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Abstract. This paper revisits strongly-MDS convolutional codes with maxi-

mum distance profile (MDP). These are (non-binary) convolutional codes that

have an optimum sequence of column distances and attains the generalized
Singleton bound at the earliest possible time frame. These properties make

these convolutional codes applicable over the erasure channel, since they are

able to correct a large number of erasures per time interval. The existence of
these codes have been shown only for some specific cases. This paper shows by

construction the existence of convolutional codes that are both strongly-MDS

and MDP for all choices of parameters.

1. Introduction

In recent literature on convolutional codes, several new classes of codes with
good distance properties have been introduced. These classes of codes are known as
maximum distance separable (MDS) codes, maximum distance profile (MDP) codes,
and strongly MDS (sMDS) codes [10–13, 20, 21]. MDS codes are characterized by
the property that they have the maximum possible free distance for a given rate
and degree. sMDS codes are a subclass of MDS codes having the property that
the free distance is attained at the earliest possible time step. Finally, MDP codes
are characterized by the property that their column distances grow at a maximum
possible rate.

The existence of MDP convolutional codes was first discussed in [12], and in [10],
it was shown how to construct them when n− k divides δ. In this paper, we solve
the problem of constructing MDP convolutional codes in the general case where
n− k does not necessarily divide δ. Apart from solving a theoretical question, this
construction also has a practical purpose, as we explain below. Recently, a number
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of papers [24–27] considered the use of MDP convolutional codes over the erasure
channel, where the symbols sent either arrive correctly or they are erased. The
Internet is such an example; here the packet sizes are upper bounded by 12,000 bits
- the maximum that the Ethernet protocol allows. Each packet can be modeled as
an element or a sequence of elements from a large alphabet, for example F := F21,000 .
Packets sent over the Internet are protected by a cyclic redundancy check (CRC)
code. If the CRC check fails, the receiver knows that a packet is in error or has
not arrived [18]; it then declares an erasure. With or without interleaving, such
an encoding scheme results in the property that errors tend to occur in bursts,
and this is a phenomenon observed over many channels modeled via the erasure
channel. When transmitting over an erasure channel like the Internet, one of the
problems encountered is the delay experienced on the received information due to
the possible re-transmission of lost packets. One way to eliminate these delays is
by using forward error correction. Commonly, block codes have been used for such
a task, see, e.g., [7, 15] and the references therein. The use of convolutional codes
over the erasure channel has been proposed in Epstein [6], Arai et al. [4], and more
recenty [27] in which a subclass of MDP codes was used over the erasure channel.
The advantage that convolutional codes have over block codes, exploited in their
decoding algorithms, is the flexibility obtained through the “sliding window” feature
of convolutional codes. The received information can be grouped in appropriate
ways, depending on the erasure bursts, and then be decoded by decoding the “easy”
blocks first. This flexibility in grouping information brings certain freedom in the
handling of sequences. This “sliding window” property of convolutional codes allows
for more erasures to be corrected in a given block than a block code of that same
length could correct. In addition, the algebraic properties of maximum distance
profile (MDP) convolutional codes allow these codes to correct the largest amount
of errors possible for a given window, making them powerful encoding schemes over
the erasure channel (see [27] for details).

The paper is organized as follows. In Section 2, we introduce the background
necessary for the development of the paper: it includes the necessary introductory
material on convolutional codes and on MDP convolutional codes, in particular. In
Section 3, we include the main result of the paper: for each parameter n, k, δ, and,
in particular, for the open problem case of (n − k) - δ, we show how to construct
(n, k, δ) convolutional codes that are MDP (our codes will also be sMDS). At the
end of Section 3, we formulate this constructive algorithm, and in Section 4 we
conclude our paper.

2. Preliminaries

This section contains the mathematical background needed for the development
of our results. Note that throughout the paper, vectors of length n will be viewed
as n× 1 matrices, i.e., as column vectors.

Let F be a finite field and F[D] be the ring of polynomials with coefficients in F.
A convolutional code C of rate k/n is an F[D]-submodule of F[D]n of rank k

given by a basic and minimal full-rank polynomial encoder matrix G(D) ∈ F[D]k×n

through

C = ImF[D]G(D) =
{
G(D)>u(D) : u(D) ∈ Fk[D]

}
,

where basic means that G(D) has a polynomial right inverse, and minimal means
that the sum of the row degrees of G(D) attains its minimal possible value δ, called
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the degree of C.∗
A rate k/n convolutional code C of degree δ is called an (n, k, δ) convolutional

code [17].
A dual description of a convolutional code C can be given through one of its

parity-check matrices which are (n − k) × n full rank polynomial matrices H(D)
such that

C = kerH(D) =
{
v(D) ∈ F[D]n | H(D)v(D) = 0 ∈ F[D]n−k

}
.

