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The spiking activity of cortical neurons is often characterized by their 
average response over a large number of trials, prompting a wealth of 
theoretical studies relating the structure of neuronal networks to their 
trial-averaged firing rate dynamics1. However, trial averages do not 
capture the stochastic and irregular dynamics characteristic of cortical 
populations and the nervous system in general2. Indeed, trial-to-trial 
fluctuations are central to contemporary theories of cortical compu-
tation3,4. A deep mechanistic understanding of neuronal variability 
remains an open challenge.

Early theoretical studies deduced that variable spiking activity 
could arise through a balancing of strong, yet opposing, excitatory 
and inhibitory synaptic inputs5,6. Expanding on this conjecture, van 
Vreeswijk and Sompolinsky7 showed that networks of recurrently 
coupled model neurons robustly create a state where strong excita-
tion is approximately balanced by inhibition, creating a push-pull 
dynamic that generates irregular spiking activity. More recently, bal-
anced networks have been implicated in theories of optimal coding8, 
working memory9 and stimulus tuning10. Numerous experimental 
studies have established that excitation is often approximately bal-
anced by inhibition in cortical circuits11–17. In sum, balanced net-
works provide a parsimonious model of the irregular spiking activity 
observed in cortical circuits.

Early balanced network models produced asynchronous activity 
through sparse connectivity7,18. However, several experimental stud-
ies reveal that local cortical networks are densely connected, with con-
nection probabilities between nearby neurons sometimes exceeding 
40 percent19–22. These data imply substantial overlap between local 
synaptic inputs, which could, in principle, synchronize cortical net-
works. However, counter to intuition, balanced networks with dense 
connectivity show weak spike train correlations23. This ‘asynchronous 

state’ results from the correlated excitatory (e) or inhibitory (i) affer-
ents to neuron pairs being actively cancelled by a strong negative e–i 
correlation, establishing weak correlations even when connectivity 
is not sparse23.

Consistent with the predicted asynchronous state, some multiunit 
extracellular recordings show noise correlations that are nearly zero on 
average24. However, a majority of population recordings in cortex reveal 
comparatively large correlations25,26. Several studies suggest that the 
magnitude of noise correlations is dependent on many factors27, includ-
ing arousal28, attention29, anesthetic state23,24,30,31 and cortical layer32,33. 
Finally, while in vivo whole-cell recordings reveal strong positive e–e 
and i–i correlations coexisting with strong e–i correlations13, these cor-
relation sources do not always perfectly cancel as predicted by some 
theoretical models28. Taken together, these studies show that cortical 
circuits can exhibit both weak and moderate noise correlations, at odds 
with predictions from the current theory of balanced networks23.

In this study, we generalize the theory of correlations in densely 
connected, balanced networks to include the widely observed depend-
ence of synaptic connection probability on distance21,34. We show 
that spatially broad recurrent projections disrupt the asynchronous 
state, producing a signature spatial correlation structure: nearby 
pairs of neurons are positively correlated on average, pairs at inter-
mediate distances are negatively correlated and distant pairs are 
weakly correlated. These positive and negative correlations cancel so  
that the average correlation between pairs sampled randomly over a 
large range of distances is nearly zero. We uncover this non-monotonic 
dependence of correlation on distance in recordings from superficial 
layers of macaque primary visual cortex, but only after correcting  
for a latent source of shared fluctuations. Our findings decouple  
balanced excitation and inhibition from asynchronous network  
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Shared neural variability is ubiquitous in cortical populations. While this variability is presumed to arise from overlapping  
synaptic input, its precise relationship to local circuit architecture remains unclear. We combine computational models and  
in vivo recordings to study the relationship between the spatial structure of connectivity and correlated variability in neural 
circuits. Extending the theory of networks with balanced excitation and inhibition, we find that spatially localized lateral 
projections promote weakly correlated spiking, but broader lateral projections produce a distinctive spatial correlation structure: 
nearby neuron pairs are positively correlated, pairs at intermediate distances are negatively correlated and distant pairs are weakly 
correlated. This non-monotonic dependence of correlation on distance is revealed in a new analysis of recordings from superficial 
layers of macaque primary visual cortex. Our findings show that incorporating distance-dependent connectivity improves the 
extent to which balanced network theory can explain correlated neural variability. 
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activity, greatly extending the applicability of balanced network  
theory to explaining cortical dynamics.

RESULTS
We consider a network of excitatory and inhibitory exponential inte-
grate-and-fire model neurons. Neurons provide recurrent, lateral 
synaptic input to one another and receive feedforward synaptic input 
from a nonlocal presynaptic population. A detailed mathematical 
analysis of correlations in the limit of large network size is provided 
in Supplementary Note 1 and Supplementary Figures 1–3. Below 
we provide an outline of these theoretical results and confirm their 
predictions using computer simulations. We first use a simplified net-
work model to demonstrate how the asynchronous state considered in 
previous theoretical work23 is broken by heterogeneous input correla-
tions35. We then consider a more realistic model where neurons belong 
to a continuous spatial domain and connection probability depends 
on distance.

Homogeneous input correlations are cancelled by balanced 
networks
To demonstrate the mechanisms affecting correlations in recurrent 
networks, we first simulated a simplified network of N = 20,000 neu-
rons, half excitatory and half inhibitory, that all receive the same fluc-
tuating feedforward input and are each connected with probability 
0.25 (Fig. 1a). Despite the fact that neuron pairs share all of their 
feedforward input and 25% of their recurrent synaptic input on aver-
age, spiking activity was asynchronous, with an average pairwise spike 
count correlation of 6.8 × 10−5 (Fig. 1b,c).

This small average correlation is a defining characteristic of the 
asynchronous state. Mathematically, this state is realized when spike 
count covariances in the network satisfy23 

C  SS ~ ( / )O N1

where CSS denotes the average spike count covariance between pairs 
of neurons in the recurrent network, N is the number of neurons 
in the network and ~ O(1/N) denotes asymptotic proportionality to 
1/N for large N. Note that covariance and correlation scale identi-
cally with network size in balanced networks, so we discuss them 
interchangeably23.

Our theoretical analysis proceeds by noting that spike count covari-
ance is inherited from synaptic input covariance26 and therefore the 
two scale similarly with N in the asynchronous state, 

C  II ~ ( / )O N1

where CII denotes the average covariance between neurons’ synaptic 
inputs.

Synaptic inputs can be decomposed into their feedforward and 
recurrent sources, I = F + R, so that neurons’ input covariances 
decompose as 

C C C CII FF RR RF2

where CFF is the average covariance between neurons’ feedforward 
input currents, CRR between their recurrent inputs and CRF between 
one neuron’s recurrent and the other neuron’s feedforward synaptic 
input. Recurrent synaptic input, R, is composed of positive contribu-
tions from lateral excitatory synaptic inputs and negative contribu-
tions from inhibitory (R = e − i).

Shared input fluctuations are visualized by averaging the inputs 
to several neurons, so that the unshared contributions average out 
(Fig. 1d). Overlapping inputs cause CFF and CRR to be positive  
(Fig. 1d). If feedforward input correlation is moderate, CFF ~ O(1), 
then recurrent input tracks the feedforward input so that CRF is neg-
ative and nearly perfectly cancels the positive sources of correlations 
(i.e., 2CRF = −(CFF + CRR) + O(1/N); see Supplementary Note 1).  
As a result, the covariance between the total synaptic inputs is  
weak, CII ~ O(1/N) (Fig. 1d). This cancellation arises naturally in 
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Figure 1 Heterogeneous feedforward input breaks asynchrony in balanced recurrent networks. (a) Homogeneous network diagram. A population of 
20,000 recurrently connected excitatory and inhibitory neurons receives globally correlated feedforward input. (b) Normalized histogram of pairwise 
spike count correlations between 1,000 randomly selected neurons. All histograms are normalized by their integral. (c) Raster plot of 500 randomly 
chosen neurons plotted over 1 s. (d) Shared fluctuations in the feedforward (blue) and recurrent (red) synaptic inputs cancel so that shared fluctuations 
in the total synaptic currents (black) are weak. Curves were computed by averaging the synaptic input currents to 500 neurons, convolving with a 
Gaussian-shaped kernel (  = 15 ms), subtracting the mean and dividing by the neurons’ rheobase. (e–h) Same as a–d except neurons were separated 
into two populations with separate feedforward inputs. Currents in h are from neurons in population 2. Histograms in f show correlations from neuron 
pairs randomly selected from both populations (black), from the same population (purple) and from opposite populations (green). Rec, recurrent; ffwd, 
feedforward; syn, synaptic; corr., correlation; pop., population.
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the balanced state and does not require a precise tuning of model 
parameters23. Since spiking correlations are inherited from synaptic 
input covariance26, this cancellation of input covariances leads to 
small, O(1/N), spike count correlations.

Heterogeneous input correlations can disrupt the 
asynchronous state
To study the impact of heterogeneity on correlations in balanced net-
works, we modified the above model by dividing the neurons into 
two populations. Each population received a separate feedforward 
input (Fig. 1e). The two feedforward input sources were statistically 
identical but uncorrelated. Recurrent connectivity was not changed: 
neurons were randomly connected without respect to population 
membership (identically to Fig. 1a). This input heterogeneity dra-
matically changed the structure of correlations in the network. Pairs 
of neurons in the same population had strongly positive spike count 
correlations on average (0.34), while neuron pairs from opposite pop-
ulations were negatively correlated with a nearly identical correlation 
magnitude (−0.34), and the average correlation between all pairs was 
nearly zero (4.2 × 10−4; Fig. 1f,g).

The mechanism responsible for this change in correlations can be 
understood by again separating the synaptic input covariance into its 
recurrent and feedforward sources, but generalizing the decomposi-
tion to account for neuron ‘distance’ to obtain 

C d C d C d C dII FF RR RF( ) ( ) ( ) ( ) ( )2 1

Here CII(d) is the average covariance between input currents to pairs 
of neurons separated by distance d, where d = 0 for neurons in the 
same population and d = 1 for opposite population pairs, and similarly 
for the other terms. Feedforward input is only correlated between 
neurons in the same population, so CFF(0) > 0, but CFF(1) = 0.

In contrast, recurrent connections do not respect population mem-
bership and thus neither do the statistics of recurrent input, 

C C C CRR RR RF RFand( ) ( ) ( ) ( )0 1 0 1

Since covariances CRR(d) and CRF(d) do not depend on d but CFF(d) 
does, cancellation cannot be achieved in equation (1) for both d = 1  
and d = 0 simultaneously. In other words, the one ‘copy’ of shared 
recurrent synaptic input cannot cancel both versions of the feedfor-
ward synaptic inputs. The loss of cancellation causes the total synaptic 
current shared by neurons in the same population to inherit shared 
fluctuations from their feedforward inputs (Fig. 1h), giving rise to 
positive O(1) correlations between same-population pairs. A com-
petitive dynamic introduces negative correlations between neurons in 
opposite populations (Fig. 1f,g). A similar mechanism was considered 
in a recent theoretical study35.

For illustrative purposes, we considered a simplified network 
model with discrete subpopulations, but correlations and connectiv-
ity in many cortical circuits depend on continuous quantities such 
as physical distance or tuning similarity19,21,36. Next, we generalize 
these findings to more biologically realistic networks with connection 
probabilities that depend on neuron distance.

A spatially extended network model
We next considered a network of Ne = 40,000 excitatory and Ni = 
10,000 inhibitory model neurons arranged on a square-shaped 
domain modeling a portion of a cortical layer. The neurons receive 
feedforward synaptic input from a separate layer of Poisson-spiking 

(1)(1)

neurons and are connected with a probability that decays with dis-
tance (Fig. 2). Specifically, the probability of a connection between 
two neurons in the recurrent network obeys 

Pr( ) ( ; )connection recg d 2

where d is the distance between the neurons measured along the 
two-dimensional network, g(d; 2)  exp(−d2/(2 2)) is a Gaussian-
shaped function and rec approximately represents the average 
length of a recurrent synaptic projection. Similarly, the probability 
of a synaptic projection from a neuron in the feedforward layer to 
a neuron in the recurrent layer decays with distance similarly to a 
Gaussian with width parameter ffwd, where distance is measured 
parallel to the cortical surface (Fig. 2). We next show that the asyn-
chronous state is realized when rec < ffwd, then show that the 
asynchronous state cannot be realized when rec > ffwd.

The asynchronous state in spatially extended cortical circuits
As above, asynchronous spiking requires a cancellation between input 
covariances (cf. equation (1)), except that d now represents continu-
ous instead of binary distance. Therefore, conditions on asynchrony 
require first an understanding of how input covariances depend on 
pairwise neuron distance.

Overlapping feedforward synaptic projections introduce O(1) 
correlations between the feedforward inputs to neuron pairs. Since 
nearby pairs share more feedforward inputs, these correlations are 
distance dependent. Specifically, synaptic divergence causes feedfor-
ward input correlations to be O(1) and twice as broad as synaptic 
projection widths (Fig. 2b), 

C d g dFF ffwd( ) ( ; ).2

The fact that CFF(d) ~ O(1) at first seems to preclude the possibil-
ity of an asynchronous state because CFF(d) is one component  
of CII(d) in equation (1) and the asynchronous state requires CII(d) ~ 
O(1/N). However, the asynchronous state is realized under a cancel-
lation between positive (CFF and CRR) and negative (CRF) sources of 
correlations in equation (1). Cancellation at all distances requires 
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Figure 2 Correlation and projection widths in spatially extended 
networks. (a) Network schematic. Black triangles and circles represent 
excitatory and inhibitory neurons. Red disks indicate recurrent synaptic 
projections. Recurrent connection probability decays with distance with 
width parameter rec. Blue cone denotes feedforward (ffwd) synaptic 
projections from a separate layer, with width parameter ffwd.  
(b) Correlations introduced by overlapping feedforward input to neurons in 
the recurrent layer (shared blue input to red triangles) decay with distance 
twice as slowly as feedforward connection probability ( 2
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inputs ( 2

RR; input from black triangles to red triangles) is equal to width 
of spike train correlations ( 2

SS; dashed line) plus twice the width of 
recurrent projections (2 rec; solid lines).
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that all correlation sources have the same shape (Supplementary  
Note 1), meaning that 

C d C d g dRF RR ffwd( ), ( ) ( ; ) ( )2 2

The implications of this requirement on the spatial profile of spiking 
correlations are clarified by noting that recurrent synaptic input is 
generated by spike trains in the recurrent network. Synaptic diver-
gence causes the correlations between neurons’ recurrent synaptic 
inputs to be broader in space than the correlations between spike 
trains according to (Fig. 2c): 

RR SS rec 2 2 2

Here RR is the width of correlations between neurons’ recurrent syn-
aptic input currents and SS is the width of spike train correlations in 
the recurrent network. In general, we use  to denote the widths of 
synaptic projections and  to denote the widths of correlations.

Correlations between recurrent inputs are constrained by the can-
cellation required in the asynchronous state. Specifically, equation (2)  
requires that the width of correlations between recurrent synaptic 
inputs satisfy 

RR ffwd
2 22

Combining the two expressions for RR above yields 

SS ffwd rec
2 2 22 3( ) ( )

The existence of a real solution to equation (3) requires that ffwd > rec;  
in other words, the spatial width of the recurrent projections must 
be narrower than the width of feedforward projections for the  
asynchronous state to exist. Further, equation (3) implies that  

2SS > 2FF − 2rec, so that spike train correlations are spatially  
narrower than correlations between feedforward input currents.  
Thus, recurrent dynamics actively sharpen the spatial profile of cor-
relations in the asynchronous state (compare to the sharpening of 
tuning curves in previous work37).

To test these theoretical findings, we performed network simu-
lations with feedforward synaptic projections broader than recur-
rent projections (Fig. 3a). The simulations confirmed that CRR(d) 
and CRF(d) decayed similarly with distance to CFF(d) (Fig. 3b). This 
allowed a cancellation between positive and negative sources of  
correlations, so that correlations between neurons’ total synaptic  
currents and between their spike trains were weak over all distances 
(Fig. 3b–e). Despite their small average, spike count correlations 
had a larger standard deviation (s.d. = 0.11; Fig. 3d), consistent 
with results for nonspatial networks23 (Fig. 1b). Neurons in the net-
work receive strong excitation that is canceled by strong inhibition 
on average (Fig. 3f and Supplementary Fig. 4a,b), confirming that  
the network maintains a balanced state. Correlations computed 
from simulations agreed with closed-form mathematical predictions  
(Fig. 3e; see Supplementary Note 1 for equations). Additional 
simulations confirmed that mean correlations decay toward zero at 
increasing network size (Supplementary Note 2 and Supplementary 
Fig. 4c,d).

