MAXIMUM DISTANCE SEPARABLE CONVOLUTIONAL CODES
JOACHIM ROSENTHAL AND ROXANA SMARANDACHE

ABSTRACT. A maximum distance separable (MDS) block code is a linear code
whose distance is maximal among all linear block codes of rate k/n. It is well
known that MDS block codes do exist if the field size is more than n. In this
paper we generalize this concept to the class of convolutional codes of a fixed rate
k/n and a fixed code degree 0. In order to achieve this result we will introduce a
natural upper bound for the free distance generalizing the Singleton bound. The
main result of the paper shows that this upper bound can be achieved in all cases
if one allows sufficiently many field elements.

1. INTRODUCTION

Let F be a finite field and let C C F* be an [n, k| linear block code. Let d(C) be
the distance of C, i.e. d(C) is equal to the minimum Hamming distance between any
two different code words z,y € C.

The main linear coding problem asks for the construction of linear [n, k| codes
whose distance d(C) is maximal among all linear [n, k] codes.

The distance d(C) is always upper bounded by the Singleton bound [8], i.e. one
has the inequality

(1.1) d(C) <n—k+1.

If the base field ' has sufficiently many elements then the Reed Solomon construc-
tion shows that there are [n, k] codes whose distance is equal to n —k+1. Such codes
are called maximum distance separable (MDS) codes. It is the purpose of this paper
to derive a generalization for the Singleton bound which is valid for convolutional
codes and to prove that there exist codes which achieve this generalized Singleton
bound. We call then such a convolutional code an MDS convolutional code.

In the literature there were already several papers [5, 11] which considered the
concept of a maximum distance separable convolutional code. In each of these ap-
proaches it was necessary to restrict the total class of rate k/n convolutional codes to
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a suitable subclass. This is simply due to the fact that there is in general no upper
bound for the free distance of a rate k/n convolutional code.

We argue that the single most important parameter for a rate k/n convolutional
code is the degree and we will define this parameter in a moment. The set of all con-
volutional codes of rate k/n and degree at most 0 forms a finite set and consequently
the free distances of these codes have to be bounded from above. The generalized
Singleton bound which we are going to derive will have the property that every con-
volutional code of rate k/n and degree § will have a free distance of less than this
bound and the main result of this paper states that there are codes which achieve
this distance.

In the sequel we follow the module theoretic approach to convolutional codes as
it was described in [15]. This has the advantage that we can utilize by duality well
known first order representations studied in the systems literature. The difference to
the classical approach as provided in [1, 10] will turn out to be minor.

Consider the polynomial ring R = F[z]. For the purpose of this paper we will define
a convolutional code as an R submodule of the module R". Since R is a principal
ideal domain (PID) the submodule C is free and it has therefore a well defined rank
k. If C has rank k£ we will say that the convolutional code C has transmission rate

As it was shown in [15] C is dual to a linear behavior C* := B C F*[[2]] and B has
a well defined McMillan degree §. Using this duality we will define the degree of the
convolutional code C as the McMillan degree of the behavior C*.

The degree is also easily computed from the module C directly. For this let G(z)
be an n x k polynomial matrix whose columns form an R-basis of the submodule C.
We say that G(z) is a generator matrix for the convolutional code C. In terms of
G/(z) the degree is exactly equal to the maximal degree of the k x k full size minors of
G(z). (See [15] for details). Note that our definition is independent of the particular
choice of generator matrix. Indeed if G1(z) and Gy(z) are two generator matrices
then there exists a unimodular matrix U(z) such that Gy(z) = G1(2)U(z) and the
k x k tull size minors of G5(z) correspond to the full size minors of G (z) multiplied
by the constant factor det U(z). In particular the highest degree of the minors are
the same.

