout =
(

F

F + CV2
d

)
ρin, (5.1)

where F = (Fere + Firi)/(re + ri) is the weighted average of the excitatory
and inhibitory input Fano factors. The decrease in correlations due to
synaptic noise is illustrated in Figure 8A. Interestingly an increase in the
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randomness of the input, as measured by F , will increase the output corre-
lation, but only in the presence of synaptic noise. This effect is illustrated in
Figure 8B.

Synaptic failure can be modeled by assuming that dk
e and dk

i are binary
random variables, in which case CV2

d = (1 − p)/p, where p is the probability
of release. For example, when inputs are Poisson (F = 1), ρout = p for the
PIF model. Hence, ρout decreases with an increase in the probability of
synaptic failure. When p is small (Allen & Stevens, 1994; Thomson, 2000),
correlations are significantly reduced by synaptic failure.

Combining the effects of synaptic failure and variable postsynaptic am-
plitudes, we obtain

ρout =
(

p F

p F + (1 − p) + CV2
d

)
ρin, (5.2)

where we have assumed that a proportion p of the inputs successfully
elicits a response, and the amplitudes of the successful synaptic responses
are variable with a CV of CVd . Realistic choices of parameters yield dramatic
reductions in correlations. For example, taking p = 0.5, CVd = 1, and CVe =
CVi = 0.6 (where F = CV2

e), correlations are reduced by nearly an order
of magnitude by the PIF (ρout = 0.107ρin). Correlations are reduced even
further by leaky models, especially in the fluctuation-dominated regime. In
Figure 9, we illustrate the effects of synaptic variability on correlations in a
simple population model.

Because the release probability and PSP amplitude are dependent on
input statistics (Czubayko & Plenz, 2002), the independence assumptions
made in this section can be taken only as a first approximation. However,
the model can be extended to take such dependencies into account.

6 Effect of Coupling on Correlations

Recurrent connections are common in many parts of the central nervous
system and may play an important role in information processing (Gawne &
Richmond, 1993; Kisvárday, Tóth, Rausch, & Eysel, 1997; Gibson, Beierlein,
& Connors, 1999; Lamme & Roelfsema, 2000; Oswald, Doiron, Rinzel, &
Reyes, 2009). Synaptic coupling or gap junctions can actively modulate
the transfer of correlated inputs (Schneider, Lewis, & Rinzel, 2006; Ly &
Ermentrout, 2009), and thus affect the information carried by a population
of cells (Gutnisky & Dragoi, 2008; Josić, Shea-Brown, Doiron, & de la Rocha,
2009).

To model recurrent coupling between two cells, suppose that an action
potential in one cell instantaneously raises the membrane potential of the
other. We consider a pair of identical, reciprocally coupled cells here, but
more general results are given in appendix E.2. The jump in membrane
potential, c, due to reciprocal coupling is assumed to be smaller than θ .
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Figure 9: Correlations are dramatically reduced by unreliable synapses. The
input population has excitatory-to-excitatory (ee), inhibitory-to-inhibitory (ii),
and excitatory-to-inhibitory (ei) correlations distributed according to a normal
distribution with a mean of 0.1 and a standard deviation of 0.05. Assuming ho-
mogeneous rates and balanced excitation and inhibition, the input correlations
to downstream cells are normally distributed with a mean of 0 (the ei corre-
lations “cancel” with the ee and ii correlations) and a standard deviation of
2 × 0.05 = 0.1 (the variances sum). However, realistic levels of synaptic failure,
variability of synaptic amplitudes, and non-Poisson input statistics (CVd = 1,
p = 0.5, CVe = CVi = 0.6, F = CV2

e; see section 5) decrease output correlations
for the PIF by almost an order of magnitude, std(ρPIF) = 0.0107. Correlations
are reduced even further for leaky models, especially in fluctuation-dominated
regimes (see section 4 and Figure 8).

The membrane potentials of a pair of coupled PIFs are described by the
coupled differential equations,

dV1 = in1(t) dt + c out2(t) dt, dV2 = in2(t) dt + c out1(t) dt,

with the usual threshold and reset boundary conditions. The analog of
equation 3.1 in this case is a coupled set of linear equations. Their solution
can be used to compute the output variance and covariance for the PIF (see
appendix E.2),

σ 2
out =

σ 2
in

(θ2 − c2)2

[
(θ2 + c2) + 2cθρin

]
, and

γout = γin

(θ2 − c2)2

[
(θ2 + c2) + 2cθ

ρin

]
.
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Figure 10: Effect of coupling on correlation transfer. Solid lines indicate theo-
retical values for a pair of PIFs (see equation 6.1), and thin dashed lines were
obtained from simulations of a pair of LIFs with ρee = ρii = 0.2, ρei = 0 so that
ρin = 0.2. Parameters are the same as in Figure 8, except that inputs are strictly
Poisson and synapses are not random.

Since |ρin| < 1, it follows that coupling has a larger effect on the covari-
ance than on the variance. This can be understood by noting that coupling
affects the covariance directly and affects the variance only indirectly (Ran-
gan, 2009): when neuron 1 spikes, the membrane potential of neuron 2 (and
therefore the timing of its spikes) is affected directly due to coupling. How-
ever, the effect on neuron 1 itself is indirect: a spike in neuron 1 affects the
propensity of neuron 2 to spike, which in turn affects the timing of spikes
in neuron 1.

The output correlation is

ρout = (1 + u2)ρin + 2u
(1 + u2) + 2uρin

, (6.1)

where u = c/θ < 1 is synaptic amplitude relative to the distance from re-
set to threshold and measures the strength of the coupling. If the coupling
is not too strong, then to first order in u, ρout = ρin + 2(1 − ρ2

in)u + O
(
u2

)
.

Figure 10 illustrates the dependence of ρout on u when ρin is fixed. Not sur-
prisingly, excitatory coupling (u > 0) increases correlations, and inhibitory
coupling (u < 0) decreases correlations. Frequently, the amplitude of a sin-
gle PSP is much smaller than the distance from reset to threshold (i.e., u is
small), and therefore the effect of coupling on correlations is small.
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Figure 11: Output cross-covariance functions. The output cross-covariance
function when inputs are delta correlated (black lines) decays with a
timescale of τmem (black dots follow e−τ/τmem ). The gray lines show the out-
put cross-covariance when the input cross-covariance is a double exponential,
(γin/2)e−|τ |/5, instead of a delta function. The dashed line was obtained by con-
volving the input cross-covariance function with the output cross-covariance
function obtained in the delta-correlated case. (A) Cross-covariance functions
for the dLIF with re = 3, ri = 2, ρee = ρii = 0.2, ρei = 0, and ĪL = 0.877 were cho-
sen so that the output rate (rout = 8.4 Hz) matches the LIF simulations in B. The
black solid and dashed lines were obtained exactly, without simulations. The
gray line is from simulations. (B) Cross-covariance function from LIF simula-
tions with the same parameters as in A and τm = 20 ms. In both plots, inputs
are Poisson (see appendix A), and cross-covariance functions are normalized to
have a peak value of 1.