Broad lateral connections produce a signature spatial 
correlation structure
As noted above, the cancellation between positive and negative corre-
lations necessary for the asynchronous state cannot be realized when 
recurrent projections are broader than feedforward ( rec > ffwd) 

(2)(2)

(3)(3)

because equation (3) cannot be solved in this case. Instead, neuron 
pairs inherit correlations from overlapping feedforward inputs so that 
CSS(d) ~ O(1).

We confirmed this prediction by numerical simulations identical 
to those discussed above, but with recurrent projections broader than 
feedforward (Fig. 4a). As predicted, recurrent input correlations were 
too spatially broad to cancel with the more sharply decaying feedfor-
ward correlations (Fig. 4b), so that the total input correlation between 
nearby neurons was large (Fig. 4b; compare to Fig. 3b). This effect 
introduced moderately strong correlations between nearby spike 
trains (Fig. 4c–e) that did not decay to zero at increasing network size 
(Supplementary Note 2 and Supplementary Fig. 4e,f). Nevertheless, 
the network maintained excitatory–inhibitory balance (Fig. 4f and 
Supplementary Fig. 4a,b).

Since recurrent inputs must cancel feedforward inputs in balanced 
networks, CRF(d) is negative (Figs. 1, 3 and 4 and Supplementary 
Note 1). Moreover, broad recurrent projections cause CRF(d) to decay 
slowly with distance (Fig. 4b). Through equation (1), this imparts a 
non- monotonicity in the dependence of CII(d) on d (Fig. 4b), and 
spike count correlations inherit this non-monotonic shape (Fig. 4e).

Following the same argument made for the homogeneous network, 
the spike count correlations averaged over neuron pairs at all distances 
is O(1/N) (Fig. 4e and Supplementary Note 1). However, as noted 
above, the average correlation over each distance cannot be O(1/N). 
Hence, there must be a cancellation between positive and negative 
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correlations at different distances. As in Figure 1e–h, a competitive 
dynamic causes nearby neurons to be positively correlated and more 
distant neurons to be negatively correlated. This competitive dynamic 
does not extend beyond the reach of recurrent projections, so suf-
ficiently distant neurons are weakly correlated. Hence, correlation 
decreases and then increases with distance. This non-monotonicity 
can be explained more precisely using a mathematical theory of cor-
relation transfer (Fig. 4e and Supplementary Note 1). The hetero-
geneity of positive and negative correlations at different distances 
increases the standard deviation of pairwise correlations, but only 
modestly (s.d. = 0.16, Fig. 4d; compare to Fig. 3d).

In summary, when recurrent projections are spatially narrower 
than feedforward projections ( rec < ffwd, as in Fig. 3), correlations 
are weak between pairs of neurons at all distances. When recurrent 
projections are broader than feedforward ( rec > ffwd, as in Fig. 4),  
nearby neurons are positively correlated, neurons at moderate  
distances are negatively correlated and distant neurons are weakly 
correlated. Moreover, the average correlation between pairs of neu-
rons sampled randomly at all distances is small. The non-monotonic 
dependence of correlation on distance is a distinct signature of corre-
lations arising from broad recurrent projections. We next investigated 
whether this correlation structure predicted by our theory is present 
in cortical recordings.

Spatial correlation structure in a visual cortical circuit
We next asked whether our theoretical characterization of correlations 
in spatially extended networks can explain correlations in a cortical 
circuit. Layers 2/3 and layer 4C of macaque primary visual cortex 
(L2/3 and L4C) provide an ideal circuit for testing our predictions. 
Pairs of neurons in L2/3 exhibit moderately large noise correlations 
that decay with distance, but neurons in L4C, which are a primary 
source of interlaminar input to L2/3, exhibit extremely weak pairwise 
noise correlations32,33 (Fig. 5, with data from previous studies33,36).

Neurons in L4C receive much of their feedforward input from thalamic 
projections, which form spatially broad synaptic fields, around 1 mm in 
diameter, but lateral projections within macaque L4C form narrower, 
sub-millimeter synaptic fields34. Thus, our theoretical prediction that 
correlations are weak when ffwd > rec is consistent with the weak pair-
wise correlations observed between L4C neurons in vivo (as in Fig. 3).

Interlaminar projections from L4C to L2/3 have a similar sub- 
millimeter width to excitatory intralaminar projections within L4C, 
and lateral projections from inhibitory basket cells in L2/3 form  
sub-millimeter synaptic fields similar to those in L4C34. Excitatory neu-
rons in L2/3, however, form long-range lateral synaptic projections with 
synaptic fields spanning several millimeters34. Our theoretical results can 
be generalized to this setting, where inhibitory and excitatory projections 
have different spatial profiles (Supplementary Note 1). This extension 
predicts the same correlation structure reported in Figure 4. However, 
correlations measured in L2/3 are positive on average over a broad range 
of distances36 (Fig. 5b), in disagreement with this prediction.

We hypothesized that this inconsistency could be explained by recent 
studies showing that much of the correlated variability measured in L2/3 
arises from a low-dimensional shared source of latent variability30,31,38–40.  
We conjectured that this shared variability increases pairwise correla-
tions in L2/3 at all distances, thereby ‘washing out’ the negative correla-
tions predicted by our theory. To search for low-dimensional variability 
in our data, we used Gaussian process factor analysis31,41 (GPFA), a 
statistical algorithm that extracts shared fluctuations from a population 
of spike trains (see Online Methods). Applying this algorithm to our 
L2/3 recordings revealed a source of one-dimensional covariability that 
decays with distance (Fig. 5c). This distance dependence implies that 
nearby neurons are affected similarly by the latent variable.

To test whether one-dimensional latent variability explains the dis-
crepancy between our theoretical predictions and data, we built a two-
layer network model representing a 10 mm by 10 mm square of cortex 
(Fig. 6a). The first layer, representing L4C, was similar to the model in 
Figure 3, with the profile of feedforward and recurrent projections cho-
sen to match experimentally constrained thalamic and lateral projection 
widths34. The second layer, representing L2/3, was similar to Figure 4, 
with feedforward synaptic input from excitatory neurons in the L4C 
model and recurrent projection widths also chosen to match anatomical 
measurements. To capture latent variability in L2/3, the feedforward 
synaptic input to each neuron in the second layer was modulated by a 
time-varying, multiplicative gain modulation. We chose a multiplica-
tive source of variability to be consistent with the properties of low-
dimensional variability previously reported in macaque V1 (ref. 31),  
but an additive source of latent variability would produce similar overall 
results. The gain modulation contributes an O N  source of covari-
ance to the feedforward inputs that the recurrent network cannot can-
cel23. To capture the distance dependence of latent variability (Fig. 5c), 
the magnitude of the gain modulation was heterogeneous across the 
network in such a way that nearby neurons received similar modula-
tions and more distant neurons received less similar modulations.
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Simulations of this two-layer model revealed that correlations 
between neurons in L4C were extremely small on average (Fig. 6b,c), 
consistent with our theoretical predictions (Fig. 3) and consistent 
with in vivo recordings (Fig. 5). Correlations in the model L2/3 layer 
were moderately large and positive over all distances (Fig. 6b,c), com-
parable to those in in vivo recordings (Fig. 5).

Thus, our model recovers the coarse structure of correlations in 
L4C and L2/3. However, our explanation of positive correlations in 
L2/3 is unsatisfying because the addition of globally shared variability 
destroys the distinct non-monotonic relationship between correlation 
and distance predicted by our theory (compare Fig. 4e to Fig. 6b). 
We next asked whether this structure could be recovered by filtering 
out globally shared variability. To accomplish this, we computed the 
residual correlation matrix estimated by GPFA. Residual correlations 
approximate the spike count correlations with the contribution from 
low-dimensional variability removed31.

Residual correlations computed between the simulated L2/3 spike 
trains exhibited the predicted non-monotonic dependence on dis-
tance, corroborating the ability of the GPFA algorithm to extract low-
dimensional variability and leave the structure of residual correlations 
intact. We next computed the mean residual correlation in macaque 
L2/3 as a function of electrode distance. In doing so, we observed 
the same non-monotonic dependence of residual correlation on dis-
tance predicted by our theory (Fig. 7b; further statistical analysis in 
Supplementary Note 3 and Supplementary Fig. 5).

In summary, combining theoretical analysis and computer simu-
lations of a multilayer network reveals a parsimonious model of the 
sources of shared variability in a visual cortical circuit in vivo. Under 
this model, positive correlations introduced by shared thalamic inputs 
to L4C neurons are actively canceled by negative correlations aris-
ing from recurrent circuitry so that pairs of L4C neurons at all dis-
tances exhibit weak average spike count correlations32,33. Correlations 
between neurons in L2/3 are introduced by overlapping feedfor-
ward inputs from L4C and a low-dimensional source of variability. 
Correlations arising from overlapping L4C projections are filtered by 
recurrent circuitry in L2/3 to promote a non-monotonic dependence 
of correlation on distance. This non-monotonic correlation structure 
is washed out by low-dimensional latent variability, but can be recov-
ered using GPFA to estimate and remove this variability.

DISCUSSION
Previous theoretical work on spatially homogeneous balanced  
networks with dense connectivity shows that they produce very  

weak spike train correlations23. We have generalized this theory  
to account for heterogeneous inputs and distance-dependent con-
nection probability. In this framework we have made two notable 
discoveries.

First, in agreement with the original findings, when lateral synaptic 
projections are spatially narrower than incoming feedforward pro-
jections, correlations are extremely weak on average at all distances. 
This theoretical finding can explain the weak pairwise correlations 
observed between neurons in middle layers of macaque primary vis-
ual cortex32,33. However, correlations measured in cortical recordings 
are not always weak25. Second, networks with broader lateral than 
feedforward projections produce correlations that do not decay to 
zero at increasing network size.

In previous studies of balanced networks with spatially homoge-
neous or clustered connectivity23,42, the asynchrony condition CSS ~ 
O(1/N) is satisfied and population averaged pairwise correlations van-
ish in the large network limit. In contrast, spatially extended networks 
with broad lateral projections violate the asynchrony condition, and 
consequently the expected pairwise correlations at a specific distance 
do not vanish. Nonetheless, mean excitatory and inhibitory currents 
balance and firing rates are moderate even when the asynchrony 
condition is violated (Supplementary Fig. 4a,b and Supplementary 
Note 1). This represents a novel solution for balanced networks that, 
for the first time, formally decouples network-wide asynchrony from 
excitatory–inhibitory balance.

We focused on the dependence of correlations on distance, but 
correlations also depend on tuning similarity. Partitioning L2/3 neu-
ron pairs by tuning similarity reveals that correlations are strong-
est between similarly tuned neurons36 (Supplementary Fig. 6a,b). 
Modifying our computational model to capture tuning-dependent 
correlations produced a non-monotonic dependence of residual 
correlation on tuning similarity in some parameter regimes, but 
the relevant parameters have not been measured experimentally 
(Supplementary Fig. 6c–e and Supplementary Note 4). Nevertheless, 
the modified theory could explain negative correlations previously 
observed in computer simulations of networks with tuning-specific 
connectivity32 and the finding that negative correlations are more 
frequent between disparately tuned neurons in V1 (ref. 43).

As with nearly any computational model, many of the param-
eters used in our simulations may not reflect their corresponding  
values in specific cortical areas of specific species. However, our 
theoretical analysis does not depend on the precise values of these 
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parameters. Our finding that the asynchronous state requires rec < 
ffwd is a fundamental property of networks with balanced excitation 

and inhibition.
We used a simplified model of a visual cortical circuit. In reality, 

pyramidal neurons in V1 form both local and long-range projections, 
connection probability in primate V1 depends on both distance and 
tuning similarity, and these dimensions are coupled44. Moreover, 
connectivity properties of inhibitory neurons depend on their sub-
type45. We modeled unidirectional connections from L4 to L2/3, but 
L4 also receives indirect feedback from L2/3 through deeper cortical 
layers. Spike trains in our model feedforward layer were modeled by 
homogeneous Poisson processes, in contrast to the oscillatory fir-
ing rates evoked by drifting grating stimuli in the data we analyzed.  
Our model can be extended to account for these additional features 
without affecting our overall conclusions.

Our findings have important implications for the interpretation of 
correlations in neural recordings. The average (residual) correlation 
between cell pairs sampled across a large range of distances could  
be extremely small, even when nearby pairs are positively corre-
lated with moderate magnitude (Figs. 4 and 7). Hence, subtracting 
low-dimensional latent variability and partitioning neuron pairs by 
distance can reveal correlation structure that would otherwise not 
be apparent. A previous study31 computed residual correlations  
as a function of distance in primate V1, but did not report a non-
monotonic dependence. While we cannot be certain why their  
findings differ from ours, the accurate estimation of residual cor-
relations with GPFA depends on the amount of data used to estimate 
shared variability. Our data are well-suited for this purpose, as they 
contain over 800 pairs of units per recording on average.

There is a long history of computational models of cortical circuits 
that consider either networks with spatially dependent coupling1 or 
balanced excitation and inhibition in spatially homogeneous net-
works7,23. Only recently has the spatial structure of cortical con-
nectivity been included in networks with balanced excitation and 
inhibition9,37,46, and guiding theoretical principles are lacking. Our 
theory has taken this spatial structure into account and produced two 
core predictions for cortical circuits with long range lateral connec-
tions: first, nearby neurons exhibit significant positive correlations; 
second, the dependence of pairwise correlation on pairwise distance 
is non-monotonic. These predictions are clearly falsifiable and hence 
represent strong tests of our theory. The superficial layers of visual 
cortex have long-range lateral connections34, making them a suitable 
test bed for our theory of correlations. After accounting for a source 
of global variability, both of our predictions were verified from popu-
lation recordings in macaque V1 (Fig. 7). Further, a similar noise 
correlation structure has been reported in recordings from mouse 
V1 (ref. 47). The successful validation of our predictions marks our 
theory as a promising framework for studying the structure of neural 
variability in cortical circuits. Nevertheless, there are many aspects 
of cortical dynamics that remain unexplained by balanced networks, 
such infrequent yet large membrane fluctuations during spontane-
ous dynamics15,48. Capturing these dynamics in cortical models with 
balanced architectures remains an open challenge.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version  
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Description of computational model. We modeled a square of cortex with  
N neurons, Ne of which are excitatory and Ni inhibitory. The membrane potential 
of neuron j from the excitatory (a = e) or inhibitory (a = i) population obeyed 
exponential integrate-and-fire (EIF) dynamics, 

C
V
t

I V f V I tj
a

j
a

j
a

j
a

m L
d

d
Each time that Vj

a  exceeds a threshold at Vth, the neuron spikes and the  
membrane potential is held for a refractory period ref, then reset to a fixed  
value Vre. The leak current is given by 

I V g V ELL L( ) ( )

and a spike-generating current is defined by 
f V g V VL T T T( ) exp[( )/ ] 

For excitatory neurons, m = Cm/gL = 15 ms, EL = −60 mV, VT = −50 mV,  
Vth = −10 mV, T = 2 mV, Vre = −65 mV and ref = 1.5 ms. Inhibitory neurons  
were the same except m = 10 ms, T = 0.5 mV and ref = 0.5 ms.

Synaptic input currents were defined by 

C I t F t R tj
a

j
a

j
a

m
1

where Fa(t) is the feedforward input and Ra(t) the recurrent input to neuron j in 
population a = e, i. The feedforward input was modeled differently for different 
figures, as described below. The recurrent input was defined by 

R t
J

N
t tj
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b k

Nb jk
ab

n
b n

b k

e,i 1
4, ( )

where tnb k,  is the nth spike time of neuron k in population b = e, i. The 1 N  scaling 
of synaptic weights is a defining feature of the balanced network formalism and 
captures the balance between excitatory and inhibitory currents as well as intrinsi-
cally generated temporal variability for large N (ref. 7). Each term J jk

ab represents 
the synaptic weight from presynaptic neuron k in population b to postsynaptic neu-
ron j in population a. For all simulations, we modeled synaptic kinetics using 

b b bt t t( ) exp( / )/  for 0

where e = 6 ms and i = 5 ms. All networks were ‘dense’ in the sense that  
connection probabilities are O(1) (ref. 23).

For the model in Figure 1, there were N = 20,000 neurons, half of which were 
excitatory and half inhibitory. For each (presynaptic) neuron, we randomly and 
uniformly chose 2,500 excitatory and 2,500 inhibitory postsynaptic neurons in the 
network. Postsynaptic neurons were sampled with replacement, so that a single 
presynaptic neuron could make multiple contacts with a postsynaptic neuron. 
The synaptic weight of each connection depended on the pre- and postsynaptic 
neuron types (excitatory or inhibitory). Specifically, 

J jjk
ab

abnumber of contacts ( )5

where jee = 12.5 mV, jie = 20 mV and jii = jei = −50 mV. Note that synaptic weights 
were scaled by N  = 141 in equation (4), so that the actual synaptic weight of 
each contact was on the order of 0.1 mV.