Let v; be the degree of the ith column of G(z). Le. v; = max;degg;i(z). We
denote by G the high order coefficient matrix of G(z). In general G has not full
rank k. Every module C of rank k£ has however an n x k generator matrix G/(z) whose

column degrees vy, ... , 1 are non-increasing and whose high order coefficient matrix
(oo has rank k. The degree ¢ is in this case equal to 6 = ) . v; and we say that G(z)
is in column proper form. The ordered indices v; > --- > 1 are invariants of the

convolutional code and we call these indices the column degrees or Kronecker indices
of the convolutional code C.

For any n-component vector v € " we define its weight and denote it by wt(v), the
number of all its nonzero components. The weight of a polynomial with coefficients
in " is then the sum of the weights of all its coefficients. Finally we define the free
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distance of the convolutional code C C F"[z] through:
djsee = min{wt(v(2) | v(2) € C,0(2) £ 0}.

Remark 1.1. The module theoretic approach as presented above is slightly non-
standard. In the coding literature [1, 3, 10| convolutional codes are usually defined
as linear subspaces (i.e. submodules) of R” where R is either the field of rationals
F(z) or the field of formal Laurent series F((z)). If the code is defined over F((z))
it has to be required that the code is generated by an n x k polynomial generator
matrix G(z). Over F(z) such a representation is guaranteed. The column span of
G(z) with respect to F[z| corresponds then to the finite weight code words of the
column span generated by G(z) with respect to F(z). The restriction to finite weight
code words is of little significance. In fact McEliece |9, Section 2] points out that
finite weight code words are the only ones that can occur in engineering practice. For
this paper it is of importance that the set of rate k/n convolutional codes of degree §
can be equipped with the structure of a variety and this explains our preference for
the module theoretic approach.

The paper is structured as follows: In Section 2 we give a natural bound on the free
distance which codes of rate k/n and degree 0 must satisfy. This bound naturally gen-
eralizes the Singleton bound [8, Chapter 1] of linear block codes. The main theorem
(Theorem 2.10) states that there exists a code attaining this upper bound, as long
as we allow sufficiently large field sizes. We will call such codes MDS convolutional
codes. In Section 3 we exhibit some first order representations for the convolutional
codes that are used along the paper. In Section 4 we present a detailed proof of the
main result, that is, the existence of MDS-convolutional codes. Finally in the last
section we explain shortly the underlying geometric aspects of the construction.

2. MAIN RESULTS

Let C be a convolutional code of rate k/n and degree ¢ defined over an arbitrary
base field F. Let G be a polynomial encoder in column proper form with ordered
column degrees v; > --- > ;. We have the following upper bound on the free
distance of the code:

Lemma 2.1. Let ¢ be the number of indices v; among the ordered indices vy > -+« >
v, having the value v; = vi. Then the free distance must satisfy
(21) dfree S n(Vk+1) —£—|—1

Proof. Let G be the high order coefficient matrix of G(z). After some possible per-
mutation of the rows of G(z) we can use elementary column operations and transform
the last £ columns of the matrix GG, into a matrix []I\f[] where M is a matrix of size
(n — ) x £ over F. The transforming operations can be done by an invertible matrix
T € Gl, which acts on the last ¢ columns of the matrix G(z). This transformation
has no effect on the column space of G(z) and it also does not affect the column
degrees v;.

After this transformation the last column of the new generator matrix G(z) will
have (¢ — 1) polynomials of weight strictly less than v + 1, one with weight exactly
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v + 1, and the remaining (n — ¢) polynomials with weight less or equal than vy, + 1.
Therefore the input (0,0,...,0,1)" gives a codeword with weight less or equal than

=D+ +1D)+(n—0Ow+1) =n(v+1)—£+1.
This gives the upper bound (2.1). O

The set of rate k/n convolutional codes of degree ¢ is partitioned into sets of codes
with different column degrees vy > - -+ > vy Taking the maximum of the bound (2.1)
over all such possible sets we obtain the following:

Theorem 2.2. For every base field F and every rate k/n convolutional code C of
degree 0, the free distance is bounded by:

(2.2) diree < (n—k)(|0/k| +1)+5+1.