If v(D) ∈ F[D]n has degree l ≥ 0, v(D) = v0 + v1D + . . .+ vlD
l, and

H(D) = H0 +H1D + · · ·+HmD
m,

where Hm 6= 0 and Hi = 0, for i > m, the above kernel representation can be
expanded as 

H0

...
. . .

Hm · · · H0

. . .
...

. . .

Hm · · · H0

. . .
...

Hm




v0
v1
...
vl

 = 0.(1)

An important distance measure for a convolutional code C is its free distance
dfree(C) defined as

dfree(C) , min {wt(v(D)) | v(D) ∈ C and v(D) 6= 0} ,
where wt(v(D)) is the Hamming weight of a polynomial vector

v(D) =
∑
i∈N

viD
i ∈ F[D]n,

defined as
wt(v(D)) ,

∑
i∈N

wt(vi),

where wt(vi) is the number of the nonzero components of vi.
In [20], Rosenthal and Smarandache showed that the free distance of an (n, k, δ)

convolutional code is upper bounded by

dfree(C) ≤ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.(2)

This bound was called the generalized Singleton bound since it generalizes in a
natural way the Singleton bound for block codes (when δ = 0). An (n, k, δ) con-
volutional code with its free distance equal to the generalized Singleton bound was
called a maximum distance separable (MDS) code [20]. It was also observed in [20]
that if C is an MDS convolutional code, then all the row-reduced encoders of C have
` := δ−k

⌊
δ
k

⌋
rows of degree

⌊
δ
k

⌋
and k−` rows of degree

⌊
δ
k

⌋
+1. Equivalent result

holds for minimal basic parity-check matrices H(D) and hence all row degrees of

H(D) are upper bounded by m ,
⌈

δ
n−k

⌉
and the degree δ is the sum of the row

degrees of H(D).

∗Therefore, the degree δ of a convolutional code C is the sum of the row degrees of one, and

hence any, minimal basic encoder.

Advances in Mathematics of Communications Volume 10, No. 2 (2016), 275–290



278 Diego Napp and Roxana Smarandache

Another important distance measure for a convolutional code is the jth column
distance dcj(C), given by the equivalent expressions

dcj(C) , min
{

wt(v[0,j](D)) | v(D) ∈ C and v0 6= 0
}

, min
{

wt(v̂) | v̂ = (v0, . . . , vj)
> ∈ kerHc

j ⊂ F(j+1)n, v0 6= 0
}

(3)

where v[0,j](D) = v0 + v1D + . . . + vjD
j represents the j-th truncation of the

codeword v(D) ∈ C and

(4) Hc
j ,


H0

H1 H0

...
...

. . .

Hj Hj−1 · · · H0

 ∈ F(j+1)(n−k)×(j+1)n,

where Hj = 0, for j > m. This notion is related to the free distance dfree(C) in the
following way

dfree(C) = lim
j→∞

dcj(C).(5)

The j-th column distance is upper bounded as following

dcj(C) ≤ (n− k)(j + 1) + 1,(6)

and the maximality of any of the jth column distances implies the maximality of
all the previous ones, [10, 12], i.e.,

dcj(C) = (n− k)(j + 1) + 1 =⇒ dci (C) = (n− k)(i+ 1) + 1, ∀i ≤ j.

Since no column distance can achieve a value greater than the generalized Single-
ton bound, there must exist an integer L for which the bound (6) could be attained
for all j ≤ L and it is a strict inequality for j > L [10]; this value is

L =

⌊
δ

k

⌋
+

⌊
δ

n− k

⌋
.(7)

An (n, k, δ) convolutional code C with every dcj(C) maximal, for each j ≤ L,
is called a maximum distance profile (MDP) code [10, 12]. Therefore, the column
distances of MDP codes increase as rapidly as possible for as long as possible. In
contrast, an (n, k, δ) convolutional code C is called a strongly-MDS code if the
generalized Singleton bound is attained as early as possible [10]. We state these
two definitions formally.

Definition 1 ( [10]). Let C be a convolutional code of rate k/n and degree δ.

1. C is said to have a maximum distance profile (MDP) if

dcj = (n− k)(j + 1) + 1, for j = 0, . . . , L,

where L =
⌊
δ
k

⌋
+
⌊

δ
n−k

⌋
, or, equivalently (see [10, Remark 2.10]), if

dcL = (n− k)(L+ 1) + 1.