For Figure 1a–d, the feedforward input to each neuron was given by the sum 
of an input bias and a smoothly varying signal, 

F t Nm s tj
a

a s

Here, s(t) is a shared source of smooth, unbiased Gaussian noise defined by its 
auto-covariance function, 

cov exps t s t s, ,2 22

s = 40 ms sets the correlation timescale and s = 0.1 mV/ms scales the magnitude 
of the fluctuations. The terms me = 0.015 mV/ms and mi = 0.01 mV/ms introduce 
a static bias to the input current. The model for Figure 1e–h was identical, except 
that two independent realizations, s1(t) and s2(t), of the shared input were gener-
ated. Half of the neurons received s1(t) and the other half received s2(t). Firing 
rates for Figure 1a–d were 7.6 Hz on average for excitatory neurons and 3.8 Hz 

(4)(4)

(5)(5)

for inhibitory neurons. For Figure 1e–h, average firing rates were 7.4 Hz for 
excitatory and 3.8 Hz for inhibitory neurons.

To model the spatially extended recurrent network in Figures 3 and 4, we 
arranged Ne = 40,000 excitatory and Ni = 10,000 inhibitory EIF model neurons 
on a uniform grid covering a two- dimensional square domain. The feedforward 
layer was modeled by a population of NF = 5,625 excitatory Poisson-spiking neu-
rons on a uniform grid covering a square that is parallel to the recurrent network. 
Feedforward input to the recurrent layer was defined by 

F t
J

N
t tj

a

k

NF jk
aF

n
e n

F k

1

,

where tnF k,  is the nth spike time of neuron k in the feedforward layer. Each spike 
train in the feedforward layer was modeled as independent Poisson processes 
with rate rF = 5 Hz.

To simplify calculations, we measured distance in units of the side-length of 
the square domain. In these units, the domain is represented as the unit square, 

 = [0, 1] × [0, 1]. Neurons were connected randomly and the probability that 
two neurons were connected depended on their distance measured periodi-
cally on . The precise algorithm for generating connections is described in 
Supplementary Note 5. This algorithm assures that the expected number of 
synaptic contacts from a presynaptic neuron at coordinates y = (y1, y2) in popu-
lation b to a postsynaptic neuron at x = (x1, x2) in population a is given by 

p
K
N

g x y g x yab
ab
a

b bx y
out

1 1 2 2; ;

where g u;  is a wrapped Gaussian distribution37. Out-degrees were 
K Kee

out
ei
out 2 000, , K Kie

out
ii
out 500 , KeF

out 10 000,  and KeF
out 800. It 

follows that the network-wide average number of synaptic inputs to excitatory 
and inhibitory neurons in the recurrent network was K = 3,715. Synaptic weights 
were determined by equation (5) where jee = 40 mV, jie = 120 mV, jei = jii = 
−400 mV, and jeF = jiF = 120 mV. Note again that these terms were divided by  
N   224 as indicated in equation (4), so that the actual synaptic weights were 

between 0.18 mV and 1.8 mV.
Excitatory and inhibitory recurrent projection widths were rec = e = i = 

0.05 for Figure 3 and rec = 0.25 for Figure 4. Feedforward connection widths 
were ffwd = 0.1 in both figures. For the simulations in Figure 3, average fir-
ing rates were 3.9 Hz for excitatory and 6.2 Hz for inhibitory neurons. For the 
simulations in Figure 4, average rates were 4.0 Hz for excitatory and 6.1 Hz for 
inhibitory neurons.

The first layer (L4C) in the model in Figure 6 was identical to the model in 
Figure 3 except that ffwd = 0.1, e = 0.05 and i = 0.03. The length units used  
in Figures 6 and 7a were determined by interpreting the network domain, , as  
a 10 mm by 10 mm square. Thus, in physical dimensions, ffwd = 1 mm,  

e = 0.5 mm and i = 0.3 mm. Average firing rates in the L4C layer were 3.7 Hz 
for excitatory and 6.1 Hz for inhibitory neurons.

Connectivity in the second layer (L2/3) in Figure 6 was identical to that in 
the L4C layer except that e = 0.15 (or 1.5 mm), ffwd = 0.05 (or 0.5 mm). The 
spike times from equation (6) for the L2/3 layer were given by the spike times 
of neurons in the L4C layer, so that NF = 50,000. The magnitude of feedforward 
connectivity was also modified by setting KeF = 1,406, KiF = 113 and jeF = jiF = 
220 mV. A shared gain modulation was implemented by altering feedforward 
input currents according to 

F t F t w L tj
a

j
a

L1 x

The shared gain modulation, L(t), is a realization of unbiased Gaussian noise 
defined by its auto-covariance function 

cov expL t L t L, 2 22

with correlation timescale L = 40 ms. The dimensionless weight factor  
wL(x) depended on the coordinates, x = (x1, x2)  , of the neuron and was 
given by 

w x x g x c g x cL L L1 2 1 20 5, . ; ;
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where c = 0.5 and L = 0.25 (in physical dimensions, c = 5 mm and L = 2.5 
mm) so that neurons near the center of the network receive a more intense gain 
modulation and the strength of the modulation decays slowly with distance 
from the center. This imparted a long-range distance dependence to the cor-
relations (Fig. 6c), similar to that observed in the cortical recordings (Fig. 5b).  
Average firing rates in the L2/3 layer were 5.7 Hz for excitatory and 9.1 Hz for 
inhibitory neurons.

All simulations and numerical computations were performed on a MacBook 
Pro running OS X 10.9.5 with a 2.3 GHz Intel Core i7 processor. All simulations 
were written in a combination of C and Matlab (Matlab R 2014b, MathWorks). 
The differential equations defining the neuron model were solved using a simple 
forward Euler method with time step 0.1 ms and all simulations were run for a 
duration of 22 s.

Experimental methods. Anesthesia was induced with ketamine (10 mg/kg) 
and maintained during preparatory surgery with isoflurane (1.0–2.0% in 95% 
O2). Anesthesia during recordings was maintained with sufentanil citrate  
(6–18 g·kg−1·h−1). Vecuronium or pancuronium bromide (0.1–0.15 mg·kg−1·h−1) 
was used to suppress eye movements. Physiological signs were monitored to 
ensure adequate anesthesia and animal well-being. Vital signs (EEG, ECG, blood 
pressure, end-tidal PCO2, temperature, and airway pressure) were monitored con-
tinuously. We used supplementary lenses to bring the retinal image into focus. 
At the end of the recording session, animals were killed and tissue was processed 
histologically to verify recording locations. All procedures were approved by the 
Institutional Animal Care and Use Committee of the Albert Einstein College 
of Medicine.

The pairwise correlations used to make the distributions in Figure 5a were 
computed using the same methods as those reported previously33 and included 
1,613 L2/3 pairs and 469 L4 pairs. The data were recorded from nine anesthetized, 
adult male macaque monkeys (Macaca fascicularis). Recording were made with 
a group of five to seven linearly arranged (305 m spacing) platinum-tungsten 
electrodes or tetrodes (Thomas Recording), inserted normally to the cortical sur-
face. The electrodes were advanced together through cortex, sampling in 200- m 
intervals until all electrodes had exited into white matter. Location of the middle 
layer sites involved a number of criteria, including nominal depth, histology, and 
CSD analysis, as detailed previously33.

Data for distance-dependent correlations reported in Figures 5b,c and 7b were 
from recordings described previously36. The data were recorded from seven hemi-
spheres of four adult male macaque monkeys (M. fascicularis). There was one 
experimental group of normal animals. The array consisted of a 10 × 10 grid of sili-
con microelectrodes (1 mm in length) spaced 400 m apart. We inserted the array 
partially into cortex, resulting in recordings confined mostly to layers 2–3. In two 
cases, we recorded simultaneously with a group of seven linearly arranged (2 mm 
extent) platinum-tungsten microelectrodes or tetrodes (Thomas Recording), posi-
tioned so that the nearest electrode was ~5 mm anterior to one edge of the multi-
electrode array. In this configuration, the distances between these electrodes and 
the array ranged from ~5 to 10 mm. Neuronal receptive fields in all data sets were 
within 5° of the fovea. Waveform segments that exceeded a user-defined threshold 
were sorted offline (Plexon Offline Sorter). We quantified sort quality using the 
signal-to-noise ratio (SNR) of each candidate unit49, keeping units with an SNR 
of at least 2.3 (for the data in Fig. 5a) or at least 2.75 (for Figs. 5b and 7b). In both 
data sets, we eliminated neurons for which the best grating stimulus did not evoke 
a response of at least 2 spikes/s. Changing the SNR or responsivity threshold did 
not qualitatively change any of the results described herein.

Visual stimuli were generated with EXPO and displayed on a linearized CRT 
monitor (mean luminance 40 cd/m2) with a resolution of 1,024 by 768 pixels and 
a refresh rate of 100 Hz. Stimuli were presented in a circular aperture surrounded 
by a gray field of average luminance. We mapped the spatial receptive field (RF) 
of units by presenting small (0.6°) drifting gratings at a range of spatial positions. 
We then centered our stimuli on the aggregate RF of the recorded units.

Stimuli were viewed binocularly and presented for 1.28 s, separated by 1.5 s inter-
vals of isoluminant gray screen (except in one penetration, for which the interval 
was 10 s). We presented full-contrast drifting sinusoidal gratings at 8 or 12 orienta-
tions spaced equally (22.5° or 30° increments). The spatial frequency (1–1.3 cpd) 
and temporal frequency (3 or 6.25 Hz) values were chosen to correspond to the 
typical preference of parafoveal V1 neurons50. The position and size (3.9–10°) of 
the grating were sufficient to cover the receptive fields of all the neurons. Stimulus 

orientation was block randomized, each stimulus orientation was repeated 100–200 
times per recording session and each of the eight recording sessions yielded 21–68 
units (210–2,278 pairs) that met our SNR and responsivity thresholds. This yielded 
a total of 318 units and 6,907 simultaneously recorded pairs.

Statistical methods. To compute spike count correlations for Figures 1, 3, 4 and 6  
we first randomly sampled a subset of the excitatory neurons in the recurrent 
network. The number of neurons sampled is indicated in each figure caption. 
Neurons with firing rates less than 1 Hz were excluded from the correlation 
analysis. Pearson correlation coefficients were computed by counting spikes 
over 250 ms windows and then computing the Pearson correlation coeffi-
cients between all pairs. The first 2 s of each simulation was excluded from the  
correlation analysis.

To obtain the residual correlations in Figure 7a, we randomly sampled  
500 neurons with firing rates above 2 Hz from the L2/3 layer simulations.  
After omitting the first 2 s of the simulation, spike counts were computed using 
50-ms bins, then partitioned into a sequence of 250-ms windows. To each win-
dow, we directly applied the GPFA algorithm used in a previous study31 and 
downloaded from http://toliaslab.org/publications/ecker-et-al-2014/. This is a 
modified version of the algorithm introduced in ref. 41. Briefly, GPFA extracts 
shared fluctuations from a population of spike trains by fitting spike count cov-
ariance matrices to a model of the form 

cov( )y ccT Q

Here, c is a column vector of coefficients quantifying the contribution of latent 
variability to each neuron’s spiking activity. Latent variability is modeled by a one-
dimensional Gaussian stochastic process. Hence, ccT is a rank-one matrix of latent 
covariances and Q quantifies the residual covariability not captured by the latent 
variable. Latent covariance in Figure 5c was computed by averaging the entries 
of ccT computed using GPFA. Residual correlations were computed by using the 
“window” option (so that spike count covariances were computed over 250-ms 
windows), then converting the resulting covariance matrix, Q, to a correlation 
matrix using the corrcov command in Matlab (MathWorks).

Spike count correlations in Figure 5b were computed across trials, counting 
spikes over 250-ms time bins and subtracting the trial-averaged rate of each unit 
over each stimulus orientation. Hence, all reported spike count correlations repre-
sent correlated trial-to-trial variability (noise correlations) with stimulus correla-
tions removed. Latent covariance in Figure 5c and residual correlation in Figure 7b  
were computed from the mean-subtracted spike counts using 50-ms time bins and 
250-ms window sizes (treating each 250-ms window as a separate trial), then using 
the same GPFA algorithms and procedures that were used for the simulated data 
in Figure 7a (see description above). The three P-values reported in Figure 7b  
were computed using one-sided, unpaired t-tests with t = 8.1, 2.1 and 2.5 and 
degrees of freedom 3,937, 2,404 and 2,508, respectively.

The four error bars in Figure 3e were computed from n = 880,057, 2,646,645, 
4,420,219 and 4,550,579 pairs respectively. The five error bars in Figure 5b were 
computed from n = 1,688, 2,251, 1,948, 458 and 562 pairs, respectively, and the 
same for Figures 5c and 7b. The six error bars in Figure 7a were computed 
from n = 3,885, 11,696, 19,493, 27,521, 35,336 and 26,819 pairs, respectively. 
No statistical methods were used to predetermine sample sizes, but our sample 
sizes are the same as those reported in previous publications33,36. Where t-tests 
were used, data distribution was assumed to be normal but this was not formally 
tested. Data collection and analysis were performed blind to the conditions of 
the experiments. No animals were excluded from the analysis.

Code availability. Computer code for all simulations and analysis of the resulting 
data is included in Supplementary Software.

Data availability. The data that support the findings of this study are available 
from the corresponding author upon request.

A Supplementary Methods Checklist is available.

49. Kelly, R.C. et al. Comparison of recordings from microelectrode arrays and single 
electrodes in the visual cortex. J. Neurosci. 27, 261–264 (2007).

50. De Valois, R.L., Albrecht, D.G. & Thorell, L.G. Spatial frequency selectivity of cells 
in macaque visual cortex. Vision Res. 22, 545–559 (1982).
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S.1 Mathematical analysis of firing rates and correlations in re-

current networks

In the Results, we provided an intuitive justification for why some network architectures can realize
an asynchronous state and why other architectures cannot. We now provide a more mathematically
rigorous derivation of these results. We first review the computation of firing rates in the network,
using previously developed methods [12, 6]. We then describe a cross-spectral measure of covari-
ability and associated notation that greatly simplifies calculations, then derive general formulae
for the full matrix of pairwise cross-spectra between the inputs and spike trains of all neurons.
Finally, we use these results to derive mean field cross-spectra and conditions on the existence of
an asynchronous state and an approximation to the spike train correlations at large system size.

S.1.1 Mean field theory of firing rates in balanced networks

We first review the mean field theory of firing rates in balanced networks and compare the theoretical
predictions to the results from our simulations. We represent spike trains as sums of Dirac delta
functions,

Sa

j

(t) =
X

n

�(t� ta
j,n

)

where ta
j,n

is the n-th spike time of neuron j in population a 2 {e, i, F}. For convenience, we also
normalize units to set C

m

= 1 for all calculations. In this case, the synaptic input to neuron j in
population a = e, i (see Eqs. (4) and (6) in Methods) can be re-written as

Ia
j

(t) = F a

j

(t) +Ra

j

(t)

= F a

j

(t) +
1p
N

X

b=e,i

NbX

k=1

Jab

jk

(⌘
b

⇤ Sb

k

)(t)
(S.1)

where F a

j

(t) is the feedforward input to neuron j in population a, Ra

j

(t) is the recurrent input, ⇤
denotes convolution and

⌘
b

(t) =
1

⌧
b

e�t/⌧b⇥(t), b = e, i

1



is the postsynaptic current waveform with ⇥(t) representing the Heaviside step function. The
variable Jab

jk

denotes the synaptic weight from neuron k in population b = e, i to a neuron j in
population a = e, i.