7 Cross-Covariance Functions and the Timescale of Correlations

So far we have focused on the magnitude of correlations over asymptotically
large windows (see the definition of ρab in section 2). However, the timescale
over which correlations occur is often of interest in both theoretical and
experimental studies (Maršálek, Koch, & Maunsell, 1997; Brody, 1999; Kohn
& Smith, 2005; Moreno-Bote & Parga, 2006; Ostojić, Brunel, & Hakim, 2009).
We provide a brief discussion of the topic here. A full treatment of the topic
will be addressed in a forthcoming publication.

The timescale over which two spike trains are correlated can be measured
by their auto- and cross-covariance functions, which can be computed ex-
actly for the dLIF model (see section 2 and appendix D). When inputs are
delta correlated, the tail of the cross-covariance function, R12(τ ), decays ex-
ponentially as τ → ∞. The timescale of this decay is given by the memory
timescale, τmem, of neuron 2 (see the dotted line in Figure 11A) and the
τ → −∞ tail decays as the memory timescale of neuron 1.

To address the question of how correlation timescales are transferred, the
timescale of input correlations must be taken into account. So far, we have
concentrated on “delta-correlated” inputs—inputs whose cross-covariance
is a delta function. In particular, the analysis of the dLIF model relied on this
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Figure 12: Correlation over finite windows. The output spike count correlation,
ρout(t), over a window of size t, plotted as a function of the input excitatory rate,
re for various values of t. Correlations are smaller for smaller window sizes but
obey the same general dependence on re.

assumption. In Figure 11, we show that the cross-covariance obtained from
delta-correlated inputs can be used as an impulse response function for the
transfer of cross-covariance functions. The output cross-covariance is well
approximated by convolving the input cross-covariance with the output
cross-covariance obtained with delta-correlated inputs (compare the gray
and dashed lines in Figure 11). Thus, the timescale of output correlations is
given by τout = max{τmem, τin}, where τin and τout are the timescales of the
input and output cross-covariance functions, respectively. Figure 11 also
illustrates that the cross-covariance functions for the dLIF match those for
the LIF qualitatively when the two models have identical input parameters
and ĪL is chosen so that the rates of the two models are matched.

The spike count correlations over finite windows can be computed from
the auto- and cross-covariance functions (see equation 2.1). Correlations
are smaller for smaller window sizes for an LIF model with white noise
inputs (Shea-Brown et al., 2008). The dependence of output correlations on
window sizes is illustrated in Figure 12 and will be discussed in the authors’
forthcoming work.

8 Comparison of Results with Other Models

8.1 Comparison with a White Noise Gaussian Model. In Figure 13A,
we compare the analytical results for the dLIF and simulations of the LIF
with Poisson inputs to a linear response approximation of the LIF with
gaussian white noise inputs, as described by de la Rocha et al. (2007). The
models exhibit the same qualitative dependence on rout, but the dLIF differs
from the LIF quantitatively to some extent. Both models are caricatures of
actual neurons, and neither should be expected to agree quantitatively with
actual recordings. The dLIF has the advantage of being more amenable to
analysis and simpler to understand mechanistically. We next describe a
regime where the dLIF differs from gaussian models even qualitatively.
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Figure 13: Comparing the dLIF with a gaussian model. (A) Output correlation
plotted as a function of output rate for three models: analytical results for the
dLIF (solid black line), simulations of an LIF with Poisson inputs (black dots),
and a linear response approximation to an LIF with gaussian white noise input
(gray dashed line). For the dLIF and LIF with Poisson inputs, the input param-
eters are as in Figures 4A and 7A with τm = 20 ms and ĪL = 0.5. The white noise
inputs for the gray dashed line have bias μ = re − ri, variance σ 2 = re + ri, and
correlation ρin = 0.2. (B) Results are from the dLIF model with ri = 1, ĪL = 0.5,
ρee = 0.5, and ρii = 0.5 fixed. The filled circles indicate the boundary between
the drift and fluctuation-dominated regimes, re = rii + ĪL . As re changes, ρei is
varied so that ρin = 0 and ρin = 0.005, respectively. Output correlations are pos-
itive even when ρin = 0. When ρin = 0.005, correlations can double from input
to output. Gaussian models cannot exhibit such increases in correlations.

When 2ρei
√

reeri = ρeere + ρiiri, the correlation between the total input
currents, ρin, is zero. In such cases, output correlations for the dLIF are
positive but very small— about two orders of magnitude smaller than ρee

and ρii (see Figure 13B). Note that small correlations on this scale have the
potential to have a significant impact on coding and downstream activ-
ity when the output from several neurons is pooled (Zohary et al., 1994;
Renart et al., 2010; Rosenbaum et al., 2010). This might explain why large
correlations are observed in deeper layers of feedforward networks even
when excitation and inhibition are balanced (Litvak, Sompolinsky, Segev,
& Abeles, 2003; Rosenbaum et al., 2010).

Integrate-and-fire models are able to transfer uncorrelated input cur-
rents to correlated outputs because uncorrelated input currents are not
necessarily independent. Since the integrate-and-fire filter is nonlinear, it is
possible for moments to “mix” so that higher-order input correlations are
transferred to second-order output correlations. This phenomenon cannot
be observed when inputs are modeled by gaussian processes, since un-
correlated gaussian processes are necessarily independent. Furthermore,
when 2ρei

√
reri ≈ ρeere + ρiiri correlations nearly cancel, and ρin ≈ 0. In

such cases, it is possible that |ρout| > |ρin| > 0 for the dLIF model (see
Figure 13B). This would again be impossible if inputs were modeled us-
ing gaussian processes (Lancaster, 1957).
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8.2 Comparison with a Conductance-Based Model. We now compare
the results above to simulations of a conductance-based integrate-and-fire
model (Dayan & Abbott, 2001) similar to the model used in Salinas and
Sejnowski (2000). This type of model can accurately capture the statistics
of a variety of neuronal responses (Kobayashi, Tsubo, & Shinomoto, 2009).
The subthreshold potential obeys the differential equation

Cm V̇ = −gL (V − EL ) − gAMP A(t)(V − E AMP A) − gG AB A(t)(V − ECl ),

where gAMP A(t) = (e ∗ epsc)(t) and gG AB A(t) = (i ∗ i psc)(t) are convolutions
of the excitatory and inhibitory inputs with postsynaptic conductance ker-
nels. The excitatory (AMPA) postsynaptic conductances were modeled as
exponential functions with time constant τAMP A and peak value ḡAMP A,

epsc(t) = ḡAMP Ae−t/τAMP A,

and the inhibitory (GABA) postsynaptic conductance are double exponen-
tials,

i psc(t) = ḡG AB A

D

(
e−t/τ (1)

G AB A − e−t/τ (2)
G AB A

)
,

where D is a constant chosen so that ḡG AB A is the maximum value of i psc(t).
When the cell crosses threshold, Vθ , a spike is produced, and the potential
is reset to EL , where it is held for a refractory period, τref.