Proof. The upper bound (2.1) is largest if v, is as large as possible and ¢ as small as
possible. The largest possible value for vy is v, = [0/k|. Minimizing ¢ results in the
constraint length values

vy = Lé/kj +]_, s V1o = L(S/kJ +].,Z/klg+1 = L(S/k)J AN L(S/k}J .
Substituting vy = |0/k] and £ =k — 5+ k |0/k] in (2.1) we get the bound (2.2). O

Remark 2.3. In the systems literature, the above set of indices are sometimes referred
to as the ‘generic set of column indices’. McEliece [9, Section 4] calls a code having a
right prime generator matrix with the generic set of column indices ‘a compact code’.

Remark 2.4. The upper bound (2.2) on the free distance seems to be new. In the
coding literature [2, 3, 9] there are many known upper bounds for convolutional codes
of a fixed rate and a fixed degree. These bounds usually are valid for a particular
finite field F,. In contrast to this, (2.2) is valid for any field (even an infinite field)
and we believe that the bound naturally generalizes the Singleton bound.

The main theorem 2.10 will state that there exist always rate k/n convolutional
codes of degree § whose free distance is equal to the right hand side of (2.2). Based
on this we define:

Definition 2.5. A rate k/n code of degree § whose free distance achieves the upper
bound given in (2.2) will be called an MDS convolutional code. The bound (2.2) will
be called the generalized Singleton bound.

Remark 2.6. MDS convolutional codes were defined before in the literature. Juste-
sen and Hughes [5] study maximum distance separable convolutional codes among
the class of systematic polynomial encoders. Since systematic polynomial encoders
represent a very restricted class of convolutional codes the results are quite different
from the ones presented here.

Piret and Krol [11] consider MDS convolutional codes with respect to a non-
standard Hamming metric. They consider subspaces of R" where R = F(z) is the
field of rationals. Their Hamming distance is then defined as the number of coordi-
nates where two vectors inside R™ differ. This definition amounts to a linear block
code over the infinite field R = F(z) and the standard Singleton bound (1.1) applies.
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The concepts studied in [5, 11] are therefore different from the MDS concept we
consider in this paper.

The following lemma gives sufficient conditions for a code to be an MDS convolu-
tional code:

Lemma 2.7. If a codeword v(z) in C has the property that any of its k components

have weight at least (0 + 1) then the weight of the codeword v(z) is necessarily greater
than or equal to
(2.3) (n—k)(|0/k| +1)+d+1.

We will refer to the property that any & components of an n component vector
have weight more than d + 1 as the weight property.

Proof. Let
v(z) = ( v1(2) ..., vu(2) )t eC.

The weight property implies that at least n — k + 1 of the components of v(z) must
have the weight more or equal to [6/k] + 1. Indeed, taking the first & components
of v, by the weight property, the sum of their weight is > 6 + 1, therefore there is
one component, say v; , with the weight > |0/k| + 1. Cut v; from the sequence and
add vg1.The new sequence of components has again the weight property, so there
is once again a component, say v, with weight > |0/k| + 1. With this reasoning
we obtain that at least n — k£ 4+ 1 of the components must have the weight more or
equal to |6/k] + 1. We have now that n — k of the components have weight at least
> |§/k| + 1, and from the weight property that the remaining & components have
weight greater than 6 + 1. Therefore

wt(v(2)) > (n—k)([6/k] + 1)+ (6 + 1)
which is equal to the upper bound 2.2.
O

Before we state the main theorem we summarize some known results:
For ¢ = 0 the bound (2.2) coincides with the Singleton bound (see e.g. [8]). In this
situation we therefore have:

Lemma 2.8. IfG is an n X k generator of an MDS block code then G generates also
an MDS convolutional codes of rate k/n, degree 6 = 0 and free distance n — k + 1.
In particular if |F| > n, MDS convolutional codes of rate k/n and degree 0 do exist.