Taking averages over time and over indices (j and k) in Eq. (S.1) gives the mean-field mapping
of firing rates to synaptic currents,

I
a

= F
a

+R
a

= F
a

+
p
N(w0

ae

r
e

+ w0

ai

r
i

).
(S.2)

In this expression, I
a

is the average synaptic current across the membrane of excitatory (a = e) or
inhibitory (a = i) neurons in the recurrent network. Similarly, F

a

is the average input from the
feedforward population, R

a

is the average input current from the local recurrent population and r
a

is the average firing rate of neurons in population a = e, i. The terms

w0

ab

= p0
ab

j
ab

q
b

/ O(1)

represents a normalized mean-field connectivity strength where p0
ab

is the average number of con-
nections from presynaptic neurons in population b = e, i to postsynaptic neurons in population
a = e, i, j

ab

is the average synaptic strength of each connection and q
b

= N
b

/N is the proportion
of neurons in the network that are in population b. When a presynaptic neuron can only make
one synaptic projection to a single postsynaptic neuron, p0

ab

is the probability of connection. In
the networks we consider, multiple connections are possible (though rare), so p0

ab

is technically the
expected number of connections. The

p
N scaling in Eq. (S.2) comes from the fact that there each

neuron receives O(N) inputs (since connection probability is O(1)) and the synaptic weight of each
input scales like O(1/

p
N) [12].

For the networks considered in Figure 1, the mean feedforward inputs are explicitly scaled as
O(

p
N) since (see Experimental Procedures)

F a

j

(t) =
p
Nm

a

+ �
s

s(t)

where s(t) is unbiased so that
F

a

=
p
Nm

a

.

For the spatially extended networks, feedforward inputs come from a separate population of neurons
with

F a

j

(t) =
NFX
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JaF

jkp
N

(⌘
F

⇤ SF

k

)(t)

so that
F

a

=
p
Nw0

aF

r
F

where r
F

= 5 Hz is the firing rates of neurons in the feedforward population and w0

aF

is defined
in the same way as w0

ab

above. Therefore, for all networks we consider, the mean inputs can be
written as 

I
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(S.3)
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where f
a

= m
a

is the scaled mean feedforward input current for the networks considered in Figure
1, f

a

=
p
Nw0

aF

r
F

for the spatially extended networks, ~r = [r
e

r
i

]T and ~f = [f
e

f
i

]T . Note that
w0

ab

, f
a

/ O(1). Hence, to avoid excessively large input current magnitudes (I
a

! ±1 as N ! 1),
the excitatory and inhibitory currents in Eq. (S.3) must balance so that

W
0

~r + ~f / O(1/
p
N). (S.4)

Firing rates in the limit of large N are given by taking N ! 1 in Eq. (S.4) and solving for the
rates to obtain [12, 6]
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(S.5)

For these expressions to give positive firing rates and a stable balanced state, parameters must
satisfy [12, 6]

f
e

f
i

>
w0

ei

w0

ii

>
w0

ee

w0

ie

. (S.6)

For the networks in Figure 1, Eq. (S.5) predicts firing rates r
e

= 6.2 Hz and r
i

= 4.0 Hz.
The simulations in Figure 1a-d produced average firing rates r

e

= 7.6 Hz and r
i

= 3.8 Hz. The
simulations in Figure 1e-h produced average firing rates r

e

= 7.4 Hz and r
i

= 3.8 Hz.

For the networks in Figures 3 and 4, Eq. (S.5) predicts firing rates of r
e

= 3.6 Hz and r
i

= 5.7 Hz.
For the simulations in Figure 3, average firing rates were r

e

= 3.9 Hz and r
i

= 6.2 Hz. For the
simulations in Figure 4, average rates were r

e

= 4.0 Hz and r
i

= 6.1 Hz.

For the simulations in Figure 6, Eq. (S.5) predicts firing rates of r
e

= 3.6 Hz, r
i

= 5.7 Hz for L4
neurons and r

e

= 5.0 Hz, r
i

= 7.9 Hz for L2/3 neurons (using the L4 excitatory neuron rates as the
feedforward input rates to L2/3). The average rates of L4 neurons in simulations were r

e

= 3.8 Hz
and r

i

= 6.2 Hz and the average rates for L2/3 neurons were r
e

= 5.7 Hz and r
i

= 9.2 Hz.

Eq. (S.4) implies that, in balanced networks, feedforward input currents (f
e

and f
i

) are approx-
imately balanced by recurrent sources of synaptic input (w0

ee

r
e

+w0

ei

r
i

and w0

ie

r
e

+w0

ii

r
i

+ f
i

). This
provides an intuition for the fact that feedforward and recurrent input currents are negatively cor-
related (C

RF

< 0, see Results): Fluctuations in the feedforward input currents must be cancelled
by opposite-polarity fluctuations in the recurrent input currents. Therefore, recurrent and feedfor-
ward inputs are negatively correlated. This intuition falls short of a precise theory for correlated
variability in balanced networks, however, since Eq. (S.4) represents mean synaptic currents, not
fluctuations. We next provide a more rigorous mathematical analysis of correlated variability in
balanced networks.

S.1.2 Cross-spectral measures of covariability

We first define the measures of correlation used in our calculations and review some of their prop-
erties. For mathematical convenience, we measure covariance between random processes, U(t)
and V (t), in terms of their cross-spectral density or “cross-spectrum.” Specifically, we define the
cross-spectral operator, h·, ·i, by

hU, V i(f) = lim
T!1

1

T
U
T

(f)V ⇤
T

(f)

3



where ⇤ denotes the complex conjugate,

U
T

(f) =

Z
T

0

⇥
U(t)� U

⇤
e�2⇡iftdt

is the finite-time Fourier transform of U(t) and U is the steady-state mean of U(t). V
T

(f) is defined
similarly.

The cross-spectrum is a function of frequency, f , but for notational convenience, we omit this
explicit dependence in many expressions below. The cross-spectrum can also be defined as the
Fourier transform of the cross-covariance function (sometimes also called the cross-correlation) [13,
9],

hU, V i(f) =
Z 1

�1
CCG(⌧)e�2⇡if⌧d⌧

where CCG(⌧) = cov(V (t), U(t + ⌧)). Thus, cross-covariance functions are given by taking an
inverse Fourier transform of the cross-spectrum. For spike trains, S

1

(t) and S
2

(t), spike count
covariances over finite windows are given by integrating the cross-spectrum against a frequency
kernel [7],

spike count covariance over window of size T = T

Z 1

�1
hS

1

, S
2

i(f)K
T

(f)df (S.7)

where

K
T

(f) =
sin2(Tf⇡)

Tf2⇡2

. (S.8)

Since lim
T!1K

T

(f) = �(f), it follows that whenever T is much larger than the timescale of
correlations between the spike trains, we have the approximation

spike count covariance over large window of size T ⇡ T hS
1

, S
2

i(0). (S.9)

Thus, the cross-spectral operator captures all common measures of spike train covariability. More
details and derivations of these relationships can be found in [9, 13].

For vector processes, U(t) = [U
1

(t), · · · , U
M

(t)] and V (t) = [V
1

(t), · · · , V
N

(t)], we define the
M ⇥N cross-spectral matrix operator,

hU, V i =
h
hU

j

, V
k

i
i
M,N

j,k=1

which is the analogue to a covariance matrix in frequency space [2]. This is a bilinear, Hermitian
operator in the sense that hU +X,V i = hU, V i+ hX,V i and

hAU,BV i = AhU, V iBT

for real matrices A and B. Moreover, suppose A(t) and B(t) are matrix functions and (A ⇤ U)(t)
denotes matrix convolution, i.e., a matrix product where multiplication is replaced by convolu-
tion [11]. Then

hA ⇤ U,B ⇤ V i = eAhU, V i eB⇤
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where
eA(f) =

Z 1

�1
A(t)e�2⇡iftdt

is the Fourier transform of the matrix function A(t) and eB⇤(f) denotes the conjugate transpose of
the Fourier transform of B(t). Finally note that hU, V i = hV, Ui⇤ where ⇤ denotes the conjugate
transpose. These definitions and properties greatly simplify the calculations below.

S.1.3 Mapping pairwise spike train correlations to synaptic input correlations

We now derive a pair of equations that will be used to analyze correlations in all of the network
models considered in the main text. To simplify calculations, we define the vector processes

S(t) = [Se

1

(t) , . . . , Se

Ne
(t) , Si

1

(t) , . . . , Si

Ni
(t)]T

which contains all of the spike trains in the network and where T denotes the transpose. The
vector process, I(t), representing all synaptic input currents, F (t), representing all feedforward
input currents and R(t), representing all recurrent inputs, are defined similarly. For notational
convenience, we will often omit the explicit dependence on t.

Using this notation,

R =
1p
N

JH ⇤ S

is the vector of recurrent inputs and Eq. (S.1) can be written in vector form as

I = F +
1p
N

JH ⇤ S (S.10)

where

J =


J
ee

J
ei

J
ie

J
ii

�

is an N ⇥ N matrix of synaptic weights written in block form and composed of the N
a

⇥ N
b

sub-matrices

J
ab

=
h
Jab

j,k

i
Na,Nb

j,k=1

for j = 1, . . . , N
a

and k = 1, . . . , N
b

. Similarly,

H(t) =


H

e

(t) 0
0 H

i

(t)

�

is composed of sub-matrices
H

a

(t) = ⌘
a

(t)I
Na⇥Na

where I
Na⇥Na is the N

a

⇥ N
a

identity matrix. The matrix convolution symbol, ⇤, in Eq. (S.10)
indicates that elements of the matrix H(t) are convolved with elements of the vector S(t) instead
of multiplied [11].
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Using Eq. (S.10), the cross-spectral matrix between total synaptic input and feedforward synap-
tic input can easily be calculated using the properties of the cross-spectral operator outlined above.
Specifically,

hI, F i =
⌧
F +

1p
N

JH ⇤ S, F
�

= hF, F i+ 1p
N

J eHhS, F i
(S.11)

where eH(f) is the Fourier transform of the matrix H(t). Correlations between total input currents
can be calculated similarly,

hI, Ii = hF +R,F +Ri

=

⌧
F +

1p
N

JH ⇤ S, F +
1p
N

JH ⇤ S
�

= hF, F i+ 1p
N

J eHhS, F i+ 1p
N

hF, Si eH⇤JT +
1

N
J eHhS, Si eH⇤JT

(S.12)

where eH⇤ denotes the conjugate-transpose of eH and JT the transpose of J . Eqs. (S.11) and (S.12)
are used below to derive a mean-field theory of correlations for various network topologies.

The entire matrix of spike train cross-spectra can be approximated by combining Eqs. (S.11)
and (S.12) with the assumption of linear relations between hI, F i and hS, F i, and between hI, Ii
and hS, Si [11]. Below, we show that a mean-field theory for correlations in the limit of large N can
be obtained from Eqs. (S.11) and (S.12) without appealing to this linear response approximation.
Instead, we only need to assume that neuronal transfer is O(1) in the sense that the statistics of
the total synaptic currents, Ia

j

(t), scale similarly with N to the statistics of the spike trains, Sa

j

(t).
Mathematically speaking, we assume that

0 < lim
N!1

avg
j,k

hSa

j

, F b

k

i
avg

j,k

hIa
j

, F b

k

i < 1 and 0 < lim
N!1

avg
j,k

hSa

j

, Sb

k

i
avg

j,k

hIa
j

, Ib
k

i < 1 (S.13)

for all combinations of a, b = e, i. Here, avg
j,k

is the average over any subset of the indices
j = 1, . . . N

a

and k = 1, . . . N
b

which contains a O(1) subset of all such indices. We additionally
assume that the activity of individual neurons has O(1) statistics, which is a characteristic feature
of balanced networks [12]. Specifically, we assume that

lim
N!1

avg
k

hXa

k

, Y a

k

i < 1 (S.14)

for X,Y = S, I, F and a = e, i.

S.1.4 Correlations in the homogeneous network (Figure 1a-d)

We first consider correlations in a network where the statistics of connection probability and feedfor-
ward input only depend on neuron type (excitatory or inhibitory) and are otherwise uniform across
the network, as in Figure 1a-d. These calculations represent a generalization of the results in [5]
to networks with any neuron model for which synaptic integration is linear (whereas only binary
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neurons models were considered in [5]). In addition, our calculations are more easily generalized to
structured networks (as we show below) and are arguably more concise.

Define p
ab

to be the expected number of synaptic inputs received by a neuron in postsynaptic
population a = e, i from a neuron in presynaptic population b = e, i and let j

ab

/
p
N be the strength

of each such connection. Under these assumptions, the average connection strengths are

E
h
Jab

jk

/
p
N
i
= p

ab

j
ab

/
p
N.

Also assume that there are N
b

= q
b

N neurons in population b = e, i where q
e

+ q
i

= 1 and each of
q
b

, p
ab

and j
ab

is O(1) as N ! 1.

Since neurons are statistically identical within each population, we define the population-
averaged cross-spectral matrices,

hI,Fi =
 hI

e

, F
e

i hI
e

, F
i

i
hI

i

, F
e

i hI
i

, F
i

i
�

where
hI

a

, F
b

i = avg
j,k

(hIa
j

, F b

k

i)
is the average pairwise cross-spectrum between total input current to neurons in population a = e, i
and the feedforward input to neurons in population b = e, i. Implicitly, the j = k term is left out
of the average when a = b. All other 2⇥ 2 mean-field cross-spectral matrices hF,Fi, hS,Fi, hS,Si,
hI, Ii, etc. are defined analogously. Note that all of these expressions depend on frequency, f , but
the dependence is omitted to simplify notation.

The asynchronous state is defined by the scaling laws

hI, Ii, hS,Si / O(1/N) and hI,Fi, hS,Fi / O(1/
p
N)

whenever feedforward inputs are moderately correlated,

hF,Fi / O(1).

For the specific model considered in Figure 1a-d, we have

hF,Fi =

1 1
1 1

�
�2

s

eA
s

where
eA
s

(f) = hs, si(f) = ⌧
s

p
2⇡e�2f

2
⇡

2
⌧

2
s

is the power spectral density of s(t), obtained from the Fourier transform of the auto-covariance,
A

s

(⌧) (see Methods). To prove the self-consistency of the asynchronous state, we must show that
these scaling laws are consistent with the relationship between synaptic inputs and spike trains
given by Eq. (S.1) or, equivalently, Eq. (S.10).
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We begin by computing the mean-field cross-spectra between total inputs and feedforward
inputs to excitatory neurons, substituting Eq. (S.11) to obtain

hI
e

, F
e

i = avg
j,k

hIe
j

, F e

k

i
= avg

j,k

hF e

j

+Re

j

, F e

k

i

= avg
j,k

2

4hF e

j

, F e

k

i+ 1p
N

X

b=e,i

e⌘
b

NbX

l=1

Jeb

jl

hSb

l

, F e

k

i
3

5

= hF
e

, F
e

i+ avg
j,k

1p
N

X

b=e,i

e⌘
b

NbX

l=1

Jeb

jl

hSb

l

, F e

k

i

For large N
e

and N
i

, the inner sums can be replaced by their averages:

avg
j,k

NeX

l=1

Jee

jl

hSe

l

, F e

k

i ! (N
e

� 1)avg
j,k,l 6=k

⇥
Jee

jl

hSe

l

, F e

k

i⇤+ avg
k

[Jee

kk

hSe

k

, F e

k

i]

= Nq
e

p
ee

j
ee

hS
e

, F
e

i+O(1)

and

avg
j,k

NiX

l=1

Jei

jl

hSi

l

, F e

k

i ! N
i

avg
j,k,l

Jei

jl

hSi

l

, F e

k

i

= Nq
i

p
ei

j
ei

hS
i

, F
e

i
as N ! 1.

Putting this together gives

hI
e

, F
e

i =hF
e

, F
e

i+
p
N (e⌘

e

q
e

p
ee

j
ee

hS
e

, F
e

i+ e⌘
i

q
i

p
ei

j
ei

hS
i

, F
e

i)
+O(1/

p
N).

The same computation can be applied to all other pairings of hI
a

, F
b

i for a, b = e, i to finally obtain

hI,Fi =hF,Fi+
p
NW hS,Fi

+O(1/
p
N).

(S.15)

where

W =


w
ee

w
ei

w
ie

w
ii

�
(S.16)

and
w
ab

(f) = e⌘
b

(f)q
b

p
ab

j
ab

/ O(1).

Note that w
ab

(0) = w0

ab

and W (0) = W
0

from the mean-field firing rate calculations surrounding
Eq. (S.2). Under our assumption that neuronal transfer is O(1) (see Eq. S.13), we have that

hI,Fi / hS,Fi.
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as N grows large. Thus, Eq. (S.15) implies that

hS,Fi / hF,Fi+
p
NW hS,Fi. (S.17)

This at first appears inconsistent since hF,Fi / O(1) and hS,Fi appears on both sides of Eq. (S.17)
scaled di↵erently with N . This apparent inconsistency is resolved in the asynchronous state [5],
wherein

hS,Fi / O(1/
p
N)

and the two terms on the right hand side of Eq. (S.17) cancel in such a way that

hI,Fi = hF,Fi+
p
NW hS,Fi / O(1/

p
N).