The parameters used in the simulations are EL = −60 mV, E AMP A = 0,
ECl = −62 mV, Vθ = −54 mV, τm = 20 ms, τAMP A = 5 ms, τ

(1)
G AB A = 5.6 ms,

τ
(2)
G AB A = .285 ms, τref = 2 ms (compare to parameters in Salinas & Sejnowski,

2000). In Figures 15 and 16, gL = Cm/(20 ms) is fixed to obtain a membrane
time constant of τm = 20 ms. For the simulations in Figure 14, we used sev-
eral different values of gL . For all simulations, we, set ḡAMP A = Cm/(909 ms)
so that 30 synchronous excitatory input spikes are required to bring the cell
from reset to threshold, in accordance with our choice of θ = 30 for the
current-based models (see section 2). We then set ḡG AB A = 10.3215gAMP A

so that an inhibitory postsynaptic potential is about twice the size of an
excitatory postsynaptic potential when the membrane potential is halfway
between rest and threshold.

Figures 14, 15, and 16 show that the conductance-based model transfers
correlations in accordance with the theory developed above and illustrated
in Figures 4, 7, 8, and 10. However, in Figure 14 the magnitude of correlations
begins to decay with re when re gets large. This is consistent with Shea-
Brown et al. (2008) where such a decrease in correlations is attributed to the
refractory period. The effect is significant only when rout is on the same order
as 1/τref. To illustrate this point, we plotted the correlation when τref = 0 and



1284 R. Rosenbaum and K. Josić

Figure 14: Output correlation as a function of re in a conductance-based model.
Results from Figures 4 and 7 are reproduced with a conductance-based model.
Here, re and τm = Cm/gL are varied, while r = 1 KHz is fixed. The membrane
time constant, τm, is varied by changing gL and keeping Cm fixed, so that synaptic
conductances are not affected. Inputs are correlated Poisson processes. Output
rates varied from less than .01 Hz to 130 Hz. For the dashed line in A, we set
τref = 0 and τm = 30 ms to illustrate the effect of a refractory period. Correlations
in the inputs are (A) ρee = ρii = 0.2 and ρei = 0, (B) ρii = 0.2 and ρee = ρei = 0,
(C) ρei = 0.2 and ρee = ρii = 0, and (D) ρee = ρii = ρei = 0.2.

τm = 30 ms as a dashed line in Figure 14 (compare to the darkest solid line).
The presence of a refractory period causes noticeable decorrelation only
once re ≥ 3 KHz, at which point rout ≈ 60 Hz.

We also observe that correlations are generally smaller in magnitude
for the conductance-based model than for the current-based models con-
sidered above. This may be a consequence of the fact that the model has
more sources of nonlinearity than the current-based models. Another po-
tential explanation is that the effective membrane time constant is reduced
when inputs are stronger (Brunel, Chance, Fourcaud, & Abbott, 2001; Kuhn,
Aertsen, & Rotter, 2004) so that excitation cannot significantly outweigh the
“effective leak.”

9 Discussion

We used simplified random walk models of neural dynamics to investigate
correlation transfer in a variety of settings and verified that more realistic
models obey the same trends. We found that correlations are well preserved
in drift-dominated regimes when synaptic variability is not taken into
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Figure 15: Effects of synaptic variability on correlation transfer in a
conductance-based model. Results in Figure 8 are reproduced. Parameters ri = 1
KHz and τm = 20 ms are fixed, and the excitatory input rate, re, increases with
the darkness of the lines (see legend). The input correlation parameters are
ρee = ρii = 0.2 and ρei = 0. Inputs are renewal with gamma distributed ISIs (see
appendix A), and EPSCs are random, with peak values drawn independently
from a gamma distribution with mean ḡAMP A and coefficient of variation CVd .
(A) The input Fano factor, Fe = Fi = F in = 1, is fixed, and CVd is varied. (B) The
synaptic variability, CVd = 1, is fixed, and Fe = Fi = F is varied.

Figure 16: Effects of coupling on correlation transfer in a conductance-based
model. Results in Figure 10 are reproduced. Parameters are the same as in
Figure 15, except inputs are strictly Poisson and synapses are deterministic.
When u > 0, a spike in one neuron adds a PSC to the AMPA conductance of
the second. The peak value of the EPSC is given by u · ḡAMP A/30 so that the
corresponding PSP amplitude is roughly a proportion u of the distance from
rest to threshold. When u < 0 spikes in one neuron, add a PSC with peak value
u · ḡG AB A/60 to the GABA conductance of the other to obtain a similar scaling.

account. However, correlations are reduced outside the drift-dominated
regime and reduced further in the presence of synaptic variability and
synaptic failure. Positive coupling can increase correlated variability, but
only to moderate levels, unless the coupling is strong.

Recent experimental and theoretical studies (Hertz, 2010; Renart et al.,
2010) suggest that recurrent network dynamics can modulate correlations
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to prevent the potential blowup of correlations observed in a feedforward
setting (Reyes, 2003; Rosenbaum et al., 2010). These studies agree with in
vivo recordings that show small (Ecker et al., 2010; Renart et al., 2010) or
moderate (Zohary et al., 1994) correlations between cells. We showed that
correlations are also strongly modulated by dynamics at the cellular level.
The correlation structure at the level of networks is shaped by the interplay
between such local and global effects.

Analytical approximations of the correlation between the outputs of two
current- or conductance-based LIF neurons in the diffusive limit have been
obtained previously (de la Rocha et al., 2007; Shea-Brown et al., 2008; Tchu-
matchenko et al., 2008; Ostojić et al., 2009). Since integrate-and-fire models
are only caricatures of actual neurons, it is useful to complement such ana-
lytical approaches with a mechanistic understanding. We characterized the
mechanisms that shape correlation transfer in an intuitive way, providing
insights into how correlations are affected by various aspects of neural dy-
namics. Moreover, the use of point processes to model inputs allowed us to
address questions that are more difficult to formulate for diffusive models
and helped maintain a more direct connection to physiology.

9.1 Nonstationary Inputs. Throughout this letter, we have assumed
that inputs are stationary. Although this assumption is frequently made in
theoretical studies (Moreno-Bote & Parga, 2006; de la Rocha et al., 2007;
Shea-Brown et al., 2008; Ostojić et al., 2009), neurons in vivo receive in-
puts with time-dependent statistics. The assumption of stationarity is a
good approximation when the input statistics change more slowly than the
timescale of correlations and synaptic responses.

The dLIF model can be extended to take time-dependent rates and corre-
lations into account while maintaining its numerical tractability. The master
equation for the membrane potentials is transformed from a linear au-
tonomous system of ODEs (see appendix D) to a linear nonautonomous
system, p′(t) = A(t)p(t), where A(t) is the time-dependent infinitesimal
generator matrix (Karlin & Taylor, 1975; Gardiner, 1985). The methods in
appendix D can then be extended to investigate spiking statistics.

