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Abstract—Social media sensing has emerged as a new big
data application paradigm to collect observations and claims
about the measured variables in physical environment from
common citizens. A fundamental problem in social media
sensing applications lies in estimating the evolving truth of
claims and the reliability of data sources without knowing
either of them a priori, which is referred to as dynamic
truth discovery. We identified two critical challenges that are
not fully addressed by solutions from current literature. The
first challenge is “physical constraint-awareness” where the
transition of truth is constrained by some physical rules that
must be followed to ensure correct estimation of the evolving
truth. The second one is “noisy and incomplete data” where the
social media sensing data is sparse in nature and contains a lot
of rumors and misinformation, making it difficult to capture
the constantly evolving truth of measured variables. In this
paper, we developed a new Constraint-Aware Dynamic Truth
Discovery (CA-DTD) scheme to address the above challenges.
To address the physical constraint-awareness challenge, CA-
DTD develops a new constraint-aware Hidden Markov Model
to effectively infer the evolving truth of measured variables by
incorporating physical constraints. To address the noisy and
incomplete data challenge, CA-DTD fuses sensing observations
from online social media with information from traditional
news media using a principled approach. We evaluate CA-DTD
scheme using two real-world social media sensing data traces
and the results show that CA-DTD significantly outperforms
the state-of-the-art baselines.
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I. INTRODUCTION

Online social media has become as a new big data
application paradigm to collect the observations (often called
claims) about the physical world from the reports (e.g.,
tweets, pictures) shared by common citizens on the social
media. This new sensing paradigm is motivated by the wide
adoption of portable devices, ubiquitous wireless connection
and the proliferation of online social media [19]. An impor-
tant problem in social media sensing is to accurately discover
the truthful information from the massive noisy and poten-
tially conflicting claims contributed by unvetted sources on
social media [26]. In this paper, we refer to this problem as
dynamic truth discovery. For example, in a terrorist attack
scenario, real time reports about the current situation of the
attack (e.g., the number of casualties, the escape path of

suspects, and the safety alerts to the public) are available on
social media (e.g., Twitter). Due to the unvetted nature of
data sources (e.g., Twitter users) and dynamic nature of the
variables of interest (often called measured variables), claims
in social media sensing often contradict with each other and
change over time [12], [19], [24]. The goal of dynamic truth
discovery is to identify which claims are truthful and which
data sources are trustworthy in real time.

Recent efforts have been made to solve the dynamic
truth discovery problem in data mining, machine learning
and networked sensing communities [12], [23], [27], [29].
These solutions include Markov models [27], Bayesian
networks [29], maximum likelihood estimation (MLE) meth-
ods [16], and maximum a posteriori (MAP) estimation
approaches [12]. However, two critical challenges have not
been fully addressed by the current solutions: physical
constraint awareness and noisy and incomplete data. These
challenges are elaborated as follows.

Physical constraint awareness. Physical constraints have
clear impacts on the truth discovery results in social media
sensing applications [17]. For example, the number of casu-
alties cannot decrease during a terrorist attack event, and it
is unlikely that a suspect can escape far away from the spot
shortly after the attack. These physical constraints enforce
restrictions on the transition of true values of the measured
variables. Only a small number of truth discovery models
start to explore the constraints on measured variables in their
models [17], [20]. However, they either assume the values
of the dependent measured variables do not change over
time (i.e., static truth discovery) [17] or assume measured
variables are independent when their values change over
time [20]. Therefore, there is a lack of a principled ana-
lytical framework that systematically considers the physical
constraints on measured variables in solving the dynamic
truth discovery problem.

Noisy and incomplete data. Social media sensing data is
sparse in nature and contains a large amount of noise (e.g.,
rumors, misinformation), which makes the dynamic truth
discovery problem more challenging [26]. For example, in
the Boston Bombing event in 2013, CNN claimed that a
bomber was arrested two days after the event. This original
message was retweeted more than 3,000 times until half
an hour later it was debunked by Boston police department



claiming no arrest has been made. A few hours later the real
arrest was finally made. Such misinformation can easily lead
to the incorrect detection of the truth transition of the mea-
sured variables. Furthermore, social media data is observed
to be sparse and incomplete due to various reasons such as
the spontaneous nature of data sources, lack of incentives
and privacy concerns [11]. For example, in the Twitter data
traces we collected for evaluation, more than 86% of the
users only post one tweet and more than 91% post at most
two tweets during the entire event. Such incomplete data
often provides inadequate evidence to solve the dynamic
truth discovery problem in social media sensing [22].