2. C is called a strongly MDS (sMDS) code if

dcM = (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1, for M =

⌊
δ

k

⌋
+

⌈
δ

n− k

⌉
,

where M is the minimum instance j such that dcj = dfree(C).
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Remark 1. Note that, in general, neither MDP implies sMDS, nor sMDS implies
MDP. However, for n− k | δ the two notions MDP and sMDS are equivalent. This
is what makes this case simpler to address, see [10].

Remark 2. Note that MDP convolutional codes are similar to MDS block codes
within windows of size (L + 1)n. Indeed, if we truncate a codeword with its first
component nonzero at any j component, with j ≤ L, it will have weight higher or
equal than the bound (6), which is the Singleton bound for block codes with the
given parameters.

The next definition is essential for our construction of MDP codes; it gives a
description of these codes using the “superregularity” of a certain matrix associated
to a given parity-check matrix, as Theorem 1 below, taken from [10], will formally
state.

Let θ = (θij) be a square matrix of order m over F (or Z) and let Sm be the
symmetric group of order m. The determinant det(θ) of θ is given by

(8) det(θ) ,
∑
σ∈Sm

(−1)sgn(σ)θ1σ(1) · · · θmσ(m),

where sgn(σ) is the signature of the permutation σ.

Definition 2. If θ = (θij) is a square submatrix of a matrix γ over F (or Z) with
θ1σ(1) · · · θmσ(m) = 0, for all σ ∈ Sm, we say that det(θ) is a trivial minor of γ. Let
{Mij} be a set of matrices of the same size and γ = (Mij) be a lower triangular
block matrix, i.e., Mij = 0 for i < j. We say that γ is a superregular matrix if all
entries of Mij , i ≥ j, are different from zero and all the non-trivial minors of γ are
non-zero.

Observe that the trivial minors of a superregular matrix come from submatrices
that contain a zero in their diagonal, or equivalent, submatrices that contain an
s× t zero block for some s, t such that s+ t− 1 is equal to or larger than its order.

It is important to remark here that there are several related but different notions
of superregular matrices in the literature. Frequently, see for instance [22], a super-
regular matrix is defined to be a matrix (not necessarily lower block triangular) with
the property that all of its square submatrices are nonsingular, implying that such
a matrix must have all its entries nonzero. Also, in [1, 16, 23], several examples of
triangular matrices were constructed in such a way that all submatrices inside this
triangular configuration were nonsingular. These notions however, do not apply to
the case we consider; we will consider matrices that allow zero entries. The more
recent contributions [10, 11, 13, 24, 25] consider the same notion of superregularity
but defined only for lower triangular matrices. The notion we consider comprises,
however, a larger set, e.g., apart from lower triangular matrices, it also includes
block triangular matrices.

Theorem 1. Let C = {v(D) ∈ F((D))n | H(D)v(D) = 0} be a (n, k, δ) convolu-
tional code with a minimal basic parity-check matrix H(D) and let

A(D) =

m∑
i=0

AiD
i ∈ F[D](n−k)×(n−k),

B(D) =

m∑
i=0

BiD
i ∈ F[D](n−k)×k,(9)
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such that

H(D) =

m∑
i=0

HiD
i =

m∑
i=0

[
Ai Bi

]
Di =

[
A(D) B(D)

]
∈ F[D](n−k)×n,(10)

where m , b δ
n−k c+ 1 = d δ

n−k e (we assume n− k - δ). Assume in addition that A0

is invertible and let

(11) A(D)−1B(D) =

∞∑
i=0

PiD
i ∈ F((D))(n−k)×k

be the Laurent expansion of A(D)−1B(D) over the field F((D)) of Laurent series.
For all j ≥ 0, define

Ĥc
j ,

[
I(j+1)(n−k) P cj

]
,(12)

where the matrix I(j+1)(n−k) is the identity matrix of size (j + 1)(n− k) and

P cj ,


P0 0 · · · 0
P1 P0 · · · 0
...

...
...

Pj Pj−1 · · · P0

 .(13)

Then, the following conditions are equivalent, for all j ∈ {1, . . . , L}:
1. dcj = (n− k)(j + 1) + 1;
2. every nontrivial (n−k)(j+1)×(n−k)(j+1) full-size minor of Hc

j is nonzero.
3. P cj is superregular;

Proof. The proof follows directly from [10, Theorem 2.4 & Theorem 3.1] and the
definition of superregular matrix.