9.2 Alternate Measures of Correlation. There is no unique way to quan-
tify dependencies between pairs of spike trains. We chose to use the Pear-
son correlation coefficient because it is a unitless quantity that is widely
used and understood. However, the random walk models we presented are
mathematically tractable, and our analysis can be applied to other measures
of statistical dependence.

For example, measures of correlation where the covariance is normalized
by the firing rates have been proposed and may offer information-theoretic
advantages (Amari, 2009; Roudi, Nirenberg, & Latham, 2009). As an ex-
ample, we consider the unitless convariation factor, Cout = γout/rout. This
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Figure 17: An alternate measure of correlation. The covariation factor (solid
line) and Foutρin (dashed line) as a function of re for the dLIF with ri = 1, ĪL = 0.5,
ρee = ρii = 0.2, and ρei = 0. The filled circle indicates the boundary between the
drift- and fluctuation-dominated regimes, re = ri + ĪL . The covariation factor is
nearly zero for small values of re. As re grows, the cells become less forgetful
and Cout increases initially. In the drift-dominated regime, Cout decreases toward
Fout ρin since ρout ↗ ρin (see section 3) and ρout = Cout/Fout.

quantity is an extension of the Fano factor that measures the dispersion of
a bivariate distribution.

To analyze the covariation factor, reorganize equation 2.4 as

Fout = CV2
out, and Cout = (Fout + 1)

(
E[τ1] − E[τ1 | V2 ↗ θ ]

E[τ1]

)
+ Sout.

The behavior of Cout now parallels that of ρout. In the fluctuation-dominated
limit, when re � ri + ĪL , the effect of a spike in one neuron is forgotten
by the time the second spikes, so that Cout ≈ 0. As re increases toward
the drift-dominated regime, the cells become less “forgetful,” and |Cout|
increases. As re increases into the drift-dominated regime, the cells behave
like PIFs, transferring spike counts linearly and preserving correlations so
that Cout = ρout Fout ≈ ρin Fout (see Figure 17B).

The “forgetfulness” of cells diminishes the dependence between the out-
put of the cells in the fluctuation-dominated regime. The effect of a spike
in one neuron is forgotten before the second neuron spikes, and the out-
put spike trains are nearly independent as a result. This is a fundamental
property of excitable systems, and not due to the particular choice of the
Pearson correlation coefficient or the neuron model employed.

9.3 Higher-Order Correlations. Pairwise correlations play a significant
role in the neural code, and it has been proposed that the first- and second-
order statistics may fully characterize the response of a population (Schnei-
dman, Berry, Segev, & Bialek, 2006; Shlens et al., 2006, 2009; Tang et al.,
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2008, although see Roudi et al., 2009). However, the higher-order struc-
ture of the population response can have significant effects on the firing of
downstream neurons (Kuhn, Aertsen, & Rotter, 2003) and the information
carried by the response (Roudi et al., 2009).

Equation 3.1 can be used to show that a pair of PIFs preserves higher-
order correlations, and we therefore expect that a pair of leaky neurons in
the drift-dominated regime approximately preserves higher-order correla-
tions. In the fluctuation-dominated limit, the forgetfulness of cells causes
spiking to become independent, and therefore higher-order correlations are
reduced. The analysis of synaptic noise and coupling can also be extended
to higher-order moments.

9.4 Physiologically Realistic Models. We used random walk models
in our analysis and verified our results with simulations of a conductance-
based integrate-and-fire model. This approach is common in studies of
stochastic response properties of neurons (Salinas & Sejnowski, 2000; Rauch
et al., 2003) and captures the fundamental mechanisms of a physiologi-
cal cell. However, more detailed models of active conductances, synap-
tic plasticity, channel dynamics, and an extended dendritic morphology
might reveal additional mechanisms that modulate correlations. Such mod-
els are outside the scope of this study but warrant further investigation.
For instance, preliminary results suggest that correlations are reduced
significantly in a Hodgkin-Huxley model (E. Shea-Brown, private com-
munication, 2010).

Appendix A: Generating Correlated Inputs

To generate a pair of correlated Poisson processes, we used an algorithm
equivalent to the SIP model in Kuhn et al. (2003). We first generated three
independent Poisson processes, a1, a2, and b, and then defined p1 = a1 + b
and p2 = a2 + b. The processes p1 and p2 are correlated Poisson processes
with rp j = ra j + rb and ρp1 p2 = rb/

√
ra1ra2 . The cross-covariance function be-

tween these processes is a delta function with area γp1 p2 = ρp1 p2

√rp1rp2 .
Any pair of Poisson processes with a delta function cross-covariance is sta-
tistically equivalent to processes generated by the algorithm above. This
algorithm is easily generalized to four Poisson processes with specified
pairwise correlations. In generating such quadruplets, we constrain the
processes so that the probability of more than two spikes occurring si-
multaneously is zero as dt → 0. This algorithm generates delta-correlated
Poisson processes. To generate pairs of Poisson processes with temporally
extended correlations (for the gray lines in Figure 11), we added an inde-
pendent random number to each spike time in one of the excitatory and one
of the inhibitory trains. The resulting processes are Poisson with a cross-
covariance function given by the density of the random numbers used (Cox
& Isham, 1980).
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The simulations in Figures 8 and 15 required correlated processes with
CV �= 1. For these simulations, we generated pairs of correlated renewal
processes with gamma-distributed interspike intervals. Begin with a pair of
delta-correlated Poisson processes, p1 and p2, generated using the algorithm
above. Let nj ∈ N be positive integers, and let g j be the spike train consisting
of every nj th spike in p j for j = 1, 2. Then g j is a renewal processes with
rate rg j = rp j /nj , Fano factor CV2 = Fg j = 1/nj , and correlation coefficient
ρg1g2 = ρp1 p2 . The interspike intervals follow a gamma distribution with rate
parameter rg j and shape parameter nj . While the autocorrelations of such
processes are oscillatory, the cross-covariance function between g1 and g2,
is a delta function.

Appendix B: Correlation Transfer for the PIF Model

We next derive the total output correlation for a pair of PIFs driven by
correlated stationary inputs. In the main text, we assume that the input
signals can be written as in j (t) = e j (t) − i j (t), where e j (t) and i j (t) are point
processes. Here we derive the output statistics for a pair of PIFs driven by
general stationary processes, in1(t) and in2(t), under weak assumptions.

We generalize the input spike count by defining Nin j (t) = ∫ t
0 in j (s) ds for

j = 1, 2. Note that Nin j (t) is not necessarily integer valued since in j (t) is
not necessarily a point process. For the PIFs to have nonzero firing rates,
we must assume that the inputs have positive mean, μin j = E[in j (t)] >

0. The asymptotic variances, covariance, and correlation are defined as
σin j (t) = limt→∞var(Nin j (t))/t, γin = limt→∞cov(Nin1 (t), Nin2 (t))/t, and ρin =
γin/(σin1σin2 ). These quantities can also be interpreted in terms of the areas
of auto- and cross-covariance functions as in section 2. The membrane
potentials V1(t) and V2(t) of two PIFs driven by input signals in1(t) and
in2(t) obey the stochastic equations,

dV1 = in1(t) dt

dV2 = in2(t) dt,

with the added condition that when Vj reaches θ j , it is reset to Vj = 0 and
an output spike is produced. These stochastic equations can be interpreted
unambiguously in the Itô sense whenever (Nin1 (t), Nin2 (t)) is a bivariate
semimartingale (Métivier, 1982). However, any interpretation that yields
equation B.1 is sufficient. The output spike trains have rate, variance, co-
variance, and correlation rout j , σ 2

out j
, γout, and ρout as defined in section 2.

