Using Stata for Two Sample Tests

All of the two sample problems we have discussed so far can be solved in Stata via either (a) statistical calculator functions, where you provide Stata with the necessary summary statistics for means, standard deviations, and sample sizes; these commands end with an i, where the i stands for "immediate" (but other commands also sometimes end with an i) (b) modules that directly analyze raw data; or (c) both. Some of these solutions require, or may be easier to solve, if you first add the Stataquest menus and commands; see

http://www.stata.com/support/faqs/res/quest7.html

The commands shown below can all be generated via Stata's pulldown menus if you prefer to use them.
A. 2 Sample Case I: σ_{1} and σ_{2} are known.

Problem. Indiana University (population 1) claims that it has a lower crime rate than Ohio State University (population 2). A random sample of crime rates for 12 different months is drawn for each school, yielding $\hat{\mu}_{1}=370$ and $\hat{\mu}_{2}=400$. It is known that $\sigma_{1}{ }^{2}=400$ and $\sigma_{2}{ }^{2}=800$. Test Indiana's claim at the . 02 level of significance. Also, construct the 99% confidence interval.

Stata Solution. I don't know of a way to do this with raw data in Stata, but you can do it with summary statistics and the ztest2i command that is installed with Stataquest. The format is
ztest2i 123702012400 28.28427125, level(99)
where the parameters are N1, Mean1, Known SD1, N2, Mean2, Known SD2, and desired CI level. Stata gives you

```
. ztest2i 12 370 20 12 400 28.28427125, level(99)
                                    x: Number of obs = 12
                                    y: Number of obs = 12
Variable | Mean Std. Err. z P>|z| [99% Conf. Interval]
```



```
                                    Ho: mean(x) - mean(y) = diff = 0
        Ha: diff < 0
                            Ha: diff ~= 0
                                    Ha: diff > 0
            z = -3.0000
                            z = -3.0000
                        z = -3.0000
    P < z = 0.0013
                            P > |z| = 0.0027
    > z = 0.9987
```

The one-tailed probability of getting a difference this large just by chance is only .0013 , so reject the null. We would also reject if the alternative was 2-tailed; the two-tailed probability is only .0027 and the 99% confidence interval for the difference does not include 0 .
B. 2 Sample Case II: σ_{1} and σ_{2} are unknown but assumed to be equal.

1. A professor believes that women do better on her exams than men do. A sample of 8 women $\left(\mathrm{N}_{1}=8\right)$ and 10 men $\left(\mathrm{N}_{2}=10\right)$ yields $\hat{\mu}_{1}=7, \hat{\mu}_{2}=5.5, \mathrm{~s}_{1}{ }^{2}=1, \mathrm{~s}_{2}{ }^{2}=1.7$.
(a) Using $\alpha=.01$, test whether the female mean is greater than the male mean.

Assume that $\sigma_{1}=\sigma_{2}=\sigma$.
(b) Compute the 99% confidence interval

Stata solution. The ttesti or ttest commands can be used. For ttesti, the format is
ttesti 871105.51 .303840481 , level(99)
Parameters are N1 Mean1 SD1 N2 Mean2 SD2, CI Level. You get

```
. ttesti 871105.51 .303840481 , level(99)
```

Two-sample t test with equal variances

The one-tailed probability of getting a difference this large is .0082 ; since that is less than .01 , reject the null. If the alternative was two-tailed, you would not reject; . 0165 is greater than .01 . Also, 0 falls within the 99% confidence interval.

If you had the raw data, your data set would have 18 cases with 2 variables. The variable gender could be coded 1 if female, 2 if male. The variable score would equal the student's exam score. You use the ttest command with the by parameter to indicate that this is a separate samples t-test (default is to assume equal variances):

```
. ttest score, by(gender) level(99)
```

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[99\% Conf. Interval]	
female	8	7	. 3535534	1	5.762746	8.237254
male	10	5.5	. 4123106	1.303841	4.160058	6.839942
combined	18	6.166667	. 3248932	1.378405	5.225051	7.108282
diff		1.5	. 5599944		-. 1356215	3.135621

C. 2 Sample Case III: σ_{1} and σ_{2} are not known and are not assumed to be equal.

Problem. Again work this problem: A professor believes that women do better on her exams than men do. A sample of 8 women $\left(\mathrm{N}_{1}=8\right)$ and 10 men $\left(\mathrm{N}_{2}=10\right)$ yields $\hat{\mu}_{1}=7, \hat{\mu}_{2}=5.5, \mathrm{~s}_{1}{ }^{2}=$ $1, s_{2}{ }^{2}=1.7$. Using $\alpha=.01$, Test whether the female mean is greater than the male mean. DO NOT ASSUME $\sigma_{1}=\sigma_{2}$.