This paper develops a Constraint-Aware Dynamic Truth
Discovery (CA-DTD) scheme to address the above chal-
lenges. In particular, to address the physical constraint
awareness challenge, we develop a Constraint-Aware Hid-
den Markov Model (CA-HMM) to explicitly incorporate
physical constraints into the dynamic state estimation of
measured variables. To address the noisy and incomplete
data challenge, the CA-DTD scheme fuses data from both
online social media and traditional news media and seam-
lessly integrates the data fusion process with the CA-HMM.
In the evaluation, we compare CA-DTD with the state-of-
the-art baselines using two real-world social media sensing
data traces collected from Twitter. The results show that the
CA-DTD scheme significantly outperforms all baselines: it
identifies the evolving truth of the measured variables more
accurately and improves the computational efficiency.

In summary, our contributions are as follows:

• This paper addresses two important challenges of solv-
ing the dynamic truth discovery problem in online
social media sensing applications: physical constraint
awareness and noisy and incomplete data.

• We develop the CA-DTD scheme that incorporates a
Constraint-Aware HMM to explicitly model the dy-
namic states of the measured variables and incorporate
physical constraints to regulate the state transitions in
the model.

• The CA-DTD scheme integrates a data fusion compo-
nent that effectively fuses data from both online social
media and traditional news media to address the noisy
and incomplete data challenge.

• We evaluate the performance of the CA-DTD scheme
and the state-of-the-art truth discovery solutions using
two real-world datasets in social media sensing. The
evaluation results demonstrate significant performance
gains achieved by the CA-DTD scheme.

II. RELATED WORK

Truth discovery problem has received a significant amount
of attention from machine learning, data mining, and net-
worked sensing communities [5], [11], [24], [26], [28]. For
example, Yin et al. developed a Bayesian-based algorithm,

Truth Finder, to utilize the inter-dependency between web-
site trustworthiness and fact confidence to find trustable
websites and true facts [24]. Dong et al. explicitly modeled
the source dependency in their truth discovery solutions and
studied its impacts [5]. A semi-supervised graph learning
scheme is proposed to model the credibility propagation
from the known ground truths [25]. Zhao et al. adopt
probabilistic graphical models to address different types
of errors in its truth discovery model [28]. Wang et al.
developed an unsupervised truth discovery solution that
offers rigorous accuracy bounds on the analysis results using
estimation theoretical approaches [18]. However, the above
solutions either assume that the truthfulness of claims are
time invariant or data are of reasonable quantity and/or
quality. Such assumptions barely hold true in real world
social media sensing applications [27].

There exist a few previous studies on the dynamic truth
that share some similarity with our work. Pal et al. pro-
posed a method that takes into account the evolving true
information of objects and estimates the truth of variables in
current time interval based on sources’ historical claims [13].
Zhang et al. proposed a scalable and dynamic truth discovery
framework that addressed the evolving truth problem using a
simple Hidden Markov Model [27]. Li et al. proposed a real-
time algorithm (DynaTD) based on maximum a posterior
estimation to capture the evolving source reliability and
truthfulness of claims [12]. Zhao et al. proposed a one-
pass algorithm that is able to stochastically optimize the
probabilistic inference of source quality to infer the dynamic
truth, while satisfying limited memory usage and short
response time [3]. However, these above solutions do not
explicitly consider the physical constraints in their models,
which may lead to incorrect estimation of unlikely truth
transition.