We make the following ergodicity assumptions:

1. σin, γin, σout j , and γout are finite and σin j , σout j > 0
2. �V(t) = (V1(t), V2(t)) is ergodic, and its stationary distribution has fi-

nite, positive variances.
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These assumptions are necessary for the outputs to be stationary and for the
asymptotic input and output correlations to exist. They are true for typical
processes used to model stochastic inputs, but can be violated for periodic
processes or processes obtained from deterministically periodic driving
forces. We assume that �V(0) is drawn from the stationary distribution of
�V(t) so that the process is stationary. We first derive the output statistics
for a pair of uncoupled PIFs driven by stationary inputs, then separately
consider the case of variable synaptic responses and reciprocal coupling in
appendix E.

The output spike counts are given by

Nout1 (t) = in1(t)+V1(0)−V1(t)
θ

, and Nout2 (t) = in2(t)+V2(0)−V2(t)
θ

.

(B.1)

Before deriving the output spiking statistics, we must prove a simple lemma.
The notation f (t) ∼ o(t) below is shorthand for limt→∞ f (t)/t = 0:

Lemma 1. Suppose Xt and Ct are stochastic processes such that
limt→∞ var(Xt)/t = c for some finite positive number c and var(Ct) ∼ o(t). Then
cov(Xt, Ct) ∼ o(t).

Proof. By the Cauchy-Schwarz inequality,

lim
t→∞

|cov(Xt, Ct)|
t

≤ lim
t→∞

√
var(Xt)var(Ct)

t
= lim

t→∞

√
var(Xt)

t

√
var(Ct)

t
= 0.

We now derive the output spiking statistics:

Theorem 1. Under assumptions 1 and 2 above, the output spike count variance
and covariance for a pair of PIFs driven by correlated stationary inputs, in1(t) and
in2(t), are given by

σ 2
out j

= σin j

θ2
j

, and γout = γin

θ1θ2
.

Thus, the input correlation coefficient is preserved: ρout = ρin.

Proof. First note that var(Vj (t)) ∼ o(t) by assumption 2 above and that
limt→∞ var(Nin j (t))/t = σ 2

in j
is finite and positive by assumption 1. From
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equation B.1 and using the bilinearity of covariances, we can calculate

γout = lim
t→∞

1
t

cov (Nout1 (t), Nout2 (t))

= lim
t→∞

1
t

cov
(

Nin1 (t) + V1(0) − V1(t)
θ1

,
Nin2 (t) + V2(0) − V2(t)

θ2

)
(B.2)

= 1
θ1θ2

lim
t→∞

1
t

[cov (Nin1 (t), Nin2 (t)) + o(t)]

= γin

θ1θ2
,

where equation B.2 follows from lemma 1 and the bilinearity of covariances.

Using an identical argument, we can derive σ 2
out j

= σ 2
in j

θ2
j

. It follows that
ρout = γout/(σout1σout2 ) = ρin.

Appendix C: Derivation of Equation 2.4

In this section, we derive equation 2.4, which gives the asymptotic correla-
tion between the outputs of two integrate-and-fire neurons. The equation
holds for any integrate-and-fire models for which the membrane potentials
are Markov processes (marginally and jointly) and, in addition, satisfy

Pr(Vj (t3) ∈ A| Vj (t2) = v2, Vi (t1) = v1) = Pr(Vj (t3) ∈ A| Vj (t2) = v2)

(C.1)

for i, j ∈ {1, 2}, any set A, and any voltages v1 and v2 whenever t1 < t2 < t3.
These conditions are met by a pair integrate-and-fire neurons whose

subthreshold membrane potentials are governed by equations of the form

dV1 = f1(V1, in1) dt

dV2 = f2(V2, in2) dt,

where in1(t) and in2(t) are stationary stochastic processes such that ini (t)
is independent of in j (s) for s �= t and i, j ∈ {1, 2}. Here, we assume stan-
dard threshold and reset conditions at θ j and 0, respectively (see section 2).
In short, the two input processes must be delta correlated (e.g., correlated
Poisson processes, white noise, or any linear combination thereof), and the
neurons must be uncoupled. For example, the conditions are met for the PIF,
LIF, and dLIF models considered in the text with Poisson or white noise
inputs, even in the case of random synaptic amplitudes. The conditions
are not strictly met for the conductance-based model due to its noninstan-
taneous synapses. However, the results obtained here are approximately
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valid when the input is correlated in time or when synapses are not instan-
taneous, as long as the firing rates are significantly slower than both the
synaptic time constants and the correlation time constants of the inputs.

Since the membrane potentials are marginally Markov, the output spike
trains a1(t) and a2(t) are renewal processes. We assume that the bivariate
membrane potential process (V1(t), V2(t)) is ergodic and its initial condition
is drawn from its stationary distribution so that the output spike trains are
stationary in a bivariate sense (Cox & Lewis, 1972). For ease of notation, we
write Nj (t) in place of Na j (t) for the counting processes and similarly for
other quantities.

For t > 0, define Qi j (t) to be the distribution of the waiting time until the
first spike in ai (t) after a spike in a j (t):

Qi j (t) = lim
δ→0

Pr(ai spikes in [t, t + δ], but not in [0, t] | a j

spikes in [0, δ])/δ.

The auto- and cross-covariance functions are related to the asymptotic spike
count statistics by (Cox & Lewis, 1972),

σ 2
j = 2

∫ ∞

0+
Rj j (t) dt + r j , j = 1, 2

and

γ12 =
∫ ∞

0+
R12(t) dt +

∫ ∞

0+
R21(t) dt + rs, (C.2)

where the + on the lower limit of the integrals indicates that any delta
function at the origin is omitted and rs is the rate of synchronous spikes,
which accounts for the area of the omitted delta function at the origin.
Similarly, r j accounts for the area of the delta function in Rj j (t).

Due to the renewal properties of the outputs, we have that (Cox, 1962)

Hj j (t) := lim
δ→0

1
δ

∞∑
k=1

Pr(a j spikes for the kth time in [t, t + δ] | a j

spiked in [0, δ])

=
∞∑

k=1

Q(k)
j j (t), t > 0, j = 1, 2,

where Q(k)
j j is the k-fold convolution of Q j j with itself. Similarly, due to the

renewal properties of the outputs in addition to assumption C.1, we have
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for t > 0,

H12(t) := lim
δ→0

1
δ

∞∑
k=1

Pr(a1 spikes for the kth time in[t, t + δ] | a2

spiked in [0, δ])

= Q12(t) +
∞∑

k=1

(
Q12 ∗ Q(k)

11

)
(t)

= Q12(t) + (Q12 ∗ H11)(t), (C.3)

where ∗ denotes convolution. Similarly, H21(t) = Q21(t) + (Q21 ∗ H22)(t) for
t > 0.