3. Constructing MDP convolutional codes

Given the parameters n, k, δ ∈ N, k < n, such that (n − k) - δ, our goal is to
construct an (n, k, δ) convolutional code with the MDP property.† In fact, we will
construct an sMDS code with the MDP property, i.e., by Definition 1, we search
for an (n, k, δ) code such that

dcL = (n− k)(L+ 1) + 1 (MDP)

dcM = (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1 (sMDS).

We aim to construct a matrix H(D) =
[
A(D) B(D)

]
∈ F[D](n−k)×n, as in

Theorem 1 that satisfy the MDP and sMDS properties, or equivalently, such that
the matrix P cL defined through (11) and (13) (for j = L) is superregular and such
that

dcM = (n− k)

(⌊
δ

k

⌋
k + 1

)
+ δ + 1.

†The case (n− k) | δ has been addressed successfully in [10, Theorem 3.1]. The remaining case
(n− k) - δ is still unsolved and was left as an open problem in [10–12].
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To this end, we construct a matrix

P cM =


P0 0 · · · 0
P1 P0 · · · 0
...

...
...

PM PM−1 · · · P0

 ,(14)

such that its submatrix P cL is superregular. We will show that this matrix defines
a unique code C = ker

[
A(D) B(D)

]
through

(15) A(D)−1B(D) ,
M∑
i=0

PiD
i +O(DM+1) ∈ F((D))(n−k)×k,

where, for all i ∈ {0, . . . ,M}, Pi are the block entries of the matrix P cM . The
superegularity of P cL will guarantee that the code C = kerH(D) has dcL = (n −
k)(L + 1) + 1. The choice of the remaining part of P cM will ensure that dcM =

(n− k)
(⌊

δ
k

⌋
k + 1

)
+ δ + 1 and that the code C has rate k/n and degree δ.

Let

(16) T cM =


T0 0 · · · 0
T1 T0 · · · 0
...

...
...

TM TM−1 · · · T0

 ∈ F(n−k)(M+1)×k(M+1)

be a superregular matrix and let Pi , Ti, for i ∈ {0, . . . , L}, and

(17) P cL ,


P0 0 · · · 0
P1 P0 · · · 0
...

...
...

PL PL−1 · · · P0

 =


T0 0 · · · 0
T1 T0 · · · 0
...

...
...

TL TL−1 · · · T0

 , T cL.

For issues concerning the existence and constructions of such superregular matrices
see [2, 10].

It might seem natural to choose PM , TM . Since T cM is superregular, this choice
would seem to ensure also the maximality of the Mth column distance of the code
C, i.e.,

dcM = (n− k)(M + 1) + 1.

However, if the code has rate k/n and degree δ,

(n− k)(M + 1) + 1 > (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1 ≥ dfree,

where the second inequality holds because the middle expression is the generalized
Singleton bound for the given parameters. This yields that

dcM > dfree = lim
j→∞

dcj ≥ dcM ,

since dcj is increasing in j, which leads to a contradiction. Therefore, PM has to be
chosen differently.
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Note that, when (n− k) - δ, which is the case we consider here, we have that⌈
δ

n− k

⌉
− 1 =

⌊
δ

n− k

⌋
and

(n− k) = δ−
⌊

δ

n− k

⌋
(n− k) +

⌈
δ

n− k

⌉
(n− k)− δ.

For simplicity, we denote δ , δ −
⌊

δ
n−k

⌋
(n − k) and δ ,

⌈
δ

n−k

⌉
(n − k) − δ, and

obtain, therefore, that (n− k) = δ + δ.
We partition TM in the following way. Let

(18) TM ,

[
TM

TM

]
,

 T
(1)

M T
(2)

M

T
(1)
M T

(2)
M

 ∈ F(n−k)×k

where

TM ∈ Fδ × k, TM ∈ Fδ × k

and

T
(1)

M ∈ Fδ × δ−b δkck , T
(1)
M ∈ Fδ × δ−b δkck ,

T
(2)

M ∈ Fδ × (b δkc+1)k−δ , T
(2)
M ∈ Fδ × (b δkc+1)k−δ .

Analogously,

(19) PM ,

[
PM

PM

]
,
[
P

(1)
M P

(2)
M

]
,

 P
(1)

M P
(2)

M

P
(1)
M P

(2)
M


and define

P
(1)

M , T
(1)

M , P
(2)

M , T
(2)

M , P
(1)
M , T

(1)
M ,

i.e.,

(20) PM ,

 P
(1)

M P
(2)

M

P
(1)
M P

(2)
M

 =

 T
(1)

M T
(2)

M

T
(1)
M X

 ,
where the matrix P

(2)
M , X is still to be determined. Nevertheless, we can already

derive, independently of the choice of P
(2)
M , the following result which will lead us

to the desired construction.