The next result implies that rate 1/n MDS codes do exist for every value of 6. The
result was derived by Justesen [4]. A systems theoretic proof of this result is given
in [18].

Theorem 2.9 ([4]). Let §,n be fized and assume that F is a finite field with q :=
F| > 3§ elements. Then there exists a rate 1/n MDS convolutional code.

The main result of this paper now states:

Theorem 2.10. For any rate k/n and any degree ¢ there exist MDS convolutional
codes for sufficiently large field sizes.

The proof of Theorem 2.10 will be given in Section 4.
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3. FIRST ORDER REPRESENTATIONS FOR CONVOLUTIONAL CODES

This section reviews some first order representations for convolutional codes that
are heavily used in the next sections. As it was shown in [15] we have the following
existence and uniqueness theorems:

Theorem 3.1. Assume C C F"[z] is a rate k/n convolutional code of degree §. Let
K be the algebraic closure of F. Then there exist matrices K, L € FOtntk)xo gpq
M € FO+nLk)xn sych that:

(3.1) C={v(z) € T[2] | 3x(2) € P[] : (2K + L)x(2) + Mv(z) = 0}.
Moreover, the following conditions are satisfied:

1. K has full column rank;
2. (K| M) has full row rank;
3. rank (2K + L | M) =06 +n —k,Vz € K

The theorem allows one to work with matrix triples (K, L, M) instead of a polyno-
mial description. A convolutional code which is described by the matrices (K, L, M)
will be simply denoted by C(K, L, M). If § = 0, (3.1) reduces to the parity check
equation Mwv(z) = 0. The representation (3.1) is unique in the following sense:

Theorem 3.2. Let (K, L, M) and (K', L', M') be two matriz triples with the sizes
as in the previous theorem and satisfying the minimality conditions 1,2, 3.
Then C(K,L,M) =C(K',L', M") if and only if

(3.2) (K')L',M") = (SKT*",SLT"", SM)
for some T € Gls 1 (F) and S € Glsin 1 (F).

Starting with a (K, L, M) representation for a convolutional code C we can derive
an input/state/output representation. Performing a suitable similarity transforma-
tion and permutation of the components of v(z) we can rewrite the (K, L, M) matrix
triple in the following way (compare with [15, Section IV]):

w=[ b e[ 2] =[0 D)

In the partitioning, A € I B € F** C € F"R)x0 and D € FLhxk T et:
2(2) = 202" + 112" + . 4z 1 € F,t=0,...,7,
v(z) = v + 2" 4t v €FE=0,... 7,
If one partitions the vector v; into v; = (gi) where 1, has n — k components and

has k£ component then the convolutional code is equivalently described by the familiar
looking ‘(A, B, C, D)’ representation:
(3 3) Tiyr1 — Afl:'t + But

' vy = Caxy+ Duy, 39 =0, Tyy1 = 0.

This system is known as the input/state/output representation for a convolutional
code. It describes the dynamics for a systematic and rational encoder. We refer
to [15, 17, 19] for more details.



MAXIMUM DISTANCE SEPARABLE CONVOLUTIONAL CODES 7

We say that the matrices (A, B) form a controllable pair if
rank (B AB... A™'B) =,

and we say that (A, C) form an observable pair if (A*, C") is a controllable pair. Once
(A, B) form a controllable pair and (A, C') form an observable pair then it was shown
in [15, 17, 19] that the system (3.3) represents a non-catastrophic convolutional code
of degree 0 and rate k/n.

If one is interested in the construction of convolutional codes with some designed
distance there is no limitation if one attempts to construct matrices A, B, C, D, with
(A, B) controllable and (A, C') an observable pair. The following result was obtained
by such a construction:

Theorem 3.3 ([15]). Let r := max{n—k,k}, and assume that the cardinality of the

field F satisfies
o
Fl >dr | ——|.
oo |

Then there ezists a rate k/n convolutional code of degree § having free distance
dfree > o+ 1.