Our work is also related to the Hidden Markov Models
that consider the constraints in the state transition, For
example, Kim et al. incorporated global path constraints
in the Viterbi algorithm that limits the duration of states
in word recognition application [10]. Roweis proposed a
constrained Hidden Markov Model by modeling each state
as a spatial region in a topology space that only allows
state transitions to happen between spatial neighbors [14].
Weintraub et al. developed a speech recognition system that
integrated speech and linguistic knowledge into a HMM
framework [21]. While these works share the similar idea
of constraining state transitions, the solutions only focus on
the hard constraints that prohibit certain state transitions.
In contrast, our CA-DTD scheme provides a more general
constraint-aware state transition model that leverages both
hard and soft constraints to regulate the evolving truth
transitions in social media sensing applications.

Finally, one should note that the CA-DTD scheme is sig-
nificantly different from the author’s previous works on truth
discovery problem [26], [27]. In particular, we developed a



robust truth discovery scheme (RTD) to discover truthful
information in online social media [26]. However, the RTD
solution is static and did not consider evolving truth of mea-
sured variables. We also developed a scalable streaming truth
discovery (SSDTD) scheme to address the dynamic truth
discovery problem [27]. However, the SSDTD scheme did
not consider the physical constraints on measured variables
in the truth discovery model and is limited in its capability to
handle incomplete and noisy data from social media sensing
applications. In sharp contrast to the above works, the
CA-DTD explicitly address physical constraint awareness
and incomplete and noisy data challenges in dynamic truth
discovery problem. We explicitly compare the performance
of CA-DTD and RTD and SSDTD schemes Section V.

III. PROBLEM STATEMENT

In this section, we present the dynamic truth discovery
problem in social media sensing application. In particular,
let us consider a social media sensing application where
a group of M primary sources S = (S1, S2, ..., SM )
report the true values of a set of N measured variables
MV = (MV1,MV2, ...,MVN ). Let C represent the set of
all claims made by sources and Cu,ti represent the claim
made by source Si about the true value of the measured
variable MVu at time t. We refer the primary sources to the
social sensors (i.e., social media users) who are the primary
data contributors in a social media sensing application. A
measured variable represents an entity, topic or event that
is of interest to the application and a claim is a statement
on the truth of a measured variable.

Consider a Twitter-based social media sensing application
where observations from common citizens are used to obtain
the real-time situation awareness of a disaster event (e.g.,
terrorist attacks, hurricanes). The primary sources are the
Twitter users. A measured variable can be the number of
casualties in the disaster and a tweet such as “3 people died”
is considered as a claim that reports the possible true value
of the measured variable.

In this paper, we assume the true value of a measured
variable changes over time (i.e., evolving truth). We define
V (u) = (V

(u)
1 , V

(u)
2 , ..., V

(u)
K ) as the set of all possible true

values of the u-th measured variable where K denotes the
size of V (u). We assume there only exists one true value of
a measured variable at a particular time instant. We define
the estimated truth of the u-th measured variable at time t
as x̂u,t where x̂u,t ∈ V (u). We denote the ground truth label
of measured variable MVu at time t as xu,t.

In order to address the physical-constraint awareness, we
explicitly consider the physical constraints that are associ-
ated with each measured variable. In particular, we define
two types of constraints in our model:

DEFINITION 1: Hard Constraints: a set of constraints
that strictly enforce or prohibit some true value transitions
at a certain time instant.

DEFINITION 2: Soft Constraints: a set of constraints
that do not enforce or prohibit state transitions but describe
how “likely” the true value of a measured variable can
evolve at a certain time instant.

For example, a hard constraint can be “the number of
casualties cannot decrease at any time” and a soft constraint
can be “it is hard for suspects to travel 200 miles within half
an hour”. We use Ω(u) = (Ω

(u)
1 ,Ω

(u)
2 , ...,Ω

(u)
Z ) to denote all

constraints on MVu
To address the incomplete and noisy data challenge, we

introduce a group of Y complementary sources (e.g., tradi-
tional news media), SE = (SE1, SE2, ..., SEY ), who provide
a set of additional claims F on the measured variables. A
claim from the complimentary source is denoted as Fu,tEy,k,
which indicates whether the complementary source SEy
claims V (u)

k to be the true value of MVu or not at time
t. In the disaster event example, the complementary sources
can be the traditional news media, first responders, or third
party agencies.