Lemma 1. Let (n, k, δ) be given such that n − k - δ. Let T cM as in (16) be a

superregular matrix and select Pi , Ti, i = 0, . . . ,M − 1, and PM such that P
(1)

M ,

T
(1)

M , P
(2)

M , T
(2)

M , P
(1)
M , T

(1)
M , P

(2)
M , X as in (20) with X variable. Let

C = kerH(D), Ai and Bi satisfying equations (10) and (15). If A0 is invertible
then, for any matrix X, the following hold:

1. dcL = (n− k)(L+ 1) + 1;

2. dcM ≥ (n− k)
(⌊

δ
k

⌋
+ 1
)

+ δ + 1 .

Proof. Statement 1. follows directly from Theorem 1.
Statement 2: From (3), it follows that

dcM = min
{

wt(v̂) | v̂ = (v̂0, v̂1, . . . , v̂M )> ∈ kerHc
M ⊂ F(M+1)n , v̂0 6= 0

}
.
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It is easy to see that after a column permutation the sliding parity-check matrix
Hc
M in (4) of C has the form

Hc′

M ,


A0 0 · · · 0
A1 A0 · · · 0
A2 A1 · · · 0
...

...
...

AM AM−1 · · · A0

B0 0 · · · 0
B1 B0 · · · 0
B2 B1 · · · 0
...

...
...

BM BM−1 · · · B0


and using that A0 is invertible we can left multiply Hc′

M by the inverse of the first

block to obtain Ĥc
M (defined in (12)). Hence,

dcM = min
{

wt(v̄) | v̄ = (v̄0, v̄1, . . . , v̄2M+2)> ∈ kerHc′

M ⊂ F(M+1)n , (v̄0, v̄M+2) 6= 0
}

= min
{

wt(v̄) | v̄ = (v̄0, v̄1, . . . , v̄2M+2)> ∈ ker Ĥc
M ⊂ F(M+1)n , v̄M+2 6= 0

}
,

where the vector v̄ = (v̄0, v̄1, . . . , v̄2M+1) is divided according to Hc′

M (or Ĥc
M ).

Note that when considering ker Ĥc
M , the condition (v̄0, v̄M+2) 6= 0 is equivalent to

v̄M+2 6= 0. On the other hand, let

Ĥtrunc
M ,

 I(n−k)(b δkc+1)+δ

P0 0 · · · · · · 0
P1 P0 · · · · · · 0
...

...
...

...
...

PL PL−1 · · · P0 0
PM PL · · · P 1 P 0


︸ ︷︷ ︸

,P̂ truncM

be the submatrix of Ĥc
M obtained by discarding its last δ rows while keeping the

first δ rows of [PM PM−1 · · ·P0] , denoted by [PM PL . . . P 0]. Then,

min
{

wt(v̄) | v̄ = (v̄0, v̄1, . . . , v̄2M+2)> ∈ ker Ĥc
M ⊂ F(M+1)n , v̄M+2 6= 0

}
≥

min
{

wt(v̄) | v̄ = (v̄0, v̄1, . . . , v̄2M+2)> ∈ ker Ĥtrunc
M ⊂ F(M+1)n , v̄M+2 6= 0

}
Since P̂ truncM ∈ F(n−k)(b δkc+1)+δ × k(M+1) is a superregular matrix, then every(

(n− k)
(⌊

δ
k

⌋
+ 1
)

+ δ
)
×
(
(n− k)

(⌊
δ
k

⌋
+ 1
)

+ δ
)

full-size minor of Ĥtrunc
M is nonze-

ro and therefore we obtain that

min
{

wt(v̄) | v̄ = (v̄0, v̄1, . . . , v̄2M+2)> ∈ ker Ĥtrunc
M ⊂ F(M+1)n , v̄M+2 6= 0

}
=

(n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

Hence,

(21) dcM ≥ (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

We can now prove the existence of a convolutional codes with sMDS and MDP
properties.