This cancellation requires that

lim
N!1

p
NW hS,Fi = �hF,Fi (S.18)

and therefore that
lim

N!1

p
NhS,Fi = �W�1hF,Fi

which gives the asymptotic scaling of correlations between feedforward inputs and spike trains in
the asynchronous state, generalizing the derivation in [5].

Note that the matrix of average cross-spectra between excitatory and inhibitory neurons’ re-
current and feedforward inputs is given by

hR,Fi =
p
NW hS,Fi = �hF,Fi+O(1/

p
N).

In the models we consider, correlations between neurons’ feedforward inputs are non-negative,
hF,Fi � 0. This provides a mathematical explanation for our observation in the Results that
feeedforward and recurrent inputs are negatively correlated.

We can use similar methods to compute the average pairwise cross-spectra between spike trains
in the recurrent network. Taking averages over the excitatory and the inhibitory populations in
Eq. (S.12) gives

hI, Ii =hF,Fi+
p
N (W hS,Fi+ hF,SiW ⇤) +NW hS,SiW ⇤ +WAW ⇤

+O(1/
p
N)

(S.19)

where W ⇤ is the conjugate transpose of W . As before, the O(1/
p
N) term captures the diagonal

elements omitted from the averages that define hS,Fi. Finally, the term A is defined by

A(f) =


A

e

(f)/q
e

0
0 A

i

(f)/q
i

�

where
A

a

(f) = avg
k

hSa

k

, Sa

k

i
represents the average power spectral density of spike trains in population a = e, i. When spike
trains in the network are approximately Poisson processes, the power spectral density is approxi-
mately equal to the firing rate A

a

(f) ⇡ r
a

.
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Combining this with Eq. (S.18) and the fact that hF,Fi = hF,Fi⇤ allows us to make the
substitutions p

NW hS,Fi =
p
NhF,SiW ⇤ = �hF,Fi+O(1/

p
N)

Putting this together gives

hI, Ii / �hF,Fi+NW hS,SiW ⇤ +WAW ⇤

for large N . We again invoke our assumption that neuronal transfer is O(1) so that hI, Ii / hS,Si
for large N and therefore

hS,Si / �hF,Fi+NW hS,SiW ⇤ +WAW ⇤. (S.20)

This again presents an apparent inconsistency that is resolved in the asynchronous state where

hS,Si / O(1/N)

and the terms on the right hand side of Eq. (S.20) cancel so that

lim
N!1

NW hS,SiW ⇤ = hF,Fi �WAW ⇤. (S.21)

and
lim

N!1
NhS,Si = W�1hF,FiW�⇤ �A, (S.22)

which gives the asymptotic scaling of correlations between spike trains in the asynchronous state,
generalizing and simplifying the derivation in [5]. Here, W�⇤ is the matrix inverse of W ⇤. The
existence of this asynchronous state requires W to be invertible or, if W is not invertible, the matrix
hF,Fi must be in the range of the matrix operator U 7! WUW ⇤ so that Eq. (S.21) has a solution.
For the parameters used in Figure 1a-d, W is invertible.

This approach to deriving of the existence of the asynchronous state can be applied to any
network model for which synaptic integration is linear, synaptic connection strengths scale like
O(1/

p
N), synaptic connection probability is O(1), and the inequalities in (S.13) are satisfied.

Thus, these calculations represent a generalization of the results in [5], which were specific to
binary neuron models. Below, we show that this approach facilitates the derivation of correlations
in discretely heterogeneous and spatially extended networks.

S.1.5 General treatment of correlations in discretely heterogeneous networks

Above, we considered a network with two populations, one excitatory and one inhibitory. Con-
nectivity statistics and feedforward inputs were homogeneous within each population. We now
generalize this approach to networks with an arbitrary number of populations. We then apply this
generalized analysis to show that the network in Figure 1e-h cannot realize an asynchronous state.

Consider a network of N neurons subdivided into M sub-populations where the mth subpopu-
lation contains N

m

= q
m

N neurons for m = 1, . . . ,M . Generalizing Eq. (S.1), the input to neuron
j = 1, . . . , N

m

in population m = 1, . . . ,M is given by

Im
j

(t) = Fm

j

(t) +
MX

n=1

NnX

k=1

Jmn

jkp
N

(⌘
n

⇤ Sn

k

)(t) (S.23)
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where Sn

k

(t) is the kth neuron in population n = 1, . . . ,M . Define p
mn

to be the expected number
of synaptic inputs received by a neuron in postsynaptic population m = 1, . . . ,M from a neuron in
presynaptic population n = 1, . . . ,M and let Jmn

jk

= j
mn

be the strength of each such connection.
This assures that the expected value of Jmn

jk

is p
mn

j
mn

. Also assume that each of q
m

, p
mn

and j
mn

is O(1) as N ! 1. Now let

hF
m

, F
n

i = avg
j,k

hFm

j

, Fn

k

i / O(1)

be the average cross-spectrum between feedforward inputs to neurons in population m = 1, . . . ,M
and n = 1, . . . ,M . We again implicitly omit terms for which m = n and j = k from the aver-
age. Define hI

m

, I
n

i, hI
m

, F
n

i, etc. analogously. Finally, define the M ⇥M mean-field correlation
matrices,

hF,Fi = ⇥hF
m

, F
n

i⇤
m,n

and similarly for hI, Ii, hI,Fi, etc.
All of this notational machinery is useful because it allows us to take averages over each sub-

population in Eqs. (S.11) and (S.12) to obtain

hI,Fi =hF,Fi+
p
NW hS,Fi

+O(1/
p
N)

(S.24)

and
hI, Ii =hF,Fi+

p
N (W hS,Fi+ hF,SiW ⇤) +NW hS,SiW ⇤ +WAW ⇤

+O(1/
p
N)

which are identical to Eqs. (S.15) and (S.19) except that that the correlation matrices are M ⇥M
instead of 2⇥ 2. The M ⇥M mean-field connectivity matrix is defined by

W =
⇥
w
mn

⇤
m,n

where
w
mn

= e⌘
n

q
n

p
mn

j
mn

/ O(1)

is the mean-field connectivity from populations n to m. The term A(f) is a diagonal M⇥M matrix
with diagonal elements [A(f)]

n,n

= A
n

(f)/q
n

where A
n

(f) = avg
k

hSn

k

, Sn

k

i(f) is the average power
spectral density of neurons in population n.

Thus, the analysis and derivation of Eqs. (S.15 – S.22) in Section S.1.4 is identical for hetero-
geneous networks, except with M ⇥M matrices instead of 2⇥ 2. Specifically, the existence of the
asynchronous state again requires that Eqs. (S.18) and (S.21) are solvable. These equations are
necessarily solvable whenever W is invertible and the solution is given by Eq. (S.22) in such cases.
We next apply this generalized analysis to the network considered in Figure 1e-h.

S.1.6 Correlations in the discretely heterogeneous network from Figure 1e-h

For the example considered in Figure 1e-h, there are two excitatory and two inhibitory populations,
so the analysis from Section S.1.5 is applicable with M = 4. We can enumerate these populations as
e
1

, i
1

, e
2

and i
2

where e
1

and e
2

are excitatory, i
1

and i
2

are inhibitory. All neurons in populations e
1
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and i
1

receive the same time-varying feedforward input, s
1

(t). Similarly, all neurons in populations
e
2

and i
2

receive the time-varying input s
2

(t) which is uncorrelated with s
1

(t). Therefore, the
cross-spectral matrix between feedforward inputs is given by

hF,Fi =

2

664

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

3

775�2

s

eA
s

where eA
s

(f) is the cross-spectral density of s
1

(t) and also of s
2

(t).

Connectivity in the network only depends on neuron type (excitatory or inhibitory) so that

W =
1

2

2

664

w
ee

w
ei

w
ee

w
ei

w
ie

w
ii

w
ie

w
ii

w
ee

w
ei

w
ee

w
ei

w
ie

w
ii

w
ie

w
ii

3

775

where each w
ab

is the same connection strength from the homogeneous network in Figure 1a-d,
defined above. Note that this matrix is comprised of four blocks, each identical to the W matrix
for the 2⇥ 2 homogeneous network in Figure 1a-d. The multiplication by 1/2 is necessary because
there are half as many neurons in each population, e.g. q

e1 = q
e

/2.

The symmetry of the network also implies that the average power spectral density is the same
in population e

1

as e
2

and similarly for i
1

and i
2

. Therefore,

A(f) =
1

2

2

664

A
e

(f)/q
e

0 0 0
0 A

i

(f)/q
i

0 0
0 0 A

e

(f)/q
e

0
0 0 0 A

i

(f)/q
i

3

775

where A
a

(f) is the average cross-spectral density of excitatory (a = e) or inhibitory (a = i) spike
trains and q

a

= 2q
a1 = 2q

a2 = 1/2 is the proportion of neurons that are excitatory (a = e) or
inhibitory (a = i).

Note that W is a singular matrix, hF,Fi is not in the range of U 7! WU and therefore also
not in the range of U 7! WUW ⇤. For example, note that for any 4 ⇥ 4 matrix V (including any
V = UW ⇤), the first row of the product WV is the same as its third row, which is not true of hF,Fi.
Therefore, the asynchronous state cannot be obtained in the heterogeneous two-population network
considered in Figure 1a-d since Eqs. (S.18) and (S.21) do not admit solutions. In other words, it is
not mathematically possible for all elements of the 4⇥ 4 matrix of spike train correlations,

hS,Si =

2

664

hS
e1 , Se1i hS

e1 , Si1i hS
e1 , Se2i hS

e1 , Si2i
hS

i1 , Se1i hS
i1 , Si1i hS

i1 , Se2i hS
i1 , Si2i

hS
e2 , Se1i hS

e2 , Si1i hS
e2 , Se2i hS

e2 , Si2i
hS

i2 , Se1i hS
i2 , Si1i hS

i2 , Se2i hS
i2 , Si2i

3

775

to be O(1/N) because the assumption that all elements are O(1/N) leads to a mathematical
contradiction. Thus, the lack of a solution to Eqs. (S.18) and (S.21) explains why spike trains are
correlated in Figure 1e-h.
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To understand why the average correlation between all pairs in Figure 1e-h is approximately
zero, we can apply the mean-field correlation theory to pairwise correlations averaged across popu-
lations 1 and 2. Specifically, let hF

e

, F
e

i be the average correlation between all excitatory neurons,
regardless of population membership and similarly for hF

i

, F
e

i, etc. Now re-define

hF,Fi =
 hF

e

, F
e

i hF
e

, F
i

i
hF

i

, F
e

i hF
i

, F
i

i
�

(S.25)

to be the matrix correlations averaged over populations 1 and 2. Since half of the neuron pairs
receive perfectly correlated input and half receive perfectly uncorrelated input, we have

hF,Fi = 1

2


1 1
1 1

�
�2

s

eA
s

. (S.26)

The average mean-field connectivity between excitatory and inhibitory pairs is identical to the
connectivity for the homogeneous network from Section S.1.4, so W is the same 2 ⇥ 2 matrix
given in Eq. (S.16). Defining the 2 ⇥ 2 population-averaged correlation matrices, hI,Fi, hI, Ii,
etc. analogously to hF,Fi in Eq. (S.25), we can apply the same mean-field correlation analysis
that was applied to the homogeneous network in Section S.1.4. The only di↵erence is that hF,Fi
is divided by two, c.f. Eq. (S.26). Since W is invertible, this analysis yields a self-consistent
asynchronous solution.

We conclude that correlations averaged across all pairs from both populations (1 and 2) are
weak, but correlations averaged while respecting population membership are not. For example,
the average correlation between all excitatory neurons in the network is O(1/N), but the average
correlation between excitatory neurons in population 1 is O(1). However, note that since all
populations have the same number of neurons, the average covariance between all excitatory pairs
is formed by the average of the covariances between same- and opposite-population paris,

4hS
e

, S
e

i = hS
e1 , Se1i+ hS

e2 , Se2i| {z }
same pop. pairs

+ hS
e1 , Se2i+ hS

e2 , Se1i| {z }
opposite pop. pairs

. (S.27)

Also note that the network is symmetric with respect to population membership in the sense
that both populations are statistically identical to one another. Thus, hS

e1 , Se1i = hS
e2 , Se2i and

hS
e1 , Se2i = hS

e2 , Se1i. The only way to have hS
e

, S
e

i / O(1/N) and hS
em , Seni / O(1) while

respecting this symmetry is to have

hS
e1 , Se1i / �hS

e1 , Se2i+O(1/N)

so that the contributions from same- and opposite-population pairs cancel in Eq. (S.27) up to order
1/N . Indeed, this structure is observed in Figure 1f.

S.1.7 Correlations in continuously indexed networks with distance-dependent

connectivity

To compute the spatial shape of correlations and the conditions on the asynchronous state, we first
need to compute the shape of correlations between neurons’ feedforward inputs. Since spike trains
in the feedforward layer are uncorrelated, correlations between the feedforward input to neurons
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arise solely through overlapping presynaptic pools. Recall from Methods that the feedforward input
to neuron j = 1, . . . , N

a

in population a = e, i is defined by

F a

j

(t) =
NFX

k=1

JaF

jkp
N

(⌘
F

⇤ SF

k

)(t)

where SF

k

(t) is the spike train of neuron k in the feedforward layer, ⇤ denotes convolution, ⌘
F

(t) is
a postsynaptic current waveform (for which we set ⌘

F

= ⌘
e

in all simulations) and JaF

jk

is a synaptic
weight.

Our first goal is to write the cross-spectral density between feedforward inputs as a function of
the distance between the postsynaptic neurons in the recurrent layer. A similar strategy will later
be applied to compute correlations between spike trains in the recurrent network. First consider
the cross-spectral density between excitatory neuron j and excitatory neuron k,

hF a

j

, F b

k

i =
*

NFX

l=1

JaF

jlp
N

⌘
F

⇤ SF

l

,

NFX

m=1

JbF

kmp
N

⌘
F

⇤ SF

m

+

=
|e⌘

F

|2
N

NFX

l,m=1

JaF

jl

JbF

km

hSF

l

, SF

m

i.

Since spike trains in the feedforward population are uncorrelated, the terms in this sum are only
non-zero when l = m (since otherwise hSF

l

, SF

m

i = 0). Also, since each SF

m

(t) is a Poisson process
with rate r

F

, the power-spectral density is hSF

m

, SF

m

i = r
F

. Putting these two facts together, we
have

hF a

j

, F b

k

i = q
F

|e⌘
F

|2r
F

1

N
F

NFX

m=1

JaF

jm

JbF

km

(S.28)

where q
F

= N
F

/N .

To obtain a spatially continuous description of correlations, now consider decomposing the
square domain, �, into a uniform grid of M small squares, each with side-length

p
� where � = 1/M

is the area of each grid square. Now, let x and y be the two-dimensional coordinates of the center of
two di↵erent grid squares and define the average cross-spectral density between feedforward input
to excitatory neurons in those squares,

{F
e

, F
e

}(x,y, f) := avg
j2e(x),k2e(y)hF e

j

, F e

k

i(f)

= q
F

|e⌘
F

(f)|2r
F

1

N
F

NFX

m=1

avg
j2e(x),k2e(y)J

eF

jm

JeF

km

(S.29)

where j 2 e(x) indicates that the excitatory neuron with index j lies in the grid square centered at
x 2 �, and similarly for k 2 e(y). The second line follows from Eq. (S.28) and from permuting the
average with the sum. The postsynaptic current waveform is given by ⌘

F

(t) = e�t/⌧F /⌧
F

for t > 0
which has Fourier transform,

e⌘
F

(f) =
1

1 + 2⇡if⌧
F

.

Recall that for all simulations we set ⌧
F

= ⌧
e

.
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Now note that the average in Eq. (S.29) is taken over N2

e

/M2 � 1 pairs of indices, j and k. In
the limit of large N , the average synaptic weights can be replaced by their expected values to get

{F
e

, F
e

}(x,y, f) = q
F

|e⌘
F

(f)|2r
F

1

N
F

X

z

j2
eF

p
eF

(x� z)p
eF

(y � z) (S.30)

where the sum is over all neurons in the feedforward network with coordinates indicated by z 2 �.
Recall from Methods that the expected number of connections from a neuron at coordinates z in
the feedforward layer to an excitatory neuron at coordinates x in the recurrent network is given by

p
eF

(x� z) =
Kout

eF

N
e

G(x� z;↵2

F

)

is the probability of connection from a neuron in the feedforward input layer at coordinates z =
(z

1

, z
2

) 2 � to an excitatory neuron in the recurrent layer at coordinates x = (x
1

, x
2

) 2 � where

G(u;�2) = g(u
1

;�2)g(u
2

;�2)

is a two-dimensional wrapped Gaussian function composed of one-dimensional wrapped Gaussians,

g(u;�2) =
1p
2⇡�

1X

k=�1
e�(u+k)

2
/(2�

2
).