Stata solution. Just add the unequal parameter to our earlier commands. For ttesti,
. ttesti 871105.51 .303840481 , level(99) unequal
Two-sample t test with unequal variances

	Obs	Mean	Std. Err.	Std. Dev.	[99\% Conf. Interval]	
x	8	7	. 3535534	1	5.762746	8.237254
y	10	5.5	. 4123106	1.30384	4.160058	6.839942
combined	18	6.166667	. 3248931	1.378405	5.225051	7.108282
diff		1.5	. 543139		- . 086552	3.086552
Satterthwaite's degrees of freedom: 15.9877						

[^0]\[

$$
\begin{array}{rrl}
\text { Ha: diff } & !=0 \\
t= & 2.7617 \\
\mathrm{P}>|\mathrm{t}|= & 0.0139
\end{array}
$$
\]

$$
\begin{aligned}
& \text { Ha: diff }>0 \\
& t=2.7617 \\
& P>t=0.0070
\end{aligned}
$$

For the ttest command using raw data,

```
. ttest score, by(gender) level(99) unequal
```

Two-sample t test with unequal variances

Group \|	Obs	Mean	Std. Err.	Std. Dev.	[99\% Conf. Interval]	
female \|	8	7	. 3535534	1	5.762746	8.237254
male \|	10	5.5	. 4123106	1.303841	4.160058	6.839942
combined \|	18	6.166667	. 3248932	1.378405	5.225051	7.108282
diff \|		1.5	. 543139		-. 0865521	3.086552
Satterthwa	deg	es of free	: 15.987			

Ho: mean(female) - mean(male) $=$ diff $=0$

$$
\begin{aligned}
& \text { Ha: diff < } 0 \\
& \mathrm{t}=2.7617 \\
& \mathrm{P}<\mathrm{t}=0.9930 \\
& \text { Ha: diff != } 0 \\
& \mathrm{t}=2.7617 \\
& P>|t|=0.0139 \\
& \text { Ha: diff > } 0 \\
& t=2.7617 \\
& \text { P > t = } 0.0070
\end{aligned}
$$

Incidentally, if, for some reason, you've always been a big fan of Welch's degrees of freedom rather than Satterthwaite's, just add the welch parameter to either version of the t-test command, e.g.

```
. ttest score, by(gender) level(99) unequal welch
```

Two-sample t test with unequal variances

D. 2 Sample Case IV: Matched Pairs, o unknown.

A researcher constructed a scale to measure influence on family decision-making, and collected the following data from 8 pairs of husbands and wives:

Pair \#	H score	W score
1	26	30
2	28	29
3	28	28
4	29	27
5	30	26
6	31	25
7	34	24
8	37	23

(a) Test, at the .05 level, whether there is any significant difference between the average scores of husbands and wives.
(b) Construct the 95% c.i. for the average difference between the husband's and wife's score.

Stata Solution. Stata does not have a calculator function for matched pairs that I know of. However, remember that, if you have the mean and sample variance of D, you could solve such a problem the same way you would a Simple Sample Test, Case 3, Sigma unknown. You could then use the procedures described in the Single sample tests handout.