Theorem 2. Given any set of parameters (n, k, δ), there exists an (n, k, δ) convo-
lutional code that is both sMDS and MDP.
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Proof. It is well-known that a convolutional code of rate k/n and degree δ cannot
have free distance larger than the Singleton bound (n− k)

(⌊
δ
k

⌋
+ 1
)

+ δ + 1. The
previous Lemma shows that a code C = kerH(D) with Ai, Bi and the Pi related via
equation (15) and Pi chosen as in (17) and (20), has dcM equal to or larger than the
Singleton bound of an (n, k, δ) code. We still do not know the rate and degree of C
but if C had rate k/n and degree δ, then its free distance must satisfy the Singleton
bound for these parameters, i.e., dfree ≤ (n− k)

(⌊
δ
k

⌋
+ 1
)

+ δ+ 1. Since dcM ≤ dfree
and from (21) we obtain that

dfree = dcM = (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1,

i.e., C is an sMDS (n, k, δ) code. Since C also has the MDP property (dcL = (n −
k)(L + 1) + 1) this construction would produce the desired (n, k, δ)-code that is
sMDS and has the MDP property.

Hence, we will choose P
(2)
M based on the following criteria:

1. The constructed matrix P cM should generate, via equation (15), the matrices
Ai and Bi, such that the code C is an (n, k, δ) code.

2. A0 is invertible (we can apply Theorem 1 and Lemma 1).

For this purpose we make the following partition:

Ai =

[
Ai
Ai

]
∈ F(n−k)×(n−k) , Bi =

[
Bi
Bi

]
∈ F(n−k)×k,

where,

Ai ∈ Fδ × (n−k) , Bi ∈ Fδ × k ,

Ai ∈ Fδ × (n−k) , Bi ∈ Fδ × k , i ∈ {0, . . . ,m}.

The freedom to choose P
(2)
M also gives some freedom in choosing the Ai’s and Bi’s.

Making use of this freedom we shall impose the conditions:

1. Am = 0 , Bm = 0 ,
2. A0 invertible,

and show that these conditions ensure that the above mentioned criteria are satisfied‡.
Recall that m = d δ

n−k e,

A(D) =

m∑
i=0

AiD
i ∈ F[D](n−k)×(n−k), B(D) =

m∑
i=0

BiD
i ∈ F[D](n−k)×k

and

(22) B(D) = A(D)

(
M∑
i=0

PiD
i + higher terms

)
.

Equating the coefficients of Dm, Dm+1, . . . , DM , it follows that

[Am . . . A0]

P0 · · · PM−m
...

. . .
...

Pm · · · PM

 = [Bm 0 . . . 0].

‡In the case (n− k) | δ, the matrices above are simply Ai = Ai, Bi = Bi, Ai = 0, Bi = 0, for

all i ∈ {0, . . . ,m}. This fact makes this case easier to address, see [10].
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Using the partition of the Ai’s and Bi’s and imposing the conditions Am = 0, Bm =
0, we obtain that

(23) [Am−1 . . . A0]

P1 · · · PM−m+1

...
. . .

...
Pm · · · PM

 = [0 . . . 0]

and

(24) [Am . . . A0]

 P1 · · · PM−m
...

. . .
...

Pm+1 · · · PM

 = [0 . . . 0].

Consider first

(25) P̂ ,


P1 · · · PM−m P

(1)
M−m+1

...
. . .

...
...

Pm · · · PM−1 P
(1)
M

 ∈ F(n−k)m×δ

where


P

(1)
M−m+1

...

P
(1)
M

 are the first δ −
⌊
δ
k

⌋
k columns of

PM−m+1

...
PM

. Note that P̂ is

completely determined by (17) and (20).

A parity-check matrix of the block code having the full rank matrix P̂> as
generator matrix, is a matrix with (n − k)m columns and (n − k)m − δ = δ

rows. Let [Am−1 . . . A0] ∈ Fδ × (n−k)m be such parity-check matrix, i.e., ImFP̂
> =

kerF[Am−1 . . . A0].
Note that if we partition

(26) A0 = [A
(1)
0 | A(2)

0 ], with A
(2)
0 ∈ Fδ× δ,

then A
(2)
0 is nonsingular as its determinant corresponds to a full size minor of the

superregular matrix P̂ , see for instance [10, Lemma A.1], [9] or [8].
Once [Am−1 . . . A0] is fixed (as being a parity-check matrix of the code with

generator matrix P̂ ) and it satisfies the matrix equation

[Am−1 . . . A0] P̂ = 0,

we aim at deriving P
(2)
M such that (23) is also satisfied, i.e., P

(2)
M must be defined

such that

(27) [Am−1 . . . A0]


P

(2)
M−m+1

...