Remark 3.4. The proof of Theorem 3.3 as given in [15] came with a concrete con-
struction of a set of matrices A, B, C, D. The reader observes that for very high rates
the free distance of § + 1 is only a fraction away from the optimal upper bound (2.2).
For low rates the distance of § + 1 is less than optimal.

In order to prove Theorem 2.10 we will need a strengthening of Theorem 3.3:

Theorem 3.5. Let 6,k,n, p be fived and assume that

=012 0 + 0 +1
P= n—k| |k |
If the matrices A, B, C have the property that (B AB ... AP'B) is the parity check

of an MDS block code and that (Ct AlCt ... A”“tC’t> is the generator matrixz of an
MDS block code then for any codeword

v(z) = (%”) € F"[2]

either
wt(u(2)) >+ 1 or wt(v(2)) > (n— k) (|0/k] + 1)+ + 1.

Before we give the proof we want to mention that the choice of p is not the minimum
that we can have so that the result is correct. The proof for a smaller choice of p
would involve more cases. For the purpose of this paper this is not necessary.

Proof. Assume
u(z) = wpz? + w2+,

y(z) = w2’ +m2 "+,
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where v is the degree of v, and that ug # 0. The first equations of the systems (3.3)
give that (see [15]):

(U, .- up) € ker (B AB... A'B).

If v < p then wt(u(z)) > 0 + 1 and the proof is complete.
We therefore assume that v > p and that wt(u(z)) < 6. By the ‘pigeonhole
principle’ there exist an index 7 < p — & and an input sequence

Uipr = Ujpp = =+ = U2 = 0.

In analogy to the proof of [17, Theorem 3.1] it follows that the state x;,1 # 0 and
that

Yit1 C
Yiyo CA

. = . Lit1-
Yiye CAsSH!

The assumption on the matrix (C’t AlCt A"“tC’t> gives that

wt(y) > (n—k)-§—5+1:(n—k) (2 [HM%%JH)_&H

> 25+(n—k)<m+1>—6+1:(n—k)<EJ+1>+6+1.

In the proof of Theorem 2.10 the following lemma will be needed:

Lemma 3.6. Letd,k,n, p be fivred, r = max{n—£k, k} and assume that the cardinality
of the field F satisfies |F| > rp. Then there exist matrices A, B,C satisfying the
conditions of Theorem 3.5.

Proof. Let a € F be an element of multiplicative order at least rp. Then

a" 0 - 0 1 o .. gkl
2r . : 1 a2 aof .. a2(kl1)
A= 0 o ’ , B := ,
: . . 0 : :
0 .. 0 A" 1 CY6 0426 . aé(kLl)
1 e 1
a DR a‘s
C — 0/2 0426
QLR 8k L)

satisfy the conditions of Theorem 3.5. O
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4. PROOF OF THE MAIN RESULT

In this section we will give the proof for Theorem 2.10, the main result of this
paper. The idea of the proof goes as follows:

We exhibit a parameterization on the set of all rate k/n convolutional codes of
degree 0 using a large F-vector space, where F is a finite field. Then we show that
the set of codes which are not MDS forms an algebraic subset. Over a finite field
an algebraic subset might be the whole parameter space. Over the algebraic closure
however the algebraic subset describing the convolutional codes which are not MDS
forms a strictly proper subset. This reasoning will allow us to predict an MDS
convolutional code with entries in a finite extension of the (finite) base field F which
is itself a finite field.