One should note that primary and complementary sources
complement each other in many ways (e.g., news fresh-
ness and coverage). However, neither of them are perfectly
reliable. For example, during the Boston Marathon event,
mainstream press repeatedly reported false news and prema-
ture conjectures. In particular, CNN, Associated Press, Fox
and the Boston Herald all reported that an arrest had been
made soon after the bombing event which turned out to be
a false story [4]. On the other hand, online social media is
known to suffer from widespread rumors, misinformation,
and spams due to the open and unvetted nature of data
contribution paradigm [26]. Therefore, we do not assume the
data collected from either primary sources or complementary
sources are completely reliable in our CA-DTD scheme.
Instead, the CA-DTD scheme explores the heterogeneity of
data sources in a fusion process to conquer the incomplete
and noisy data challenge.

Finally, we formally define the problem of dynamic truth
discovery as follows: given the claims contributed by both
primary and complementary sources, the objective is to
correctly estimate the true value of measured variables at
each time instant. In particular, for each measured variable
MVu at each t, our goal is to derive the estimation x̂u,t to
be as close to the ground truth xu,t as possible, which is
given by:

arg max
x̂u,t

P (x̂u,t = xu,t|S,C,MV, SE , F,Ω),∀1 ≤ u ≤ N

IV. SOLUTION

In this section, we present the Constraint-Aware Dynamic
Truth Discovery (CA-DTD) scheme to solve dynamic truth
discovery problem formulated in the previous section. We
first present an overview of the CA-DTD scheme and then
explain its components in detail.



A. Overview of CA-DTD Scheme

The CA-DTD scheme consists of two key components:
Constraint-Aware Hidden Markov Model (CA-HMM) and
Complimentary Source Incorporation (CSI). First, the CA-
HMM model is designed to capture the evolving truth on
measured variables based on observations from the social
sensors. It addresses the physical constraint awareness chal-
lenge by explicitly incorporating the physical constraints
into state transition rules which regulate a Viterbi decoding
process. Second, the CSI component is integrated with the
CA-HMM component to incorporate the claims from com-
plementary data sources to address the incomplete and noisy
data challenge. The complementary sources can provide
additional information that may not be directly observed
by the primary sources on social media. It provides an
opportunity to further improve the truth discovery results
when the data is incomplete and the source reliability is
unknown a priori. An overview of the CA-DTD scheme is
illustrated in Figure 1.

Figure 1: Overview of CA-DTD Scheme

B. Constraint-Aware Hidden Markov Model (CA-HMM)

In this subsection, we present the Constraint-Aware Hid-
den Markov Model (CA-HMM) component of CA-DTD
scheme in detail. For the ease of reference, we first sum-
marize all defined notations of CA-DTD in Table I. Some
of the terms have been defined in Section III and the
rest of them will be defined in this section. For ease of
notation, we omit the index for measured variables (i.e. u)
in this subsection. A Hidden Markov Model (HMM) is a
stochastic state transition model that is commonly used to
model systems with unobserved (hidden) states given a set of
observation symbols [6]. The HMM is particularly suitable
to handle streaming data and capture the dynamics of the
state transition in real time. In particular, given a series of
observations, it can decode the hidden states that generate
those observations at each time instant. In CA-HMM, we
define our observation sequence and hidden states as follows.

1) Aggregated Crowd Opinion and Hidden States of
Evolving Truth: In CA-HMM, we take the evolving truth
of a measured variable as the hidden states. Formally, we
define the hidden states of truth as:

Table I: Definition and Notation

Symbol Description
xu,t hidden truth as time t for measured variable MVu
x̂u,t estimated truth as time t for MVu
X(u) state sequence of true values for MVu, i.e. (xu,1,

xu,2, ..., xu,T )

V
(u)
k the kth true value of MVu
K total number of true values for a measured variable
ACOu,t aggregated crowd opinion at time t for MVu
Obs(u) observation sequence of crowd opinions, i.e. (ACOu,1,

ACOu,2, ..., ACOu,T )

Ω
(u)
z the zth physical constraint for MVu

Fu,tEy,k a claim from the complementary source SEy
on whether V (u)

k the true value at time t
wu,ti the trust score of the claim Cu,ti from Si at time t
CSu,ti,k the contribution score of Si to estimate the true value

of MVu to be V (u)
k at time t

DEFINITION 3: Hidden State of Truth: the true value of
the measured variable at a given time instant that is not
directly observable.