P
(2)
M

 = 0,

(28) with P
(2)
M =

[
P

(2)

M

P
(2)
M

]
and


P

(2)
M−m+1

...

P
(2)

M

 are the last

(⌊
δ

k

⌋
+ 1

)
k − δ columns of

PM−m+1

...
PM

 ∈ Fδ×k.
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Imposing conditions (27) and using the partitions (26) and (28), we can complete

the undetermined part P
(2)
M of PM as

(29) P
(2)
M , −(A

(2)
0 )−1 · [Am−1 . . . A1 A

(1)
0 ]


P

(2)
M−m+1

...

P
(2)

M

 ,
in order to have that equation (23) holds.

Next, as A0 has full row rank, one can select A0 such that

(30) A0 =

[
A0

A0

]
is nonsingular.

Finally, the matrix equation (24) can be written as

(31)
[
Am · · · A1

] P1 · · · PM−m
...

. . .
...

Pm · · · PM−1

 = −A0

[
Pm+1 · · · PM

]
.

This equation has at least one solution for the to-be-determined matrix[
Am · · ·A1

]
as the matrix occurring in the left-hand side is an m(n−k)×(M−m)k superregular
matrix that has full column rank since

m(n− k) =

⌈
δ

n− k

⌉
(n− k) ≥ δ ≥

⌊
δ

k

⌋
k = (M −m)k.

Therefore, so far, we have shown how to calculate the matrices Ai and Pi, for
i = 0, . . . ,m. Matrices Bi can be subsequently computed via equation (22). Note
that the resulting matrix Bm is zero as needed in the case we are considering.

Since A0 is nonsingular, the matrix
[
A(D) B(D)

]
has full rank. Therefore,

the rate of C is k/n. To see that the degree is indeed δ, let δ̂ be the degree of

C = kerH(D). Then, δ̂ satisfies δ̂ ≤
n−k∑
i=1

δi, where δi is the i-th row degree of

H(D). Due to the imposed structure on Am and Bm, i.e., Am = 0 and Bm = 0,

we also have that
n−k∑
i=1

δi ≤ δ and, therefore, δ̂ ≤ δ. On the other hand, since

(n−k)
(⌊

δ
k

⌋
+ 1
)

+ δ+ 1 is the Singleton bound for an (n, k, δ) code, it implies that

C must have at least degree δ, i.e., δ̂ ≥ δ. Thus, δ̂ = δ, and the proof of the theorem
is completed.

Theorem 2 is equivalent to the main result presented in [11]. Unfortunately the
proof in [11] gives no clues on how one can actually construct such sMDS codes with
the MDP property. In contrast, our method gives a concrete construction of sMDS
codes with maximum distance profile. The algorithm to construct such a code is
summarized in the next subsection.

Constructive algorithm The following steps can be followed in order to derive
matrices Ai and Bi that give rise to the desired sMDP code with maximum distance
profile.
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1. Select a superregular matrix T cM as in (16). For this task one can make use of
the existing constructions of superregular matrices in [10, Example 3.10,(2)]
and [2].

2. Take Pi = Ti, for i ∈ {0, . . . , L}, and PM as in (20) with the sub-matrix P
(2)
M

unknown.
3. Compute a minimal parity-check matrix of the code with generator matrix P̂

given in (25) to obtain [Am−1 · · ·A0].

4. Obtain the matrix P
(2)
M through equation (29) and, therefore, “completing”

the matrix PM .
5. Choose A0 such that the matrix in (30) is nonsingular. One can use, for

instance, the elements of the canonical basis.
6. Solve the matrix equation (31) to obtain [Am · · ·A1].
7. Compute the matrix B(D) through equation (22).

Remark 3. Although the above algorithm gives a method to construct sMDS
convolutional codes with maximum distance profile, it is important to note that the
existing constructions of superregular matrices require large field sizes and that the
construction of superregular matrices (Step 1) over small finite fields is still an open
problem under investigation. Some conjectures and results on the size of the field
required for the construction of superregular matrices are still unsolved [10,13].

We illustrate the algorithm with an example.

Example 1. Let, for example, (n, k, δ) = (5, 2, 2). Then, m = 1, M = 2. We need
to construct a parity-check matrix H(D) ∈ F[D]3×5.

1. We consider the superregular matrices described in [2] for building T c2 as
follows:

T c2 ,



α20 α21 0 0 0 0

α21 α22 0 0 0 0

α22 α23 0 0 0 0

α23 α24 α20 α21 0 0

α24 α25 α21 α22 0 0

α25 α26 α22 α23 0 0

α26 α27 α23 α24 α20 α21

α27 α28 α24 α25 α21 α22

α28 α29 α25 α26 α22 α23


,

where α is a primitive element of a field F of characteristic 2 and of size equal to or
larger than 2512.