We proceed by considering the Laplace transform of the cross-covariance
functions. The Laplace transform of a function f (t) is given by f̂ (u) =∫ ∞

0+ e−ut f (t) dt. Using elementary properties of the Laplace transform, equa-
tion C.3 can be rewritten as Ĥ12(u) = Q̂12(u) + Q̂12(u)Ĥ11(u). Now, using the
definition of R12(t), we can write

R̂12(u) = r2

(
Ĥ12(u) − r1

u

)
= r2

(
Q̂12(u) + Q̂12(u)Ĥ11(u) − r1

u

)

= r2

(
Q̂12(u) + 1

r1
Q̂12(u)R̂11(u) + r1

(
Q̂12(u) − 1

u

))
,

where the last step follows from the fact that Ĥ11(u) = R̂11(u)/r1 + r1/u.
From this, we can calculate the area of the cross-covariance function,

∫ ∞

0+
R12(t) dt = lim

u→0
R̂12(u)

= r2

(
1 + σ 2

1 − r1

2r1
+ r1 Q̂′

12(0)
)

= r2

(
CV2

1 + 1
2

− r1 E[τ1 | V2 ↗ θ2]

)
(C.4)

where F1 = CV2
1 = σ 2

1 /r1 is the output Fano factor and E[τ1 | V2 ↗ θ2] =
−Q̂′

12(0) is the expected time until the first spike in a1 after a spike
in a2 (Feller, 1991). In the derivation above, we used the facts that
limu→0 Q̂12(u) = 1 and limu→0 R̂11(u) = (σ 2

1 − r1)/2.
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By an identical argument, we get an analogous expression for∫ ∞
0+ R21(t) dt. From these expressions and equation C.2, we can write the

output correlation, ρout = γ12/(σ1σ2), as

ρout =
√

r1r2 (E[τ1] − E[τ1 | V2 ↗ θ2] + E[τ2] − E[τ2 | V1 ↗ θ1]) + S12

CV1CV2
,

(C.5)

where E[τ1] = (CV2
1 + 1)/(2r1) is the expected recurrence time (Cox, 1962),

which is the expected time until the next spike in a1 starting from an arbi-
trary time (i.e., with V1 starting from its stationary distribution) and simi-
larly for E[τ2].

To obtain the form given in equation 2.4, we note that equation C.4 can
be written as

∫ ∞

0+
R12(t) dt = r2

2
(CV2

1 + 1)
(

E[τ1] − E[τ1 | V2 ↗ θ2]
E[τ1]

)
.

In the symmetric case, combining this with equation C.2 gives equation 2.4.
Equation C.5 can be used to calculate the correlation between simulated

data when the model satisfies the Markov assumptions made above. To
apply the equation to data, we need only to obtain estimates for r j , CV j ,
E[τ1 | V2 ↗ θ2], E[τ2 | V1 ↗ θ1], and S12. The rates and ISI CVs can easily
be estimated from a sample of the univariate interspike intervals, r j =
1/E[I Si j ] and CV2

j = var(I Si j )/E[I Si j ]2. The synchrony is easily estimated
by counting the occurrence of synchronous spikes. To estimate E[τ1 | V2 ↗
θ2], one needs only to calculate the average time between a spike in a2 and
the next spike in a1, and similarly for E[τ2 | V1 ↗ θ1].

We used equation C.5 to obtain the estimates of ρout for the LIF model in
Figures 4 and 8. We found several advantages to using this method versus
conventional methods, such as computing the cross-covariance functions
or counting spikes over sliding windows. When calculating the correlation
from the integrals of the cross-covariance functions, one must bin time and
also choose a large window size over which to integrate. Similarly, when
using the sample covariance of spike counts between sliding windows, one
must choose a large window size for the sliding window. The quantities in
equation C.5 can all be estimated by looking at the time intervals between
spikes. It is therefore not necessary to bin time or fix a large window size
over which to calculate the correlation. The algorithm based on equation C.5
appears to be faster than algorithms using the other two methods. Although
a deeper investigation is necessary, it also appears that the estimator is more
accurate.

Next, we show how equation C.5 can be used to calculate the exact
correlation coefficient for the dLIF model.
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Appendix D: Analysis of the dLIF Model

The methods used to analyze the PIF model cannot be applied to the dLIF
model since there is no analog to equation 3.1 due to the lower reflecting
barrier at β. However, when the inputs are correlated Poisson processes as
defined in appendix A, we can use the theory of continuous-time Markov
chains in combination with equation C.5 to derive the output spiking statis-
tics. (A suite of Matlab programs that implement the methods described be-
low can be found online at http://www.mathworks.com/matlabcentral/
fileexchange/28686.)

For notational simplicity in the analysis below, we consider only the case
where ĪL = 0, that is, there is no leak term. However, note that the leak cur-
rent in this model is equivalent to an uncorrelated inhibitory input current.
To recover the results for ĪL > 0 from the results below, simply make the
substitutions ri j → ri j + ĪL j , ρii → ρii/(1 + ĪL/ri), and ρei → ρei/

√
1 + ĪL/ri.

We first derive the univariate statistics for a single dLIF driven by Pois-
son inputs (see section 2). The membrane potential V(t) for this model is
a continuous-time Markov random walk, and the output spike trains are
renewal processes. The Laplace transform of the first passage time densi-
ties for reflected random walks are obtained by Khantha and Balakrishnan
(1983). The moments of the first passage times can be found from the deriva-
tives of these Laplace transforms (Feller, 1991). For the mean first passage
time of V(t) over θ starting from k ∈ {β, β + 1, . . . , θ − 1},

μk→θ = q
(−qβ−k − kq + k + qβ−θ + qθ − θ

)
(q − 1)2 re

.

To derive this expression, we needed to correct an error in Khantha and
Balakrishnan (1983) in going from their equation 6 to equation 7: the inner
expression in their equation 7 should read (m − m0) + ( f −m − f −m0 )/( f − 1)
instead of (m − m0) − ( f −m − f −m0 )/( f − 1). The variance of the first pas-
sage time from reset to threshold is given by

σ 2
0→θ = q 2

(−4(β(q − 1) − q (θ + 1) + θ)qβ−θ + q 2(β−θ ) − q 2β + 4(β(q − 1) − q )qβ + (
q 2 − 1

)
θ
)

(q − 1)4 r2
e

.