The inference of hidden states (i.e. the evolving truth)
requires a visible observation sequence that we can directly
observe from data sources. In CA-HMM, we define our
observations as Aggregated Crowd Opinion (ACO):

DEFINITION 4: Aggregated Crowd Opinion (ACO): the
aggregated sources’ opinion (from both primary and com-
plementary sources) on the true values of the measured
variables.

The key idea of the CA-HMM is to infer the hidden evolv-
ing truth based on the observation sequence (i.e., ACO).
For each measured variable, we use the observations related
with the variable (i.e., Obs = (ACO1, ACO2, ..., ACOT ))
as the input for the CA-HMM model and the output of the
model is the corresponding sequence of estimated truth (x̂1,
x̂2, ..., x̂T ). The computation of the ACO from both primary
and complementary sources are discussed in detail in the CSI
component in Subsection IV-C.

2) Physical Constraints and State Transition: The CA-
HMM model is defined by a set of key parameters that model
the transition of truth and physical constraints.

• Truth Transition Probability Matrix A - each element
ai,j is the probability that the true value transits from
value Vi to value Vj .

• Emission Probability Matrix B - each element bi,t
denotes the probability of observing ACOt when the
true value is Vi.

• Initial State Distribution π - each element πi denote the
probability the initial true value is Vi.

• Truth Transition Constraints Ω - a set of physical
constraints that govern the state transitions based on
physical laws or prior knowledge.

• Truth Transition Hardness Matrix HAz - each element
hazi,j ∈ [0, 1] denotes the hardness of true value of a
measured variable transits from value Vi to value Vj



given a constraint Ωz .
In the above parameter definitions, we explicitly incor-

porate the physical constraints into our CA-HMM model,
i.e., Truth Transition Constraints Ω and the Truth Transition
Hardness HAz . In particular, we further define a set of
physical constraints as follows:

DEFINITION 5: Order Constraints (Hard): the true val-
ues of measured variables can only be in a certain order.

DEFINITION 6: Global Path Constraints (Hard): some
states are not reachable at a certain time instant.

DEFINITION 7: Frequency Constraints (Soft): the fre-
quency of state transitions may not exceed a certain limit.

DEFINITION 8: Spatial-Temporal Constraints (Soft): the
state transitions should follow constraints imposed by space
and time.

Consider the disaster event (e.g., hurricane) we discussed
in Section III. An example of the Order Constraints can be
“the number of casualties” can only be in non-decreasing
order. Global Path Constraints can be the “current weather
condition during the hurricane cannot be snow or blizzard”.
Frequency Constraints can be the true value of “whether
a university campus is flooded” is less likely to change
more than three times within a couple of days. Finally,
Spatio-Temporal Constraints can be “the affected area of
the hurricane” should be within a reasonable physical range
given a certain time period.

The above constraints are often defined based on common
sense or prior knowledge of the event. We proposed a
generic framework that incorporates these constraints as
plug-in functions that can be easily included or excluded
in different social media sensing applications. In particular,
we use the State Transition Hardness matrix HAz to define
how difficult the transition between two values of a measured
variable can happen under each constraint Ωz . Each element
of matrix hazi,j is a hardness function to describe the specific
constraint. For example, the hardness function for Spatial-
Temporal Constraints in the hurricane example can be:

hazi,j =
1

1 + exp(−dist(i,j)−thres)τ )
(1)

where the likelihood of the affected area of the hurricane
changes from location i to j decreases (controlled by param-
eter τ ) when the distance between the two places exceeds a
certain threshold.

3) Decoding Hidden States Via Constrained Decoding
Algorithm: We then introduce our Constrained Decoding
Algorithm to decode the true value of a measured variable
at each time instant. The goal of this decoding step is to find
the sequence of true values that is most likely to generate
the observed ACO sequence given physical constraints.
Formally, it is given by:

(x̂1, x̂2, ..., x̂T ) = arg max
X

P ((ACO1, ACO2, ..., ACOT )|X,Ω)

(2)

where X = (x1, x2, ..., xT ) is the hidden sequence of the
true values of a measured variable.