2. Set

P0 ,

 α20 α21

α21 α22

α22 α23

 , P1 ,

 α23 α24

α24 α25

α25 α26

 .
Since δ −

⌊
δ
k

⌋
k = 0,

(32) P2 ,

[
P 2

P 2

]
,
[
P

(2)
2

]
,

 P
(2)

2

P
(2)
2
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and then

P 2 ,

[
α26 α27

α27 α28

]
, X =

[
x1 x2

]
and P2 =

 α26 α27

α27 α28

x1 x2

 ,
where the variables x1 and x2 have to be computed.

3. To find a solution for the matrix equation (23), i.e., to find A0 and the
variables x1 and x2 in P2 such that A0

[
P1 P2

]
= 0 is satisfied, we first compute

A0 as the parity check matrix of P̂ as in (25). For these parameters P̂ = P1 and
therefore

A0 =
[
α32 + α40 α16 + α24 + α32 1

]
.

4. Divide

A0 =
[
A

(1)
0 A

(2)
0

]
=
[
a0 a1 a2

]
to solve equation (29):

X =
[
x1 x2

]
= −a−12 [a0 a1]

[
α26 α27

α27 α28

]
=
[
α96 + α104 + α144 + α152 + α160 α160 + α168 + α272 + α280 + α288

]
.

5. One can choose A0 =

[
1 0 0
0 1 0

]
such that (30) holds.

6. To complete the values of the matrix A(D) one needs to compute A1 (or
equivalently of A1) which is it done by solving the matrix equation (31):

A1P1 = −A0P2 ⇒ A1 =

[
y1 y2 y3
y4 y5 y6

]
,

which produces

y1 = α104 + α96 + α88 + α80 + α72 + α64;

y2 = α96 + α88 + α80 + α72 + α64 + α56 + α48;

y3 = 0;

y4 = α232 + α224 + α216 + α208 + α200 + α192 + α184

+ α176 + α168 + α160 + α152 + α144 + α136 + α128;

x5 = α224 + α216 + α208 + α200 + α192 + α184 + α176

+ α168 + α160 + α152 + α144 + α136 + α128 + α120 + α112;

y6 = 0.

7. Finally, once we have obtained A(D) one can easily computeB(D) = B0+B1D
by means of equation (22):

B0 =

 α α2

α2 α4

b0 b′0


with b0 = α41 +α34 +α33 +α26 +α18 +α4 and b′0 = α42 +α36 +α34 +α28 +α20 +α8,
and

B1 =

 b1 b2
b3 b4
0 0
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with

b1 = α105 + α98 + α97 + α90 + α89 + α82 + α81 + α74 + α73 + α66

+ α65 + α58 + α50 + α8;

b2 = α106 + α100 + α98 + α92 + α90 + α84 + α82 + α76 + α74 + α68

+ α66 + α60 + α52 + α16;

b3 = α233 + α226 + α225 + α218 + α217 + α210 + α209 + α202 + α201 + α194

+ α193 + α186 + α185 + α178 + α177 + α170 + α169 + α162 + α161 + α154

+ α153 + α146 + α145 + α138 + α137 + α130 + α129 + α122 + α114 + α16;

b4 = α234 + α228 + α226 + α220 + α218 + α212 + α210 + α204 + α202 + α196

+ α194 + α188 + α186 + α180 + α178 + α172 + α170 + α164 + α162 + α156

+ α154 + α148 + α146 + α140 + α138 + α132 + α130 + α124 + α116 + α32.

The resulting code

C = kerH(D) = ker
[
A(D) B(D)

]
= ker

 1 + y1D y2D 0 α+ b1D α2 + b2D
y4D 1 + y5D 0 α2 + b3D α4 + b4D

α32 + α40 α16 + α24 + α32 1 b0 b′0


has rate 2/5, degree 2 and is a sMDS (5, 2, 2) code with maximum distance profile.

4. Conclusions

A great deal of attention has been devoted in recent years to two new classes of
(n, k, δ) convolutional codes called MDP and sMDS due to their optimal distance
properties. However, the question of how to construct them has remained open
and only the case (n − k) | δ (the case where these two classes coincide) has been
solved. In this paper we have filled this gap by presenting an effective method to
construct sMDS (n, k, δ)-codes with maximum distance profile for any choice of the
parameters (n, k, δ).
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