Now note that the sum in Eq. (S.30) contains N
F

equally-spaced elements, z, so coupled with the
1/N

F

coe�cient, it represents a Riemmann sum on �. For large N
F

, the sum can be written as an
integral to obtain

{F
e

, F
e

}(x,y, f) = q
F

|e⌘
F

(f)|2r
F

j2
eF

ZZ

�

p
eF

(x� z)p
eF

(y � z)dz

= q
F

|e⌘
F

(f)|2r
F

j2
eF

ZZ

�

p
eF

(v)p
eF

(y � x� v)dv

where the second line follows from the change of coordinates v = x � z. This demonstrates that
the {F

a

, F
b

}(x,y, f) depends only on u = y� x. With a slight abuse of notation, we can re-define
{·, ·} to be distance-dependent by making the substitution {F

a

, F
b

}(x � y, f)  {F
a

, F
b

}(x,y, f).
With this re-definition, we can re-write the integral as

{F
e

, F
e

}(u, f) = q
F

|e⌘
F

(f)|2r
F

j2
eF

ZZ

�

p
eF

(v)p
eF

(u� v)dv (S.31)

where {F
e

, F
e

}(u, f) now denotes the average cross-spectral density between the feedforward input
to pairs of excitatory neurons at coordinates x 2 � and y 2 � for which x � y = u. Since p

eF

(v)
is a two-dimensional wrapped Gaussian as indicated above, the integral in Eq. (S.31) is a two-
dimensional circular convolution [6]. The circular convolution of a wrapped Gaussian with another
wrapped Gaussian simply sums the variances so that

{F
e

, F
e

}(u, f) = q
F

|e⌘
F

(f)|2r
F

j2
eF

✓
Kout

eF

N
e

◆
2

G(u; 2↵2

F

).
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Thus, the cross-spectral density (and therefore covariance and correlation) between the feedforward
inputs to two excitatory neurons only depends on their distance, u, measured periodically on �,
and decays like a Gaussian with width parameter, 2↵2

F

, justifying these claims made in the main
text. We can apply the same computation to excitatory-inhibitory and inhibitory-inhibitory pairs
to finally obtain

{F,F}(u, f) :=
 {F

e

, F
e

}(u, f) {F
e

, F
i

}(u, f)
{F

i

, F
e

}(u, f) {F
i

, F
i

}(u, f)
�

=

 |w
eF

(f)|2 w
eF

(f)w⇤
iF

(f)
w

iF

(f)w⇤
eF

(f) |w
iF

(f)|2
�
r
F

G(u; 2↵2

F

)

(S.32)

where {F
a

, F
b

}(u, f) is the average cross-spectral density between the feedforward input to neurons
in population a and neurons in population b separated by the vector u, and where the mean-field
feedforward connection strength is

w
aF

(f) =
p
q
F

p
aF

j
aF

e⌘
F

(f)

with

p
aF

=
Kout

aF

N
a

representing the network-averaged outgoing connection probability. Note that this implies
{F,F}(u, f) / O(1) since all parameters in Eq. (S.32) are O(1).

Recall that the wrapped Gaussian, G(u; 2↵2

F

), represents a two-dimensional Gaussian with
distance measured periodically on �. Therefore, Eq. (S.32) implies that correlations between feed-
forward inputs decay with distance like a Gaussian with a width parameter 2↵2

F

where ↵2

F

is
the width parameter for the decay of feedforward connection probability. This result justifies the
claim made in the results that correlations between feedforward inputs are twice as broad as the
feedforward synaptic projections.

Now that we have computed the spatial profile of the cross-spectral densities between feedfor-
ward inputs to neurons, we use similar techniques to analyze the spatial structure of correlations
between spike trains in the recurrent network. First consider the same discretization of the network
into M grid squares that we used above. For such a discretization, Eq. (S.23) and the remaining
analysis in Section S.1.5 are applicable where each population represents neurons in one grid square.
In this context, the same calculations used to compute {F,F} above can be used to write Eq. (S.24)
as a Riemmann sum that converges to the integral equation

{I,F} ={F,F}+ {R,F}
={F,F}+

p
NW{S,F}+O(1/

p
N)

(S.33)

where

{I,F} =

 {I
e

, F
e

} {I
e

, F
i

}
{I

i

, F
e

} {I
i

, F
i

}
�

is a matrix of spatially-dependent cross-spectra with components,

{I
a

, F
b

}(u, f) = {I
a

, F
b

}(x� y, f) = avg
j2a(x),k2b(y)hIaj , F b

k

i(f)
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with the average taken over neurons, j, in population a near coordinates x 2 � and distinct neurons,
k, in population b near coordinates y 2 � for which u = x�y (as in the definition of {F

e

, F
e

} above).
All other combinations, {S,F}, {R,F}, etc. are defined similarly. The term W in Eq. (S.33) is a
matrix of integral operators defined by

W =

 W
ee

W
ei

W
ie

W
ii

�

with each component an integral operator defined by

W
ab

h(v, f) =

ZZ

�

w
ab

(u, f)h(v � u, f)du (S.34)

where
w
ab

(u, f) = q
b

j
ab

e⌘
b

(f)p
ab

(u).

is the mean-field connectivity from neurons in population b = e, i at coordinates x to neurons in
population a = e, i at coordinates y. The Fourier transform of the postsynaptic current waveform
is given by

e⌘
b

(f) =
1

1 + 2⇡if⌧
b

for b = e, i. Also recall that connection probability is defined by

p
ab

(u) = p
ab

G(u;↵2

b

)

where

p
ab

=
Kout

ab

N
a

is the network-average number of connections probability from a neuron in population b = e, i to a
neuron in population a = e, i.

Under our assumption that neuronal transfer is O(1), we have that {I,F} / {S,F} so that
cancellation is required in Eq. (S.33). Specifically, in the asynchronous state,

{R,F} =
p
NW{S,F} = �{F,F}+O(1/

p
N)

for large N . This explains why correlations between recurrent and feedforward inputs are approx-
imately a negative reflection of feedforward-feedforward input correlations in Figure 3b.

These calculations are analogous to the calculations for networks with discrete populations
considered above, except matrix equations like Eqs. (S.18) and (S.24) are replaced by integral
equations like Eq. (S.33). We next show that these integral equations can be transformed into a
sequence of matrix equations by transitioning to the spatial Fourier domain.

Since p
ab

(u) = p
ab

(x�y) is defined using periodic boundary conditions, i.e. it is defined in terms
of a wrapped Gaussian, the integral in Eq. (S.34) represents a circular convolution. This implies
that the spatial Fourier series of the convolution is the product of the Fourier series. Specifically,

ZZ

�

[W
ab

h](v, f)e�2⇡in·vdv = ew
ab

(n, f)eh(n, f)
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where

ew
ab

(n, f) =

ZZ

�

w
ab

(u, f)e�2⇡in·udu

= q
b

j
ab

e⌘
b

(f)

ZZ

�

p
ab

(u)e�2⇡in·udu

= q
b

j
ab

e⌘
b

(f)ep
ab

(n)

(S.35)

is the two-dimensional discrete Fourier transform of w
ab

(u, f) and similarly for eh(n, f). Note that
ew
ab

(0, 0) = w0

ab

from the mean-field firing rate calculations surrounding Eq. (S.2) where 0 = (0, 0) is
the zero-vector. In these expressions, n = (n

1

, n
2

) represents a vector of discrete spatial frequency
modes composed of a pair of integers and n · u = n

1

u
1

+ n
2

u
2

is the dot product. The inverse
transform is given by the two-dimensional Fourier series,

w
ab

(u, f) =
1X

n1,n2=�1
ew
ab

(n, f)e2⇡in·u

and similarly for eh(n, f). Therefore, for each spatial mode, n, and each temporal frequency, f , the
integral equation in Eq. (S.33) can be re-written as a system of matrix equations,

hI,Fi(n, f) =hF,Fi(n, f) +
p
NW (n, f)hS,Fi(n, f)

+O(1/
p
N)

(S.36)

where W (n, f) is a 2⇥ 2 matrix of complex numbers for defined by

W (n, f) =


ew
ee

(n, f) ew
ei

(n, f)
ew
ie

(n, f) ew
ii

(n, f)

�

and where we have abused notation to define the spatial cross-spectral operators in the Fourier
domain by

hI,Fi(n, f) =
ZZ

�

{I,F}(u, f)e�2⇡in·udu

and similarly for hS,Fi(n, f), hF,Fi(n, f), etc. Note that W (0, 0) = W
0

from the mean-field firing
rate calculations surrounding Eq. (S.2).

Note that for each spatial and temporal frequency, n and f , Eq. (S.36) has the same form as
Eq. (S.15). In summary, we used Eq. (S.11) and the continuous structure of the spatial network
to derive Eq. (S.36) which is analogous to Eq. (S.15) for the homogeneous network, except that it
depends on the spatial Fourier mode. In the same way, we can use Eq. (S.12) to derive

hI, Ii =hF,Fi+
p
N (W hS,Fi+ hF,SiW ⇤) +NW hS,SiW ⇤ +WAW ⇤

+O(1/
p
N)

(S.37)

which is identical to Eq. (S.19) except that W and all other terms depend on the spatial Fourier
mode, n. The matrix, A(n, f), represents contributions from the power spectral densities, which
are uniform across space and therefore only contribute to the n = (0, 0) Fourier mode to yield

A(n, f) =


A

e

(f)/q
e

0
0 A

i

(f)/q
i

�
�
n
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where �
n

= 1 when n = (0, 0) and �
n

= 0 when n 6= (0, 0).

From here, the analysis of correlation proceeds identically to that in Section S.1.4 to finally
obtain hS,Si / O(1/N) with

lim
N!1

NhS,Si(n, f) = W�1(n, f)hF,Fi(n, f)W�⇤(n, f) +A(n, f) (S.38)

analogous to Eq. (S.21). While we only considered simulations with Gaussian-shaped connectivity
profiles in the Results, Eq. (S.38) can be applied to any network for which the Fourier transforms of
connection probabilities in Eq. (S.35) can be computed. However, the existence of the asynchronous
state requires the convergence of the Fourier series,

{S,S}(u, f) =
1X

n1,n2=�1
hS,Si(n, f)e2⇡in·u (S.39)

where hS,Si is the solution from Eq. (S.38) and recall that {S,S}(u, f) is the mean-field cross-
spectral matrix between the spike trains of neurons at coordinates x and y for which u = x � y.
We next consider the specific case of Gaussian-shaped connection probabilities and show that an
asynchronous solution (i.e., the convergence of the series in Eq. (S.39)) requires that recurrent
projections are narrower than feedforward: ↵

e

,↵
i

< ↵
F

.

To complete the computation, we need to compute hF,Fi(n, f) and W (n, f) explicitly, then
take the inverse transform in Eq. (S.38). Applying a Fourier transform to Eq. (S.32) gives

hF,Fi(n, f) =
ZZ

�

{F,F}(u, f)e�2⇡in·udu

=
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(f)|2 w
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2
↵

2
F |n|2

where |n|2 = n2

1

+ n2

2

. Similarly, taking the spatial Fourier series of w
ab

(u, f) gives

ew
ab
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2
↵

2
b |n|

2

where
w

ab

(f) = q
b

p
ab

j
ab

e⌘
b

(f)

is the network-averaged mean-field connectivity for a, b = e, i. Note that w
ab

(0) = w0

ab

from the
mean-field firing rate calculations surrounding Eq. (S.2). Putting this together gives,
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"
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ee
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Substituting these expressions into Eq. (S.38) gives

lim
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NhS,Si(n, f) =
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(S.40)
where

C
ab

(f) = W�1(0, f)hF,Fi(0, f)W�⇤(0, f)
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and 0 = (0, 0).

The Fourier series in Eq. (S.39) only converges if the entries in the matrix in Eq. (S.40) decay to
zero at large Fourier modes. This, in turn, requires that 2↵2

F

�↵2

a

�↵2

b

> 0 for all four combinations
of a, b = e, i. Thus, if ↵

e

> ↵
F

or ↵
i

> ↵
F

, the terms in Eq. (S.40) do not have a well-defined
inverse transform. This indicates that the system of integral equations in Eq. (S.33) (and the
analogous integral equations generalizing Eq. (S.19) to space) do not have solutions [10, 6]. Thus,
the equations that define the asynchronous state are not solvable, and therefore the asynchronous
state is not self-consistent, when recurrent projections (excitatory or inhibitory) are broader in
space than feedforward projections. Compare to results obtained for mean firing rates in [6].

When recurrent projections are narrower in space than feedforward projections (i.e., when
↵
e

,↵
i

< ↵
F

), we can compute the Fourier series explicitly to obtain

lim
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where recall that G(u;�2) is a two-dimensional wrapped Gaussian with width parameter � (see
above). For the simulations in Figures 3 and 4, we take ↵

e

= ↵
i

= ↵
rec

and rename ↵
↵wd

= ↵
F

.
This simplifies the expression above to yield
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(S.41)

Thus, when ↵
rec

< ↵
↵wd

(as in Figure 3), spike train cross-spectra are O(1/N) and decay with
distance like a Gaussian with width parameter

�
SS

= 2↵2

↵wd

� 2↵2

rec

.

To compute spike-count covariances as a function of distance, consider a pair of neurons at
coordinates x and y. Our theoretical results show that their spike count correlation is proportional
to G(u,�2

SS

) where u = x� y. Now note that the wrapped Gaussian function can be written as,

G(u;�2

SS

) =
1

2⇡�2

SS

e�d

2
/(2�

2
SS) +O

⇣
e�1/(2�

2
SS)

⌘
(S.42)

where the last term represents artifacts from multiple “wraps” of the wrapped Gaussian and

d =
p
min(u

1

, 1� u
1

)2 +min(u
2

, 1� u
2

)2

is distance, measured periodically on �. Since e�1/(2�

2
SS) ⇡ 1 ⇥ 10�87 for the parameters used

in Figure 3, the last term in Eq. (S.42) can be ignored. Combining this with Eq. (S.7) gives an
equation for spike count covariances as a function of distance,
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(S.43)
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where Cab

SS

(d) is the average spike count covariance between spike trains from populations a, b = e, i
and T is the window size over which spikes are counted, r

a

is the average firing rate of neurons in
population a and FF

a

is the average Fano factor computed using the same counting window, T .
The term o(1/N) represents terms that converge to zero faster than 1/N , i.e., N ⇥ o(1/N) ! 0 as
N ! 1. We used the fact that the spike count variance is proportional to the Fano factor,

FF
a

=
spike count variance

spike count mean
=

1

r
a

Z 1

�1
A

a

(f)K
T

(f)df.

Eq. (S.43) can be integrated numerically to obtain spike count covariances over any counting window
size, but is greatly simplified by considering spike counts over large time windows.

If the counting window, T , is much larger than the correlation timescale of the spike trains, i.e.
if cross-covariance function between the spike trains converges nearly to zero by lag ⌧ = T then,
from Eq. (S.9), the spike count covariances are approximated by taking f = 0 in Eq. (S.41). This
gives, 
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is the mean-field connectivity matrix from Eq. (S.3), W�T

0

is the inverse of its transpose and
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quantifies the network-averaged zero-frequency cross-spectra between neurons’ feedforward inputs.

However, this only gives the covariance not the correlation between spike counts. Moreover, it
requires the computation of the Fano factors, which we have not derived. Under the assumption
that spiking is Poisson-like in the network, FF

a

⇡ 1. Combining this with the fact that the spike
count variance of spike trains in population a = e, i is equal to FF

a

r
a

T , we obtain an approximation
to the spike count correlation coe�cients,
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where
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 p
r
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�

and firing rates, r
a

, in the limit of large N are given by Eq. (S.5). The 1/(q
a

N) terms in Eq. (S.44)
represent contributions from intrinsically generated variability to correlations [5], which are orders of
magnitude smaller than contributions from feedforward input covariability, C0

FF

. We can therefore
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safely omit these terms from our computations, since all of our examples had strongly correlated
feedforward input. Performing the matrix arithmetic gives an approximation to the correlation
between excitatory neurons as a function of distances,
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To generate the dashed red curve in Figure 3e, we used Eq. (S.45), except that we had to account for
the coarse binning of neurons by distance. When computing the average correlation as a function
of distance from simulations (the solid curve in Figure 3e), we coarsely binned neuron pairs by
distance. For example, the first data point represents the average spike count correlation between
sampled pairs with distances between 0 and 0.15. This coarse binning was necessary to reduce the
statistical error in estimating extremely weak correlations from simulations. However, because of
the two-dimensional domain, distant pairs are over-represented within each bin. For example, the
first bin contains fewer pairs with a distance between 0 and 0.075 than it contains pairs with a
distance between 0.075 and 0.15. This is further complicated by the fact that distance is measured
periodically. To compute the dashed curve in Figure 3e, we computed the pairwise distance between
all sampled neurons from the simulation, substituted all of these distances into Eq. (S.44), then
computed the average value over each distance bin. This naturally corrects the sampling problem.