While the Viterbi Algorithm [15] is a standard approach
to solve the decoding problem in HMM, it does not consider
the physical constraints that regulate the truth transitions of
measured variables. In our CA-HMM, we extend the original
Viterbi algorithm to incorporate the physical constraints. In
particular, we define a accumulative hardness score AHCz,ti,j
for each true value at each time instant. This score describes
how difficult the transition is if the true value of a measured
variable changes from Vj to Vi. Formally, we calculate:

AHCz,ti,j =

{
AHCz,t−1i,j + hazi,j , ha

z
i,j 6= 0

0, hazi,j = 0
(3)

The idea is to keep track of the hardness of each truth
transition of a measured variable and check whether the
accumulated hardness score breaks any of the physical
constraints. The intuition is that consecutive “hard” tran-
sitions will eventually lead to an unreasonable accumulated
hardness score that makes such transition impossible. We
clean up the accumulated hardness score when no constraint
exists (i.e., hazi,j = 0 ).

To decode true value sequence, we follow the dynamic
programming procedure of Viterbi decoding. At each time
instant t and for each true value Vi, we calculate:

δt(i) = max
x1,x2,...,xt−1

P (x1, x2, ..., xt−1, ACO1, ACO2

, ..., ACOt, xt = Vi|λ,Ω)
(4)

where δt(i) represents the probability that the HMM’s
current true value is Vi after seeing the first t observations
and passing through the most likely true value sequence
x1, ..., xt−1. Given the estimated parameter set λ, it can be
solved recursively as:

δt+1(i) = bi,t × max
1≤i≤K

δt(i)× ai,j (5)

where 1 ≤ j ≤ K and 1 ≤ t ≤ T -1. The initialization
is: δt+1(i) = πi × bi,1, 1 ≤ i ≤ K. To impose physical
constraints, we compare the ACH score associated with each
constrain and check whether the transition is allowed. We
prohibit the invalid transition by setting δt(i) = −∞. This
constrained decoding procedure is shown in Algorithm 1.

The training phase of our CA-HMM model follows the
standard unsupervised Baum Welch algorithm [2]. Specif-
ically, we find the set of parameters that maximize the
probability of the observed sequence of crowd opinions for
each measured variable:

λ∗ = arg max
λ

P ({ACO1, ACO2, ..., ACOT }|λ) (6)

C. Complimentary Source Incorporation (CSI)

In this subsection, we describe the Complimentary Source
Incorporation (CSI) component to To address the incomplete
and noisy data challenge. In particular, the CSI component



Algorithm 1 Constrained Decoding Algorithm
1: Initialize: create path probability matrix δ[K+2, T ], accumulated hard-

ness array accuha[Z, T ] and back pointer array backpointer[K +
2, T ] for each MVu

2: for all i, 1 ≤ i ≤ K do . Initialization Step
3: δ[i,1]← π

(u)
i × b(u)i,1 ,

4: backpointer[i, 1] ←0, accuhardness[z, 1] ←0
5: end for
6: for all t, 2 ≤ t ≤ T do
7: for all z, 1 ≤ z ≤ Z do
8: Calculate accuha[z, t] using Equation (3).
9: while accuha[z, t] ≥ 1 do

10: prune jth true value at time t . Imposing Constraints
11: end while
12: NPS[t] ← {i|1 ≤ i ≤ K, i not pruned}
13: if NPS[t] = ∅ then
14: δ[i, t]← −∞
15: else
16: calculate δ[i,t] based on Equation (4), i ∈ NPS[t]

17: backpointer[i,t] ← arg maxi∈NPS[t] δ
u,t(i)× a(u)i,j

18: end if
19: end for
20: end for
21: δ[end, T ] ← max1≤i≤K δu,T (i)× a(u)i,j . Termination Step

22: backpointer[end, T ] ← arg max1≤i≤K δu,t(i)× a(u)i,j
23: return the backtrace path by following backpointers from back-

pointer[end,T]

fusees data from both primary sources and complementary
sources and the fused results are integrated the CA-HMM
component discussed above.