The output firing rate is then given by rout = 1/μ0→θ , the asymptotic spike
count variance is σ 2

out = σ 2
0→θ /μ

3
0→θ , and the output Fano factor is Fout =

CV2
out = σ 2

0→θ /μ
2
0→θ = σ 2

out/rout (Cox, 1962). Simplified expressions for rout

and CVout are given in section 2.
Other univariate statistics can be found from the infinitesimal generator

matrix of the membrane potential process, V(t) (Karlin & Taylor, 1975). The
off-diagonal terms (i �= j) of this matrix are given by

Bi j := lim
h→0

1
h

Pr(V(t + h) = j | V(t) = i) =
⎧⎨
⎩

re j = i + 1
ri j = i − 1
re i = θ − 1, j = 0

. (D.1)
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The diagonal terms are then chosen so that each row sums to zero:
Bi i = −∑

j �=i Bi j . The distribution of V(t) is then given by P(t) = P(0)eBt ,
where P(t) is a time-dependent vector with Pj (t) = Pr(V(t) = j) and P(0)
is the initial distribution. The stationary distribution p( j) = limt→∞ Pj (t)
is then given by the left eigenvector corresponding to the dominant
left eigenvalue, λ0 = 0. The remaining eigenvalues have negative real
part. The nonzero eigenvalue with maximal real part, λ1, determines the
timescale with which Pj (t) → p( j). In particular, |Pj (t) − p( j)| ∼ e−t/τmem ,
where τmem = −1/Real(λ1).

The univariate stationary distribution, p( j), can be found by deriving
the dominant left eigenvector as discussed above, which is equivalent to
solving the detailed balance equation p = peB. This is a linear recurrence
equation and can be solved using a computer algebra system or by hand
using the method of generating functions. We obtained the solution

p(k) = lim
t→∞ Pr(V(t) = k) = q − 1

qβ − q θ (qβ + θ − qθ )

×
{

(q θ+k − q k) β ≤ k ≤ 0

(q θ − q k) 0 < k < θ
. (D.2)

The output rate, derived from the first passage properties above is also
given by the probability flux across threshold: rout = re p(θ − 1).

We now consider the case of two dLIF neurons driven by correlated
Poisson inputs (see section 2). We will use equation C.5 to calculate the
correlation coefficient, ρout, between the output spike trains. First, we must
calculate the stationary distribution of the bivariate process, (V1(t), V2(t)).
We first enumerate the state-space, θ1 × θ2 into a single vector of length θ1θ2

and calculate the infinitesimal generator matrix, in a similar fashion to the
univariate case described above. Complicated boundary conditions make
it impractical to include the full bivariate generator matrix in the text. The
Matlab code that accompanies this letter can be used to generate this matrix.

The bivariate stationary distribution, p(k1, k2), is the the basis vector for
the one-dimensional nullspace of the transpose of A; equivalently, it is the
left eigenvector of A associated with the left eigenvalue λ = 0. A variety
of numerical techniques can be used for finding this vector. Note that the
vector must be normalized so that its elements sum to 1 since p(k1, k2) is a
probability distribution.

A synchronous output spike occurs whenever both cells are just be-
low threshold and receive a synchronous excitatory input. The rate of syn-
chronous outputs spike is therefore given by rs = p(θ1 − 1, θ2 − 1)ρee

√
re1re2 .

The output synchrony is then S12 = rs/
√

rout1rout2 .
Since the univariate statistics are known in closed form (see above), the

only quantities from equation C.5 left to calculate are E[τ1 | V2 ↗ θ2] and
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E[τ2 | V1 ↗ θ1]. First, define the conditional distribution,

p1(k1 | V2 = θ2 − 1) = p(k1, θ2 − 1)
p2(θ2 − 1)

,

where p2(θ2 − 1) is the value of univariate stationary distribution for V2(t)
at θ2 − 1 from equation D.2. From here, we need to calculate the conditional
distribution p1(k1 | V2 ↗ θ2), which represents the distribution of V1 given
that V2 has just crossed threshold. This can be calculated by evolving a
proportion ρee

√
re1/re2 of the probability mass in p(k1 | V2 = θ2 − 1) by one

excitatory spike and evolving a separate proportion ρi1e2

√
ri1/re2 by one

inhibitory spike (see the linked Matlab code). We can then use the mean
first passage times derived above to calculate

E[τ1 | V2 ↗ θ2] =
θ1∑

k=β1

p(k | V2 ↗ θ2) μk→θ1 .

An identical method is used to calculate E[τ2 | V1 ↗ θ1]. Now, ρout can be
calculated from equation C.5.

We now describe how to calculate time-dependent statistics for Figures 5
and 17A. LetB1 be the infinitesimal generator matrix of the marginal process
V1(t) (see equation D.1). Given an initial distribution, V1(0), the distribution
of V1(t) is given by eB1tV1(0). The conditional distribution of V1(t) after a
spike in V2 is then given by Pr(V1(t) = k | V2(0) ↗ θ2) = [

eB1tV1(0)
]

k , where
[·]k denotes the kth component and the initial distribution is the conditional
distribution described above, [V1(0)]k = p1(k | V2 ↗ θ2).

The time-dependent conditional mean and standard deviation for the
top row of Figure 5 can be calculated directly from p1(k1 | V2 ↗ θ2). The
instantaneous firing rate, given an initial distribution V1(0), is given by
the flux across threshold, ν(t | V1(0)) = re

[
eB1tV1(0)

]
θ1−1. The conditional

intensity function, H12(t), is then given by ν(t | V1(0)) with [V1(0)]k =
p1(k | V2 ↗ θ2). The autoconditional intensity function, H11(t), is given by
ν(t | V1(0)) with [V1(0)]k = δ0,k . The functions H21(t) and H22(t) are derived
analogously. The auto- and cross-covariance functions are then given by
Ri j (t) = r j (Hi j (t) − ri).

For the bottom row of Figure 5, we needed to calculate the cumulative
distribution of the first passage time of V1 over θ1 given an initial distri-
bution. This can be achieved by adding an absorbing state at threshold, θ2,
to the marginal infinitesimal generator, B1. Then the cumulative distribu-
tion of the waiting time until the next spike is simply given by the amount
of mass in the absorbing state at time t. That is, Pr(τ1 ≤ t) = [

eB1tV1(0)
]
θ1

,
where B1 has an absorbing state at θ1, and V1(0) is the appropriate initial
distribution. The conditional distribution (the solid line in the bottom row
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of Figure 5) is found by setting [V1(0)]k = p1(k | V2 ↗ θ2) as above. The sta-
tionary case (dashed line) is found by setting [V1(0)]k = p1(k), where p1(k)
is the marginal stationary distribution from equation D.2.

Appendix E: Generalizations of the PIF Model

In this section, we generalize theorem 1 to take synaptic variability and cou-
pling into account in the PIF model, thereby obtaining the main equations
in sections 5 and 6.

E.1 The PIF with Random Postsynaptic Responses. Suppose that the
ith excitatory input to neuron j increments Vj (t) by a random amount di

e j

and that the ith inhibitory input to neuron j decrements Vj (t) by a random
amount di

i j
. Each di

e j
(di

i j
) is drawn independently from a distribution with

mean de j (d i j ) and variance σ 2
de j

(σ 2
di j

) for j = 1, 2. To guarantee positive

firing rates rout j = (re j de j − ri j d i j )/θ j > 0, we assume μYj = re j de j − ri j d i j >

0. This model is equivalent to a PIF with inputs

Yj (t) =
∑

ti ∈�e j

di
e j

δ(t − ti ) −
∑

ti ∈�i j

di
i j
δ(t − ti ), j = 1, 2.