For the parameterization we will use the first order representation as presented in
Theorem 3.1 of Section 3. We do this by viewing a triple of matrices (K, L, M) as
a point in the vector space FO+nLtk)(204n) = By Theorem 3.2 this parameterization is
not unique. This is however of minor importance in the proof. In the last section we
will show that the proof can also be derived in a variety which parameterizes the rate
k/n convolutional codes of degree § exactly. We start the proof with a short Lemma:

Lemma 4.1. The set of matrices (K, L, M) satisfying the property 1,2 and 3 of

Theorem 3.1 is open and nonempty inside FO+nLk)(204n)

Proof. We recall from the paper of Ravi and Rosenthal [13] that the conditions 2 and
3 can be equivalently written as the following rank condition:

K o ... 0(M 0 ... ... 0
L K . |0 M :
(4.1) 0O L . 0| : "0 "-0e0 0 blocks
: . K| . M 0
0 ... 0 LJ|oO 0 M|

20 — 1Vblocks

has full row rank. Thus all (K, L, M) matrices satisfying the conditions 1,2, 3 are
in the complementary set of all zeros of the polynomial equations describing the
determinant of some full size minors of the matrices K and (4.1) being 0. Therefore
the set of all matrix 3-tuples (K, L, M) satisfying the conditions 1,2,3 is open in
F(O+nLk)(20+n) and it is obviously nonempty since there is an one to one correspondence
between this set and the set of all convolutional codes as we defined them. O

The rest of the section will be devoted to the proof of the main theorem.

Proof of Theorem 2.10. Let F be a fixed finite field, with ¢ elements, having charac-
teristic p. Let K denote the algebraic closure of F. As an algebraically closed field, K
is infinite. We will call a matrix with all full size minors invertible, an MDS matrix.

Consider now some fixed numbers 6, k,n, p with £ < n and p chosen as in Theo-
rem 3.5.
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We are looking at the set of all 3-tuple matrices (K, L, M) with the properties 1, 2, 3
and of sizes as in Theorem 3.1, such that the matrix [K | M| is an MDS matrix. Let
this set be denoted by V. V is the intersection of two open nonempty sets, one given
by all (K, L, M) such that the conditions 1,2, 3 are satisfied, and the other given by
the complementary of the set of the zeros of all the full size minors of [K | M]. Over
the algebraic closure K, the intersection of nonempty open sets is nonempty and V'

is therefore a nonempty Zariski open set in KO+n1k)(20+n)

Let now (K, L, M) be an element in V, and let
i={1<n<j<...<jr<n}

be a subset of the set {1,... n} having cardinality k. We would like to show that
the code C defined by (K, L, M) has the property that the £ components {v;,(2) |
i=1,...,k}, of a code word v(z) € C satisfy either

> wt(v;,(2)) > 6+ Lor wt(v(z)) > (n— k) ([0/k] + 1)+ 6+ 1.

In order to apply Theorem 3.5, let P’; be an n X n permutation matrix such that

o~ (29)

where the k& components v, (z), ... ,v;, (z) of v(z) are mapped onto the k components
of u(z).

Partition the matrix MPjll = [M; | N] where M, is the matrix formed by the
first n — k columns of iju and N denotes the rest of the columns in iju_ The
property of V' tells us that the matrix [K | M;] is invertible.

For every K, L, M and every j we define matrices A;, Bj, Cj, D; in the following
way:

Is
0

— A
—C
Rewriting the equation (3.1) in the new terms we obtain the (A, B, C, D) polynomial
description from the previous chapter:

zls — Aj _B: z(2)
I_CjAJ InOM —g; } { 38 } — 0.

If the matrices A;, B;, C; satisfy the conditions of Theorem 3.5 then the weight

Zle wt(vj,(2)) > d + 1 or the weight of v(2) is larger than the bound (2.2).
The algebraic conditions on A, B, C' expressed in Theorem 3.5 translate into alge-
braic conditions inside the parameter space K(O+n-k)(20+n) T et

S; = {(K, L, M) € FOtnLb)@04n) g ¢

(4.2) [K | MY [K | L| MP] = [

0 B
Iy —Dj |-

(4.3)

(By AiBy... A¢"'By) and (Cf AICH... AP™'CY) are MDS}.