S.1.8 Approximate correlations at finite network size when recurrent projec-

tions are broader than feedforward

Above, we concluded that spike count correlations are O(1/N) at all distances only when feedfor-
ward projections are spatially broader than recurrent projections (↵

e

,↵
i

< ↵
F

), and we also derived
the asymptotic correlations in that case. We have not yet derived the correlations when recurrent
projections are broader than feedforward (↵

e

,↵
i

> ↵
F

). Here, we provide a linear approximation at
finite N that explains the non-monotonic dependence of correlation on distance when ↵

e

,↵
i

> ↵
F

.

The central idea behind this approximation comes from previous studies of correlations trans-
fer [11, 1]. Our computations above do not depend on the precise transfer from input correlation
to spiking correlation, and instead relied only on the assumption that this transfer is O(1) in the
sense of Eqs. (S.13). We now show that accounting for correlation transfer allows us to derive an
approximation to the correlation structure at finite N that is applicable even when ↵

e

,↵
i

> ↵
F

.

Consider two neurons in the network, receiving input currents, Ia
j

(t) and Ib
k

(t). When input

correlations are weak, (hIa
j

, Ib
k

i ⌧ hIa
j

, Ia
j

i), the cross-spectrum between two neurons’ spike trains
is approximately linearly related to the cross-spectrum between their input currents [1],

hSa

j

, Sb

k

i ⇡ La

j

hIa
j

, Ib
k

iLb⇤
k

(S.46)

where La

j

(f) is the susceptibility function of neuron j in population a = e, i [11, 1]. Likewise, the
cross-spectra between feedforward inputs and spike trains are approximated by

hSa

j

, F b

k

i ⇡ La

j

hIa
j

, F b

k

i. (S.47)

Combining these approximations with Eqs. (S.11) and (S.12) gives a linear approximation to the
entire N ⇥N matrix of cross-spectra in the network [11, 4],

hS, Si =
✓
L�1 � 1p

N
J eH

◆�1

hF, F i
✓
L�1 � 1p

N
J eH

◆�⇤
. (S.48)
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where �⇤ denotes the inverse of the conjugate transpose, L(f) is a diagonal N ⇥N matrix of each
neuron’s susceptibility function and all other terms are N ⇥N matrices defined above. Eq. (S.48),
which is accurate to first order in the magnitude of correlations, has been derived for weakly
coupled networks of integrate-and-fire neurons with white noise inputs [11] and for networks of
linearly interacting point processes [4], except those studies do not include the

p
N scaling that is

characteristic of balanced networks.

In sparsely connected networks with a dominant source of Gaussian white noise input, the
susceptibility functions can be computed using a Fokker-Planck formalism [11]. Unfortunately, this
approach is not directly applicable to the networks considered in our study because neurons are
densely and strongly connected and inputs are temporally correlated, so Fokker-Planck techniques
cannot be used to compute the susceptibility functions.

However, recall from Eq. (S.9) that spike count covariances computed over large counting win-
dows are given by the zero-frequency cross-spectra. Hence, if we are only interested in computing
spike count covariances over large time windows, we only need to compute the susceptibility func-
tions at zero frequency, La

j

(0). This is made possible by noting that a neuron’s susceptibility
function at f = 0 is simply the gain of the neuron, i.e. the derivative of the neuron’s f-I curve
evaluated at its steady-state firing rate in the network [1]. Thus, if we knew the gain of every neuron
in a network, we could use Eq. (S.48) to compute the entire matrix of cross-spectra. However, we
do not know the gains and, even if we did, this large N ⇥ N matrix computation would provide
little intuition.

Instead, we extend the spatial mean-field approach developed above to transform the N ⇥ N
equation (S.48) into the 2⇥ 2 mean-field equation,

hS,Si =
⇣
G�1 �

p
NW

⌘�1 hF,Fi
⇣
G�1 �

p
NW

⌘�⇤
. (S.49)

where

G =


g
e

0
0 g

i

�

and g
e

and g
i

are the average gains of the excitatory and inhibitory neurons in the network. The
2 ⇥ 2 matrices, hS,Si, W and hF,Fi, are the same as defined in the previous section except they
are implicitly evaluated at f = 0. In particular,

W (n) =


ew
ee

(n) ew
ei

(n)
ew
ie

(n) ew
ii

(n)

�

where
ew
ab

(n) = q
b

j
ab

ep
ab

(n).

Similarly,

hF,Fi(n) =
 |w

eF

(n)|2 w
eF

(n)w⇤
iF

(f)
w
iF

(n)w⇤
eF

(n) |w
iF

(n)|2
�
r
F

where r
F

is the firing rate of neurons in the feedforward layer and

w
aF

=
p
q
F

j
aF

ep
aF

(n)
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Supplementary Figure 1: Fitting f-I curves of neurons from simulations. a) Firing rate as a
function of time-averaged total synaptic input from the simulation in Figure 4. Blue dots are from 400
randomly selected excitatory neurons, the black curve is the best fit thresholded quadratic and the red dot is
placed at the population-average firing rates, at which the gain can be computed as the derivative of the black
curve. b) Same as (a), but for inhibitory neurons.

In these expressions, q
b

and j
ab

are as defined previously and

ep
ab

(n) =

ZZ
p
ab

(u)e�2⇡in·udu (S.50)

where p
ab

(u) is the probability of connection from a neuron in population b = e, i, F to a neuron
in population a = e, i at coordinates x and y with u = x� y.

Note that, ifW is invertible and the small contribution from A is ignored, then Eq. (S.49) implies
Eq. (S.38) in the large N limit. In other words, Eq. (S.49) provides a finite-N generalization to
Eq. (S.38). Moreover, since hF,Fi(n) is a convergent Fourier series and G�1 does not depend on
n, then the Fourier series in Eq. (S.39) necessarily converges at finite N when Eq. (S.49) is used
to compute the Fourier coe�cients, hS,Si(n). Therefore, Eq. (S.49) gives a well-defined solution
at finite N even when recurrent projections are broader than feedforward (↵

e

,↵
i

> ↵
F

). Indeed,
Eq. (S.49) gives a well-defined solution for any chosen connection probability profiles, not just
Gaussian-shaped connectivity. One only needs to compute the Fourier transform of connection
probability profiles from Eq. (S.50).

The only remaining question is how to compute the average gains, g
e

and g
i

. To accomplish
this, we sampled the synaptic input currents and firing rates of 400 excitatory and 400 inhibitory
neurons (Supplementary Figure 1a,b; blue dots). We then fit the relationship between these mean
inputs (I) and mean firing rates (r) to a thresholded quadratic f-I curve,

r =

(
a
1

(I � ✓) + a
2

(I � ✓)2 I > ✓

0 I  ✓
,

obtaining the best fit values of a
1

, a
2

and ✓ using the curve fitting toolbox in Matlab (Supplementary
Figure 1a,b; black curve). Once the f-I curve is fit, the gain is approximated by the derivative
g = dr/dI = a

1

+ 2a
2

I evaluated at the mean firing rate (Supplementary Figure 1a,b; red dot).

Once the gains are approximated, Eq. (S.49) can be used to compute hS,Si(n) at any given
n = (n

1

, n
2

). The zero-frequency (f = 0) cross-spectral matrices as a function of neuron distance
can then be computed numerically by numerically summing the Fourier series in Eq. (S.38). Spike
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count correlations over large time windows are then given by applying Eq. (S.9) following the same
approach used in Supplementary Section S.1.7.

This approach was used to compute the dashed red curve in Figure 4e. We also tested this
approximation on several examples with various widths and shapes of the feedforward and recurrent
connection probability profiles and found it to be highly accurate (Supplementary Figure 2).

We first considered an example that is identical to the one in Figure 4, except recurrent and
feedforward connection probabilities were made narrower by a factor of two (�

rec

= 0.125, �
↵wd

=
0.05). This produced a similar non-monotonicity with a larger peak correlation (Supplementary
Figure 2a; compare to Figure 4e).

We next considered an example where recurrent connections were only slightly broader than
feedforward (↵

rec

= 0.055, ↵
↵wd

= 0.05; Supplementary Figure 2b, bottom). The non-monotonicity
persisted in this case, but was less dramatic and correlations were weaker overall (Supplementary
Figure 2b, top). Similar e↵ects were observed when feedforward and recurrent projections had iden-
tical widths (↵

rec

= ↵
↵wd

= 0.05; Supplementary Figure 2c). When feedforward projections were
slightly broader than recurrent (↵

rec

= 0.05, ↵
↵wd

= 0.055), there was a weak non-monotonicity
and the theoretical calculations were less accurate (Supplementary Figure 2d). Hence, at finite N ,
correlations can still depend non-monotonically on distance when ↵

↵wd

> ↵
rec

.

We next considered an example where, as in Figures 6-7 of the main text, the recurrent exci-
tatory connections are broader than feedforward connections, but recurrent inhibition is narrower
than feedforward (�

e

= 0.15, �
i

= 0.05, �
F

= 0.075). Since the asynchronous state requires
that excitatory and inhibitory recurrent projections are narrower than feedforward (see above), the
moderate magnitude and non-monotonic shape of correlations persisted (Supplementary Figure 2e).

We then considered an example where feedforward connection probabilities decay to half their
peak value instead of decaying to zero,

p
aF

(x� y) / 0.5G(x� y;↵
↵wd

) + 0.5

for a = e, i, but they decay to this value faster than recurrent projections decay to zero (↵
rec

= 0.1
and ↵

↵wd

= 0.05; Supplementary Figure 2f, bottom). Feedforward connection probabilities could
be viewed as “broader” than recurrent in this example since they do not decay to zero at large
distances, but recurrent connection probabilities do. However, the moderate correlation magnitude
and non-monotonic dependence of correlation on distance persists (Supplementary Figure 2f, top),
suggesting that this connectivity is not consistent with the asynchronous state as N ! 1. This
can be understood by computing the Fourier series of feedforward connection probabilities,

ep
aF

(n) / 0.5e�4⇡

2
↵

2
↵wd|n|

2
+ 0.5�

n

where �
n

= 1 when n = (0, 0) and �
n

= 0 otherwise. Therefore, the overall dependence of ep
aF

(n)
on n 6= (0, 0) is unchanged. As a consequence, we still have

hF,Fi(n) / e�4⇡

2
↵

2
↵wd|n|

2

and
W (n) / e�2⇡

2
↵

2
rec|n|2 .

so that the N ! 1 asynchronous solution from Eq. (S.38) does not have a well-defined inverse
transform when ↵

rec

> ↵
↵wd

.
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Supplementary Figure 2: Correlation as a function of distance for various connection probability

profiles. a) Bottom: Connection probability from feedforward layer (black) and connection probability within
the recurrent layer (purple) as a function of neuron distance. Each curve is normalized by its peak. Top:
Mean spike count correlation between excitatory neurons as a function of neuron distance from simulations
(black; ±SEM; from randomly sampling 5000 excitatory neurons) and from the theoretical calculation using
Eq. (S.49) (red). b-h) Same as (a) except in (e) where recurrent excitatory (blue) and inhibitory (red)
connection probabilities have di↵erent profiles.
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We next considered an example where recurrent connection probabilities decay to a non-zero
value,

p
ab

(x� y) / 0.5G(x� y;↵
rec

) + 0.5

for a, b = e, i, feedforward connection probabilities decay to zero,

p
aF

(x� y) / G(x� y;↵
↵wd

)

and where ↵
rec

< ↵
↵wd

(↵
rec

= 0.05 and ↵
↵wd

= 0.15; Supplementary Figure 2g, bottom). Perhaps
unsurprisingly, the moderate magnitude of correlations and the non-monotonic dependence on
distance persists in this case (Supplementary Figure 2g, top).

We next considered an example where recurrent connection probabilities decay to a non-zero
value and feedforward connection probability decays to zero (as above), except with ↵

rec

< ↵
↵wd

(↵
rec

= 0.05 and ↵
↵wd

= 0.15; Supplementary Figure 2h, bottom). Even though recurrent connec-
tion probabilities are “broader” in the sense that they do not decay to zero, spike count correlations
are extremely weak (Supplementary Figure 2h, top). This can again be understood by noting that
only the zero-Fourier mode is a↵ected by having recurrent connection probabilities decay to a non-
zero values. Therefore Eq. (S.38) has a well-defined inverse transform when ↵

rec

< ↵
↵wd

, so the
asynchronous solution is realized.

To better understand these results, we now derive a more precise condition that must be satisfied
for correlations to be O(1/N) over every distance. We showed above that the cancellation required
for O(1/N) correlations at every distance depends on the convergence of the Fourier series in
Eq. (S.39) with coe�cients defined by Eq. (S.38). This, in turn, requires that hS,Si from Eq. (S.38)
decays to zero as |n| ! 1, and therefore only depends on the behavior of hF,Fi and W (n) at high
Fourier modes (|n| large). Note that W (n) / ep

ab

(n) for a, b = e, i and hF,Fi / [ep
aF

(n)]2 so, from
Eq. (S.38), O(1/N) correlations at every distance requires that

lim
|n|!1

����
ep
aF

(n)

ep
ab

(n)

���� ! 0 (S.51)

for a, b = e, i. In other words, the spatial Fourier series of feedforward connection profiles must
decay to zero faster than the Fourier series of recurrent connection profiles. Compare to previous
findings for the existence of a balanced firing rate solution [6].

For Gaussian-shaped connectivity, Eq. (S.51) implies that ↵
rec

< ↵
↵wd

. More generally, a
quickly decaying Fourier series implies that power is concentrated at low spatial frequencies, giving
a broad, slowly varying profile in the spatial domain. Conversely, a slowly decaying Fourier series
implies high frequency modes representing sharp changes in connectivity over short ranges. There-
fore, recurrent connectivity profiles must display “sharper” or “narrower” features than feedforward
if correlations are to be O(1/N) at all distances. It is easily checked that Eq. (S.51) is violated in
panels a-g of Supplementary Figure 2 but satisfied in panel h.

When Eq. (S.51) is violated, Eq. (S.38) no longer gives a well-defined asymptotic correlation
profile since its inverse transform, i.e. the sum of the Fourier series in Eq. (S.39), does not exist.
Instead, the finite N correction in Eq. (S.49) must be used in place of Eq. (S.38). To understand
why this gives rise to negative correlations and a non-monotonic dependence of correlation on
distance, first note that the zero spatial Fourier mode (n = (0, 0)) represents the average over the
entire network,

hS,Si(0, 0) =
ZZ

�

{S,S}(u)du

27



As long as the balance conditions in Eq. (S.6) are satisfied, W (0, 0) is invertible and therefore

hS,Si(0, 0) / O(1/N)

by Eq. (S.49). Therefore, the average cross-spectral density over all neuron pairs is nearly zero for
all of the networks we considered (see, e.g., Figures 3e and 4e dashed gray). This can also be seen
by applying the homogeneous mean-field theory of correlations from Section S.1.4 to a spatially
extended network, i.e. by ignoring the spatial dependence and averaging over pairs at all distanced
in the calculations.

Therefore, when Eq. (S.51) is not satisfied but W (0, 0) is invertible, correlations cannot be
O(1/N) at every distance, but they are O(1/N) when averaged over all neuron pairs. Hence,
positive and negative correlations at various distances must cancel to obtain the O(1/N) average.
This explains the combination of positive and negative correlations in Figure 4 and Supplementary
Figure 2a-g. For all examples we considered, this cancellation was realized by a non-monotonic de-
pendence of correlation on distance. This shape determined by the precise dependence of hS,Si(n)
on n as determined by Eq. (S.49).

Note that, despite the fact that the average pairwise correlation is O(1/N), the average value
of the correlation curves in Figure 4e and Supplementary Figure 2 is not close to zero. This is
because, in the square-shaped network, there are more neuron pairs at larger distances than there
are nearby neuron pairs. When the average is taken over all neuron pairs, the negative correlations
at moderate distances contribute more to the average than the positive correlations at smaller
distances. Therefore, the positive average correlation between nearby neuron pairs must be larger
than the negative average correlation between more distant (but more numerous) pairs.