One key challenge in social media sensing applications
lies in the fact that sources are often unvetted and they
may not always report truthful claims. Therefore, we need
to explicitly model the quality of data sources. In our model,
we define a contribution score for each source to represents
how much a source contributes to the belief that indicates
the true value of a measured variable. We first define the
following terms that are related to the contribution score.

DEFINITION 9: Coherence Score(ρu,ti ) : a score in the
range of (0,1) that measures the relevance of a claim Cu,ti to
its corresponding measured variable MVu. A higher score
is assigned to a claim that is more relevant.

DEFINITION 10: Uncertainty Score (κu,ti ): a score in
the range of (0,1) that measures the uncertainty of a claim
Cu,ti . A higher score is assigned to a claim that expresses
more uncertainty.

DEFINITION 11: Independent Score: (ηu,ti ): a score in
the range of (0,1) that measures whether the claim Cu,ti
is made independently or copied from others. A higher
score is assigned to a claim that is more likely to be made
independently.

We define the above scores to identify important features
of both sources and claims that are important in the dynamic
truth discovery solution. We then define trust score of a
claim to represent how much we could “trust” the claim
considering the above features (i.e., coherence, uncertainty

and independence) of the claim. It is formally defined as:

wu,ti = ρu,ti × (1− κu,ti )× ηu,ti (7)

Using the trust score of a claim, we define the contribution
score of a source Si on claim Cu,ti for a measured variable
at time t as:

CSu,ti,k = wu,ti ×D
u,t
i,k (8)

where Du,t
i,k is the Source Attitude, which is a binary variable

that represents whether a source “agrees with” or “disagrees
with” the statement x̂u,t = V

(u)
k on claim Cu,ti . It’s formally

defined as:

Du,t
i,k =

{
1, Si aggrees with x̂u,t = V

(u)
k

−1, Si disaggrees with x̂u,t = V
(u)
k

(9)

The trust score measures how trustworthy a claim is, and
the source attitude denotes whether the source agrees with
the assertion of the claim. Therefore, the contribution score
represents how much source Si contributes to the belief that
the true value of a measured variable at time t is V (u)

k .
Another important problem of fusing heterogeneous data

sources is to identify the “weight” of each source. We define
the authority weights of primary and complementary sources
as follows.

DEFINITION 12: Authority Weight: the score that rep-
resents the extent of expertise of each source in reporting
truthful information. A more expertized source has a higher
authority weight.

Given the authority scores for primary and complementary
sources, the ACO for a measured variable at time instant t
can be calculated as:

ACOu,t = arg max
k∈K

∆W t
I +

∑
1≤y≤Y

W t
Ey × F

u,t
Ey,k

∆ = normalize(

M∑
i=1

CSu,ti,k )

(10)

where CSu,ti,k is the contribution score of source Si on
claim Cu,ti which is defined in Equation (8). W t

I and W t
Ey

denote the authority weight of the primary sources and
y-th complementary source respectively at time t. In this
paper, we focus on a particular type of social media (e.g.,
Twitter) as the primary sources and use a unified authority
score for the primary sources as a whole 1. In contrast, the
complimentary sources may consist of various entities (e.g.,
news websites, radio stations, third party agencies) and we
define an authority score for each of them to respect their
diversity. ∆ normalizes the aggregated contributions scores
of primary sources to a scale between -1 and 1.

We compute the W t
I and W t

Ey based on the proportion
of claims that are consistent with the estimated truth of the
measured variables that are obtained from the CA-HMM
discussed in Section IV-B:

1Each individual primary source still has it’s unique contribution score.