Applying Lemma 3.6 one sees that S; NV is a nonempty Zariski open subset of
K(6+nlk)(26+n) ]
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Let J ={j = {1l < ji < jo < ... < jr < n}} be the set of all k-subsets of
{1,...,n}, and consider all {S;NV | je€ J}. All of these sets form a finite number
of open nonempty sets in V', therefore their intersection is nonempty. It implies the
existence of a vector x = (K, L, M) having the property of all the sets S;N V.

So far we obtained a vector x € V having the components in K, the algebraic
closure of I, and laying in the intersection

ﬂ(Sj N V) cVc K(5+nJ_k)(26+n).

jeds
Since the extension F C K is algebraic, it implies that every component of x is
algebraic over [, therefore in a finite extension. If we denote with z; the components
of  we have that all x; € Flz;,1 < j < (0+n—£k)(20+n)], which is a finite extension
over I, therefore is finite of degree say m. Therefore the code C = C(K,L, M)
associated to the matrices (K, L, M) will be a code over a finite field F,m, with m
possibly rather large.

We will show that this code is actually an MDS convolutional code, in other words

it has the free distance equal to the upper bound (2.2). Let

v(z) = (01(2) ..., val(2) )t eC

be a nonzero code word. We will show that the weight of v(z) is larger than the
upper bound by applying Lemma 2.7 and Theorem 3.5.

Since the code C belongs to the intersection of all the Zariski open sets S;NV, we
can apply Theorem 3.5 for all the k-combinations of the components vy, vy, ... , v, to
form the part u of the codeword. By construction of the sets S;N V', we get that either
the weight of the k-combination of components vy, vs, ..., v, is more than § + 1, or
the weight of the whole codeword is larger than

(n—k)([6/k]+1)+d5+1

which is the bound we want. If we have the first situation for all k-combinations of
the components we get the conditions of Lemma 2.7. The weight of the codeword is
therefore greater then the upper bound (2.2). In either case we predict the existence
of an MDS code C over the finite field Fm . O

Remark 4.2. The proof does not construct MDS convolutional codes in an explicit
way. Concrete constructions exist when ¢ = 0 (Reed-Solomon construction) and
when k& =1 (see Theorem 2.9).

5. REMARKS ON THE GEOMETRY OF THE CONSTRUCTION

We conclude this paper with some remarks about the algebraic geometric aspect
of the constructions considered in the previous section.

As it was explained in [7, 12, 13] a submodule of rank k£ and degree § in F"[z]
describes a quotient sheaf of rank £ and degree § over the projective line P'. The
column degrees v; > --- > vy of the submodule C C F"[z] correspond then to the
Grothendieck indices of the quotient sheaf. By a general theorem of Grothendieck
it is possible to equip the set of all rank & submodules (quotient sheaves) of degree
0 with the structure of a scheme. Such a scheme is referred to as a quot scheme in
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the algebraic geometry literature. The quot scheme which parameterizes the rank k
submodules of degree ¢ turns out to be a smooth projective variety [12]. This variety
has been of prominent interest recently in the area of conformal quantum field theory
and we refer to [14] for more details.

If the degree 6 = 0 the Grothendieck quot scheme is exactly the Grassmann variety
Grass(k, F") consisting of all k£ dimensional subspaces of the vector space F”. This
variety parameterizes the set of all linear block codes of rate % defined over the field F.
For an arbitrary degree ¢ the Grothendieck quot scheme parameterizes in a natural
way all rate % convolutional codes of degree §.

Linear systems described by matrix triples (K, L, M) have been studied widely in
the systems literature and probably the most comprehensive account is given in the
monograph of Kuijper [6]. It was pointed out by Lomadze [7] that a matrix pencil of
the form [2K + L | M| represents exactly the linear free resolution of the associated
quotient sheaf and in this way such matrix pencils appear naturally in the algebraic
geometry literature as well. Finally we would like to note that we can view (3.2) as
a group action of the reductive group Gls, x Gls on the vector space consisting of
all matrix triples (K, L, M) of a fixed size. The uniqueness Theorem 3.2 expresses
the fact that the group orbits in (3.2) correspond to the submodules of F*[z], i.e. the
convolutional codes.