We have shown why correlations are not O(1/N) at every distance when ↵
rec

> ↵
↵wd

and also
why there is a combination of positive and negative correlations in this case. To understand the
source of the non-monotonic dependence of correlation on distance, we must inspect the dependence
of hS,Si(n) on n. Consider, for simplicity, Gaussian-shaped connection probabilities in which
recurrent excitatory and inhibitory connections have the same width, ↵

rec

= ↵
e

,↵
i

and where the
feedforward connection profile is narrower, ↵

↵wd

= ↵
FF

< ↵
rec

as in Figure 4. In this case, we can
write

hF,Fi(n) = hF,Fi(0, 0)e�4↵

2
↵wd⇡

2|n|2 ,

W (n) = W (0, 0)e�2↵

2
rec⇡

2|n|2 .

Note also that G does not depend on n, so e↵ectively G(n) = G(0, 0). The shape of the correlation
profiles seen in Figure 4e and Supplementary Figure 2 is inherited by the dependence of hS,Si(n)
on n. As a rough approximation to the dependence of hS,Si(n) on n, we therefore ignore the
contribution of hF,Fi(0, 0) and W (0, 0) and G(0, 0) by setting them equal to 1 in Eq. (S.49), which
gives the rough approximation

hS,Si ⇠ h(n) := ✏

 
e�2↵

2
↵wd⇡

2|n|2

p
✏+ e�2↵

2
rec⇡

2|n|2

!
2

(S.52)

where ✏ / 1/N and recall that this only captures the shape of hS,Si(n) as |n| changes, not the
precise value. When ↵

rec

< ↵
↵wd

, this becomes

h(n) = ✏e�4(↵

2
↵wd�↵

2
rec)⇡

2|n|2 + o(✏) (S.53)
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Supplementary Figure 3: Dependence of cross-spectra on Fourier mode. a) The cross-spectrum,
hSe, Sei(n), between excitatory neurons as a function of the magnitude of the spatial Fourier mode, |n|,
computed using Eq. (S.49) with parameters from the example in Figure 4. The curve is normalized by its
peak. b) The approximation, h(n), to the cross-spectrum computed using Eq. (S.53) and plotted as a function
of spatial Fourier mode, |n|, with parameters from the simulation in Figure 4.

and inverting the Fourier transform gives

{S,S}(u) ⇠ ✏G(u; 2↵2

↵wd

� 2↵2

rec

) + o(✏)

in agreement with the solution from Eq. (S.41) for the asynchronous state.

When ↵
rec

> ↵
↵wd

, h(n) does not have a well-defined inverse Fourier transform at ✏ = 0,
so the o(✏) term in Eq. (S.53) needs to be accounted for. At low spatial frequencies (|n| small),
e�2↵

2
↵wd⇡

2|n|2 and e�2↵

2
rec⇡

2|n|2 are moderate in magnitude, so the
p
✏ in Eq. (S.52) can be ignored

and Eq. (S.53) is accurate, so h(n) is small in magnitude (on account of the ✏ = 1/N coe�cient).
When |n| is large enough that e�2↵

2
rec⇡

2|n|2 ⌧ p
✏, but not large enough that e�2↵

2
↵wd⇡

2|n|2 ⌧ p
✏,

we can ignore the e�2↵

2
rec⇡

2|n|2 in the denominator of Eq. (S.52) to get

h(n) ⇡ e�4↵

2
↵wd⇡

2|n|2 .

Thus, h(n) initially increases with |n|. For su�ciently large |n|,

e�2↵

2
↵wd⇡

2|n|2 ⌧ p
✏,

so
h(n) ⇡ 0.

Thus, hS,Si(n) initially increases from a O(1/N) value toward a O(1) value, then decreases toward
zero as |n| grows. This is demonstrated in Supplementary Figure 3. Hence, hS,Si(n) has a
peak value at some |n| > 0. Now note that, as long as connectivity is symmetric, p

ab

(u
1

, u
2

) =
p
ab

(�u
1

, u
2

) and p
ab

(u
1

, u
2

) = p
ab

(u
1

,�u
2

), then the same holds for {S,S}(u), so Fourier series in
Eq. (S.39) can be re-written as

{S,S}(u) =
1X

n1,n2=�1
hS,Si(n) cos(2⇡n

1

u
1

) cos(2⇡n
2

u
2

). (S.54)

If the peak value of hS,Si(n) occurs at some |n| > 1 (as in the example from Figure 4, demonstrated
in Supplementary Figure 3), then the series in Eq. (S.39) has a non-monotonic dependence on u

1

and u
2

since a higher Fourier mode dominates.
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Supplementary Figure 4: Spike count correlations, firing rates, and input currents at increas-

ing network size. a) Average excitatory (bottom) and inhibitory (top) firing rates from simulations with
increasing numbers of neurons (solid curves) and from from the theoretical predictions in Eqs. (S.5) (dotted
gray lines). Blue (red) curves are for simulations identical to the one in Figure 3 (Figure 4), except that
the number of neurons was varied, with connection probability held fixed, and simulation time was increased
from 22 s to 42 s. b) Average excitatory (top), inhibitory (bottom) and total (middle) synaptic input cur-
rent to 200 randomly sampled excitatory neurons from the simulations in (a). Synaptic input currents were
normalized by capacitance and are therefore reported in units V/s. c) Mean spike count correlation between
neuron pairs whose distance is between 0 and 0.1 (purple); between pairs with distance between 0.2 and 0.3
(green); and between pairs chosen randomly at all distances (black). Computed for simulations from the blue
curves in (a). Correlations computed from a sample of 5000 randomly selected excitatory neurons. d) Same
as (c), but on a log-log scale. Dashed lines are best fit lines of slope -1. e,f) Same as (c,d), but for the
simulations from the red curves in (a,b).

S.2 Correlations, firing rates and input currents from network

simulations at increasing network size

Our mathematical analysis of balanced networks (see above and Results) is asymptotically valid
in the limit of large network size (large number of neurons, N , and number of synaptic inputs,
K). To test the convergence of the simulations as N increases, we performed simulations with
increasing values of N , where connection probabilities are fixed so that K increases proportionally
(Supplementary Figure 4).

When recurrent projections are narrower in space than feedforward projections (↵
rec

< ↵
↵wd

, as
in Figure 3), the average correlation between nearby or more distant neuron pairs decays to zero as
N increases (Supplementary Figure 4a). The decay rate is approximately O(1/N) (Supplementary
Figure 4b). When recurrent projections are broader in space than feedforward projections (↵

rec

>
↵
↵wd

, as in Figure 4), the average correlation between nearby neuron pairs converges toward a
positive number, the average correlation between neurons pairs at intermediate distances converges
to a negative number, and the average correlation between neurons at all distances converges toward
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zero (Supplementary Figure 4c). The decay of the average over all paris is approximately O(1/N)
(Supplementary Figure 4d).

Despite the di↵erences in correlations, both networks produce similar firing rates within a
reasonable range that converge to a finite limit for large N (Supplementary Figure 4e; see Section
S.1.1 for a derivation of the theoretical rates). The asymptotic balance between excitation and
inhibition is demonstrating by plotting the mean excitatory, inhibitory and total synaptic input as
a function of N (Supplementary Figure 4f). Note that “excitatory” synaptic inputs include both
recurrent and feedforward excitation.
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Supplementary Figure 5: Further statistical analysis of correlations in macaque V1. a,b) Same
as Figures 5b and 7b respectively, but distances are binned more finely. Correlations decreased from the first
to the second bin, from the first to the third bin and from the second to the third bin (all three with p<10�5;
one-sided unpaired t-test). Correlations increased from the fifth to the seventh bin (p=0.008; one-sided un-
paired t-test; t-value=2.4; df=1,704). The increase of correlations over the last three bins is significant under
a Bonferroni correction for multiple comparisons over the last three bins (corrected p-value = 0.024). The
apparent increase in correlation from the third to fourth bin is not significant (p=0.18; one-sided unpaired
t-test; t-value=0.9; df=2,249). Distances 3.5-5mm are not shown since there were few such pairs and dis-
tances 5+mm are not shown because the precise distances for such pairs are not known, so they cannot be
resolved into 0.5 mm bins (see Experimental Procedures and Figure 7b). Including these data does not alter
significance (p-values remain <0.025). c) Histogram of all residual correlations. d,e,f) Solid black curves
are the same as Figures 5b, 5c and 7b respectively, except we only included data from the two recording ses-
sions in which linear electrodes were present. The increase from the third to the fifth bin was still significant
when only including data from these two recording sessions (p=10�4; one-sided, unpaired t-test; t-value=3.7;
df=1,064). The dashed gray curves are the same as Figures 5b, 5c and 7b respectively.

31



S.3 Further statistical analysis of the dependence of residual cor-

relation on electrode distance in macaque V1

In Figures 5b and 7b, we considered spike count correlations and residual correlations as a function
of neuron distance, where distances were binned with a bin with of 1 mm. In Supplementary
Figure 5a,b, we show the same data with a finer bin size of 500 µm. Bin sizes cannot be made much
smaller because electrodes were spaced at 400 µm in the recordings. The non-monotonic dependence
of correlations on distance remains statistically significant under this finer spatial binning, even
though the increase between consecutive bins is not significant (see figure caption). Finer binning
of distance necessarily reduces significance as the change in means between nearby consecutive bins
becomes small. This issue points to a weakness in using binned data to test for an increase in
residual correlations with distance.

Where t-tests were used, data distribution was assumed to be normal but this was not formally
tested. The distribution of residual correlations is plotted in Supplementary Figure 5c.

To further test the significance of the increase of residual correlations above 2 mm, while avoiding
any potential issues arising from binning, we performed linear regression on all of the unbinned
residual correlations with distances greater than or equal to 2 mm. The best fit line had a positive
slope (p=0.0043; F-test; ), indicating that residual correlations increase with distance after 2 mm.
Performing the same regression analysis on the correlations with distances less than 2 mm yields
a negative slope (p < 10�10; F-test; F-value=8.2; df=2,966), supporting the prediction from our
theoretical model that residual correlations depend non-monotonically on distance.

In Figures 5b, 5c and 7b of the main text, we used data from eight recording sessions. In
only two of those sessions, linear electrodes were placed ⇠5-10 mm away from the electrode array.
Hence, Figures 5b, 5c and 7b contain data averaged over recording sessions with and without the
linear electrodes present. To check the e↵ects of this averaging, we repeated the data analysis while
only including the data from the two recording sessions for which the linear electrodes were present.
We found a similar overall trend in the spike count correlations, latent covariances and residual
correlations (Supplementary Figure 5d-f)

S.4 Correlations as a function of orientation tuning similarity

We focused on the dependence of correlation and connection probability on the physical distance
between neurons, but both correlations and connection probabilities are also known to depend on
the tuning properties of neurons [8, 3]. The correlations between L2/3 neurons in our data set
increased with their tuning similarity (Supplementary Figure 6a), as measured by the Pearson cor-
relation coe�cient between their tuning curves, r

signal

[8]. We next measured the average residual
correlation as a function of tuning similarity (Supplementary Figure 6b). While the mean residual
correlation depended non-monotonically on tuning similarity, this non-monotonicity was not sta-
tistically significant (p = 0.051 for the decrease from first bin to the third bin in Supplementary
Figure 6b).

Our theoretical results do not apply as directly to tuning similarity as they do to physical
distance because many of the recorded neurons are complex cells with multi-modal tuning curves.
However, a simplified model is obtained by assigning a preferred orientation between 0� and 180�
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Supplementary Figure 6: Correlations as a function of tuning similarity. a) Mean spike count cor-
relation and b) residual correlation between putative L2/3 neurons in macaque primary cortex as a function
of tuning similarity. Same as Figures 5b and 7b respectively, but correlations are partitioned by tuning sim-
ilarity instead of distance. c,d) Same as (a,b), but from a computational model where ↵↵wd = 20� and for
di↵erent values of ↵rec (see legend). e) Residual correlation as a function of the di↵erence between preferred
orientations in the model. All plots show mean ± SEM. The non-monotonicity in (b) is not significant
(p = 0.051; one-sided unpaired t-test between first and third bins; t-value=1.6; df=872).

to each neuron, then letting connection probability depend on the di↵erence between preferred
orientations. This model is identical to the spatial model considered above except the network is
on a one-dimensional state space, instead of the two-dimensional space, �. All of the calculations
and equations above are identical except that there is just one spatial Fourier mode, n, in place of
the vector n = (n

1

, n
2

).

The decay of inter- and intra-laminar connection probability with orientation tuning di↵erence
has not been measured in macaque V1 to our knowledge. Therefore, in contrast to our spatial
model of V1 where ↵

rec

and ↵
↵wd

were constrained by anatomical measurements, we manually
chose values of ↵

rec

and ↵
↵wd

to capture the dependence of residual correlation on tuning similarity
that we observed in our data (Supplementary Figure 6c-e). Since the correlation data were used
to choose the parameters of the model, however, these simulations should not be interpreted as
making a prediction about the dependence of residual correlations on tuning similarity.

The connection between residual correlation structure and the connectivity parameters, ↵
rec

and
↵
↵wd

, is further complicated by the limited range of orientation tuning space. Specifically, since
orientations are between 0� and 180�, the di↵erence between neurons’ preferred orientations cannot
be larger than 90�. If ↵

rec

is su�ciently large, any potential non-monotonicity will be pushed
beyond this range and residual correlations will depend monotonically on tuning similarity as a
result, even when ↵

rec

> ↵
↵wd

(Supplementary Figure 6d,e). Hence, a non-monotonic dependence
of residual correlation on tuning similarity could only be predicted from our model if ↵

rec

and ↵
↵wd

were measured to find that ↵
rec

> ↵
↵wd

with ↵
rec

not too large.

In summary, our findings concerning the dependence of residual correlation on tuning similarity
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in macaque V1 are inconclusive since the non-monotonicity in Supplementary Figure 6b is not
significant and since the relevant anatomical parameters are unknown. Further experiments are
needed to clarify the dependence of correlations on tuning similarity.

S.5 Description of algorithm to generate spatially extended net-

work architecture

For the spatially extended network simulations in Figures 3, 4, 6 and 7, connections were formed
randomly with connection probability that depends on distance, as described in Methods. Here,
we provide a more detailed description of the algorithm used to generate the connectivity.

To select one postsynaptic target in population a = e, i for a presynaptic neuron in population
b = e, i, F at coordinates (y

1

, y
2

), we first generated a pair of numbers, z
1

and z
2

, independently from
an unbiased Gaussian distribution with standard deviation ↵

b

. These random numbers represent
the distance in each direction from the presynaptic neuron to the postsynaptic target. The first and
second coordinates of the postsynaptic target location were then set to x

1

= mod(z
1

+ y
1

, 1) and
x
2

= mod(z
2

+y
2

, 1). This assures that the coordinates were between 0 and 1 and that the distance
from the presynaptic neuron, measured periodically on �, was z

1

and z
2

in each direction. This
implies that the probability density function of x

1

and of x
2

is a wrapped Gaussian distribution,

g(x;↵2

b

) =
1p
2⇡↵

b

1X

k=�1
e�(x+k)

2
/(2↵

2
b)

To find a postsynaptic neuron from population a near the target location, we set j
1

= round(N
a

x
1

)
and j

2

= round(N
a

x
2

) then set the index of the postsynaptic neuron in population a to j = N
a

j
1

+j
2

.
We repeated this procedure to generate a fixed number, Kout

ab

, of postsynaptic targets in popula-
tion a for each presynaptic neuron in population b. Thus, Kout

ab

is the number of outgoing synaptic
projections from each neuron in population b to all neurons in population a. We followed this
procedure for all pairings of pre- and post-synaptic populations, b = e, i, F and a = e, i. The values
of ↵

a

and Kout

ab

used in each figure are given in Methods.
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[7] E Shea-Brown, K Josić, J de la Rocha, and B Doiron. Correlation and Synchrony Transfer in
Integrate-and-Fire Neurons: Basic Properties and Consequences for Coding. Phys Rev Lett,
100(10):108102, March 2008.

[8] M A Smith and A Kohn. Spatial and temporal scales of neuronal correlation in primary visual
cortex. J Neurosci, 28(48):12591–603, 2008.

[9] T Tetzla↵, S Rotter, E Stark, M Abeles, A Aertsen, and M Diesmann. Dependence of neu-
ronal correlations on filter characteristics and marginal spike train statistics. Neural Comput,
20(9):2133–84, 2008.

[10] F G Tricomi. Integral equations. Interscience, New York, 1957.

[11] J Trousdale, Y Hu, E Shea-Brown, and K Josić. Impact of network structure and cellular
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