Analyzing raw data - the data set has 8 cases with two variables for each case: hscore (husband's score) and wscore (wife's score). Use the ttest command with the following format:

```
. ttest hscore = wscore, level(95)
```

Paired t test

Variable	Obs	Mean	Std. Err	Std. Dev	[95\% Conf. Interval]	
hscore	8	30.375	1.266851	3.583195	27.37937	33.37063
wscore	8	26.5	. 8660254	2.44949	24.45218	28.54782
diff	8	3.875	2.108126	5.962682	-1.109927	8.859927

$$
\begin{array}{rcc}
\text { Ho: mean(hscore }- \text { wscore })=\text { mean(diff) }=0 \\
\text { Ha: mean(diff) }<0 & \text { Ha: mean(diff) }!=0 & \text { Ha: mean(diff) }>0 \\
\mathrm{t}=1.8381 & \mathrm{t}=1.8381 & \mathrm{t}=1.8381 \\
\mathrm{P}<\mathrm{t}=1.9457 & \mathrm{P}>|\mathrm{t}|=10.1086 & \mathrm{P}>\mathrm{t}=0.0543
\end{array}
$$

Both the t-value and the confidence interval indicate you should not reject the null; the means of the husbands and wives do not significantly differ.

Minor Sidelight - Easily switching from Case IV to Case II or III: If you have set the data up for Case IV, Matched Pairs - but for some reason would like to treat the problem as though it fell under Case II or III - Stata makes it easy to do so. All you have to do is add the unpaired option to the ttest command, e.g., for Case II,

```
. ttest hscore = wscore, unpaired level(95)
Two-sample t test with equal variances
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Variable & Obs & Mean & Std. Err. & Std. Dev. & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline hscore & 8 & 30.375 & 1.266851 & 3.583195 & 27.37937 & 33.37063 \\
\hline wscore & 8 & 26.5 & . 8660254 & 2.44949 & 24.45218 & 28.54782 \\
\hline combined & 16 & 28.4375 & . 8942816 & 3.577126 & 26.53138 & 30.34362 \\
\hline diff & & 3.875 & 1.534572 & & . 5836708 & 7.166329 \\
\hline
\end{tabular}
```


For Case III,

```
. ttest hscore = wscore, unpaired unequal level(95)
```

Two-sample t test with unequal variances

Variable \|	Obs	Mean	Std. Err.	Std. Dev.	[95\% Conf. Interval]	
hscore \|	8	30.375	1.266851	3.583195	27.37937	33.37063
wscore \|	8	26.5	. 8660254	2.44949	24.45218	28.54782
combined \|	16	28.4375	. 8942816	3.577126	26.53138	30.34362
diff \|		3.875	1.534572		. 5425064	7.207494

Ho: mean(hscore) - mean(wscore) $=$ diff $=0$

Ha: diff != 0
$P>|t|=0.0261$

Ha: diff > 0
$t=2.5251 \quad t=2.5251$
$\mathrm{P}>\mathrm{t}=0.0131$

E. 2 Sample Case V: Difference between two proportions.

1. Two groups, A and B, each consist of 100 randomly assigned people who have a disease. One serum is given to Group A and a different serum is given to Group B; otherwise, the two groups are treated identically. It is found that in groups A and B, 75 and 65 people, respectively, recover from the disease.
(a) Test the hypothesis that the serums differ in their effectiveness using $\alpha=.05$.
(b) Compute the approximate 95% c.i. for $\hat{p}_{1}-\hat{p}_{2}$.

Stata solution. Use the prtesti or prtest command. Using prtesti,

Ho: proportion(x) - proportion(y) $=$ diff $=0$

Ha: diff <	Ha: diff $!=0$	Ha: diff >0
$z=1.543$	$z=1.543$	$z=1.543$
$P<z=0.9386$	$P>\|z\|=0.1228$	$P>z=0.0614$

For analyzing raw data - you have 200 cases with 2 variables. recover is coded 1 if the patient recovered, 0 otherwise. group is coded 1 if in group A, 2 if in group B. Use the prtest command with the by parameter:

```
. prtest recover, by(group) level(95)
```


Ho: proportion(Group A)	- proportion(Group B) $=$ diff $=0$	
Ha: diff <0	Ha: diff $!=0$	Ha: diff >0
$Z=1.543$	$Z=1.543$	$z=1.543$
$P<z=0.9386$	$P>\|z\|=0.1228$	$P>z=0.0614$

Both the z value and the confidence interval indicate you should not reject the null; the two serums do not significantly differ in their effectiveness.

[^0]: Ha: diff < 0
 $\mathrm{t}=2.7617$
 $\mathrm{P}<\mathrm{t}=0.9930$