Actually much more is true: The geometric quotient in the sense of GIT (=geomet-
ric invariant theory) induced by the group action (3.2) is exactly the Grothendieck
quot scheme. The minimality conditions provided in Theorem 3.1 and characterized
by the set V C FO+nLk)(20+n) aphearing in the proof of the main theorem, guarantee
that the associated orbit is a ‘stable orbit” in the sense of GIT. This is true for an
arbitrary base field and this statement is a geometric formulation of the uniqueness
Theorem 3.2. The reader who is interested in more details is referred to [13]. For the
purpose of this paper the following is important. The open set V' ¢ F(0+n1k)(204n)
which we introduced in the proof of Theorem 2.10 describes exactly the stable or-
bits and the quotient of V' under the group action (3.2) describes the Grothendieck
quot scheme X,‘g’n. The sets S; induces Zariski open sets inside the scheme X7 and
by abuse of notation we will denotes these sets with S; as well. The set of MDS
convolutional codes contains then the Zariski open subset

ﬂSj C X;z’n.

The main result states that (1) Sj is nonempty as soon as the field size is sufficiently
large. A set which contains a non-empty Zariski open subset is sometimes referred to
as a generic set and in this way we can say that the set of MDS convolutional codes
forms a generic set inside the set of rate k£/n convolutional codes of degree § as soon
as the field size is sufficiently large.

For § = 0 the result says that the set of MDS block codes viewed as a subset of the
Grassmann variety forms a Zariski open subset and that this set is nonempty as soon
as the field is sufficiently large. In the block code situation we know that |F| > n is
sufficient to guarantee that the set is nonempty. In particular the existence of MDS
block codes over the field F(z) as studied by Piret and Krol [11] follows from our
theory.
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After generalizing the notion of MDS block code it naturally arises the question on
the nature of the dual code. We know that a dual of an MDS-block code is MDS, so
we want to find out if this generalizes to the case of general convolutional codes with
degree § > 0. In the sequel we cover two special cases where this turns out to be true
and then we give two examples of MDS-convolutional codes whose dual is not MDS.

In order to introduce the notion of a dual convolutional code in our module theo-
retical setting, consider the following bilinear form:

(5.1) <> F'z] x F'[z] — TFg]
(v(2),w(2)) — v(z)w(z)".
Using this bilinear form we define the dual of a code C as
Ct = {w(2) |< v(z),w(z) >= 0,Vv(z) € C}.
One always has that
ctoc.

If the code C has a minimal basis encoder (i.e. it is non-catastrophic) then Ct+ = C.
The following two lemmas cover some cases where the dual of an MDS convolutional

code is MDS.

Lemma 5.1. IfC is a convolutional code of degree 6 = 0 then C is MDS if and only
if C+ is MDS.

Lemma 5.2. Assume k = 1,n = 2. A non-catastrophic code C of rate 1/2 is MDS
if and only if C+ is MDS.

We will present now a very simple example of a rate 1/3 MDS convolutional code
which has a non-MDS convolutional code of rate 2/3 as its dual. In this example the
degree 0 = 1 and the finite field is F3:

Example 5.3. Let k=1, n =3, § =1 and consider the generator matrix
Giz)=((2+2) (z+1) (z+1))".

Then the code generated by G(z) is non-catastrophic and MDS but the dual code is
not an MDS convolutional code.

Indeed it is easy to see that any codeword v(z) = G(z2)i(2),i(z) € F*[z] has weight
at least 6, so the code generated by G(z) is MDS. The dual code has a generator
matrix given by:

z+1 0
Gt = 0o 1|,
2z4+1 2

which is not MDS.

The above example shows that in general the dual code of an MDS convolutional
code is not an MDS convolutional code anymore in contrast to the situation of block
codes. In [16] more details on the issue of duality of MDS convolutional codes were
given.
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