Thus, by theorem 1, σ 2
out1

= σ 2
Yj

θ2
j
, γout = γY1Y2

θ1θ2
, and ρout = ρY1Y2 .

The accumulated effective input process NYj (t) = ∫ t
0 Yj (s) ds can be writ-

ten as

NYj (t) =
Ne j (t)∑
i=1

di
e j

−
Ni j (t)∑
i=1

di
i j
. (E.1)

The two terms on the right-hand side of eq. E.1 are random sums with
variances (Karlin & Taylor, 1975) given by

var(NYj (t))=var(Ne j (t))d
2
e j

+E[Ne j (t)]σ
2
de j

+var(Ni j (t))d i j + E[Ni j (t)]σ
2
di j

.

Dividing by t and taking t → ∞ gives

σ 2
Yj

= lim
t→∞

1
t

var(NYj (t)) = σ 2
e j

d
2
e j

+ re j σ
2
de j

+ σ 2
i j

d
2
i j

+ ri j σ
2
di j

.

Covariances can be derived similarly to obtain

γY1Y2 = de1 de2γe1e2 + d i1 d i2γi1i2 − de1 d i2γe1i2 − d i1 de2γi1e2 .
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Thus,

σ 2
out j

=
(
σ 2

e j
d

2
e j

+ re j σ
2
de j

+ σ 2
i j

d
2
i j

+ ri j σ
2
di j

)
/θ2

j ,

and

γout = (
de1 de2γe1e2 + d i1 d i2γi1i2 − de1 d i2γe1i2 − d i1 de2γi1e2

)
/ (θ1θ2) ,

and therefore

ρout= de1 de2γe1e2+d i1 d i2γi1i2 − de1 d i2γe1i2 − d i1 de2γi1e2√(
σ 2

e1
d

2
e1

+re1σ
2
de1

+σ 2
i1

d
2
i1
+ri1σ

2
di1

) (
σ 2

e2
d

2
e2

+re2σ
2
de2

+σ 2
i2

d
2
i2
+ri2σ

2
di2

) .

In the symmetric case discussed in the text, this simplifies to equation 5.1.
To combine variable PSP amplitudes—independent and identically dis-

tributed (i.i.d.) random jumps, di, with CV = CVd—with synaptic failure
(probability of release p), we can multiply each jump di by an i.i.d. bino-
mial variable, bi (with Pr(bi = 1) = p), to obtain the “effective” jumps. In

the symmetric case, the CV of this product is given by
√

(CV2
d + 1 − p)/p.

Making the substitution CVd →
√

(CV2
d + 1 − p)/p in equation (5.1 gives

equation 5.2).

E.2 The PIF with Coupling. Now suppose that the subthreshold mem-
brane potentials V1(t) and V2(t) of the PIFs driven by the stationary signals
in1(t) and in2(t) obey the coupled equations,

dV1 = in1(t) dt + c1out2(t) dt

dV2 = in2(t) dt + c2out1(t) dt,

with out1 and out2 the output spike trains. Thus, each output spike from
neuron 2 increments V1 by an amount c1, and vice versa. We assume that
c j < θ j so that a spike from one neuron cannot drive the other from reset to
threshold. Then the output spike counts obey the coupled equations,

Nout1 (t) = in1(t) + c1 Nout2 (t) + V1(0) − V1(t)
θ

Nout2 (t) = in2(t) + c2 Nout1 (t) + V2(0) − V2(t)
θ

. (E.2)
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Defining nj (t) = Nin j (t) + Vj (0) − Vj (t), we can solve equation E.2 for
Nout j (t) to obtain

Nout1 (t) = θ2n1(t) + c1n2(t)
θ1θ2 − c1c2

, Nout2 (t) = θ1n2(t) + c2n1(t)
θ1θ2 − c1c2

. (E.3)

Thus, in order to have nonzero firing rates, we must assume that θ2μin1 +
c1μin2 > 0 and θ1μin2 + c2μin1 > 0 and the firing rates are rout1 = (θ2μin1 +
c1μin2 )/(θ1θ2 − c1c2) and rout2 = (θ1μin2 + c2μin1 )/(θ1θ2 − c1c2).

The following theorem gives the total output correlation:

Theorem 2. The output correlation coefficient between the output of a pair of
coupled PIFs driven by correlated stationary inputs in1(t) and in2(t) with coupling
terms c1 and c2 is

ρout = (θ1θ2 + c1c2)γin + c2θ2σ
2
in1

+ c1θ1σ
2
in2√(

θ2
2 σ 2

in1
+ c2

1σ
2
in2

+ 2c1θ2γin
) (

θ2
1 σ 2

in2
+ c2

2σ
2
in1

+ 2c2θ1γin
) .

(E.4)

Proof From equation E.3,

γout = lim
t→∞

1
t

cov (Nout1 (t), Nout2 (t))

= lim
t→∞

1
t

cov
(

θ2n1(t) + c1n2(t)
θ1θ2 − c1c2

,
θ1n2(t) + c2n1(t)

θ1θ2 − c1c2

)

= 1

(θ1θ2 − c1c2)2 lim
t→∞

1
t

cov (θ2n1(t) + c1n2(t), θ1n2(t) + c2n1(t))

= 1

(θ1θ2 − c1c2)2

(
(θ1θ2 + c1c2)γn1n2 + c2θ2σ

2
n1

+ c1θ1σ
2
n2

)
.

By an identical argument,

σ 2
out1

= 1

(θ1θ2 − c1c2)2

(
θ2

2 σ 2
n1

+ c2
1σ

2
n2

+ 2c1θ2γn1n2

)
,

with a a symmetric expression for σ 2
out2

. Therefore,

ρout = γout

σout1σout2

= (θ1θ2 + c1c2)γn1n2 + c2θ2σ
2
n1

+ c1θ1σ
2
n2√(

θ2
2 σ 2

n1
+ c2

1σ
2
n2

+ 2c1θ2γn1n2

) (
θ2

1 σ 2
n2

+ c2
2σ

2
n1

+ 2c2θ1γn1n2

) . (E.5)
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All that is left is to show that σnj = σin j and γn1n2 = γin. We have

γn1n2 = lim
t→∞

1
t

cov (n1(t), n2(t))

= lim
t→∞

1
t

cov (Nin1 (t) + V1(0) − V1(t), Nin2 (t) + V2(0) − V2(t))

= lim
t→∞

1
t

(cov (Nin1 (t), Nin2 (t)) + o(t)) (E.6)

= γin,

where equation E.6 follows from lemma 1 and the assumption that
(V1(t), V2(t)) is ergodic with finite second moments. By an identical argu-
ment, we have σ 2

nj
= σ 2

in j
, j = 1, 2.

In the symmetric case, we define u = c/θ and obtain equation 6.1.
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