W t
I =

∑
u∈MV (I) χI(u, t)

|MV (I)|

W t
Ey =

∑
u∈MV (Ey) χE(u, t)

|MV (Ey)|

(11)

χI(u, t) =


1, x̂u,t = V

(u)
k and k = arg max

k′∈K

M∑
i=1

CSu,ti,k′

0, x̂u,t = V
(u)
k and k 6= arg max

k′∈K

M∑
i=1

CSu,ti,k′

χE(u, t) =

{
1, x̂u,t = V

(u)
k and Fu,tEy,k = 1

0, x̂u,t = V
(u)
k and Fu,tEy,k 6= 1

where MV (I) denotes all the measured variables that pri-
mary sources S contribute claims to and MV (Ey) denotes
all the measured variables that complementary source SEy
contribute claims to. χI(u, t) and χE(u, t) indicate whether
the aggregated opinions from primary sources and claims
from complementary sources are consistent with the esti-
mated truth, respectively. The intuition of Equation (11) is
that a source should have higher authority score if its opinion
agrees with the estimated truth.

Finally, the CA-DTD scheme is summarized in Algo-
rithm 2. The convergence analysis of Algorithm 2 is shown
in the evaluation section.

Algorithm 2 Constraint-Aware Dynamic Truth Discovery
(CA-DTD) Scheme
1: Initialize WEy for each complementary source and WI for primary

sources.
2: while {WEy} and {WI} do not converge do
3: for all u, 1 ≤ u ≤ N do
4: for all i, 1 ≤ i ≤M do
5: for all k, 1 ≤ k ≤ K do
6: compute CSu,ti,k based on Equation (8).
7: end for
8: end for
9: compute ACOu,t based on Equation (10).

10: end for
11: re-estimate A(u), B(u), λ(u) using the EM algorithm based on

Equation (6).
12: for all u, 1 ≤ u ≤ N do
13: estimate x̂u,t using Constrained Decoding Algorithm (Algo-

rithm 1).
14: end for
15: update WEy and WI based on Equation (11).
16: end while

V. EVALUATION

In this section, we evaluate the performance of the CA-
DTD scheme and compare it with the state-of-the-art truth
discovery baselines on two real-world datasets collected
from social media sensing applications. The results demon-
strate that the CA-DTD scheme significantly outperforms all
compared baselines in terms of both truth discovery accuracy
and computational efficiency.

A. Experimental Setups

1) Baseline Methods:

• TruthFinder: It uses a pseudo-probabilistic function to
estimate source reliability and claim truthfulness using
an iterative algorithm [24].

• CATD, ETCIBoot: These two methods provide con-
fidence interval estimators for source reliability in a
sparse dataset [11], [22]. ETCIBoot improves CATD
by incorporating a bootstrapping technique.

• RTD: A truth discovery algorithm designed for infer-
ring truthful information on online social media. The
algorithm is shown to be robust against rumors and
misinformation spread [26].

• SSTD: A dynamic truth discovery scheme that uses a
simple Hidden Markov Model to capture the evolving
truth of the measured variables in social sensing appli-
cations [27].

• DynaTD: A real-time dynamic truth discovery algo-
rithm using maximum a posteriori estimation to dy-
namically estimate source reliability and truth [12].

• Recursive EM: It applies a recursive EM algorithm to
capture the time-varying truth in streaming data [16].

• Recursive MAP: It develops a recursive maximum a
posteriori estimator to recover the dynamic truth of
social media data streams [23].

We note that the first four baselines (i.e., Truth Finder,
CATD, ETCIBoot, RTD) are batch-based algorithms that
are designed to solve the static truth discovery problem.
To run these baselines on dynamic data traces, we treat
the same measured variable with different values as differ-
ent variables and run the batch algorithms on the whole
datasets. In contrast, CA-DTD, SSTD, DynaTD, Recursive
EM, and Recursive MAP are designed to solve the dynamic
truth discovery problem and we compare them with other
baselines under the same experimental setting. To make
our comparison fair between baselines, the input data to all
compared schemes are the same. In particular, we treat the
complementary source (e.g., traditional news media) as an
additional data source to all baselines.

2) Evaluation Metrics: To evaluate the performance of all
schemes, we use the following metrics: Accuracy, Precision,
Recall and F1-Score. Their definitions are given in Table
II. In the table, TPj , TNj , FPj and FNj represents
True Positives, True Negatives, False Positives and False
Negatives respectively for one possible true value j of a
measured variable and L denotes the set of all possible
true values. To evaluate the efficiency, we also report the
execution time of all compared schemes in our evaluation.

3) Data Collection and Pre-Processing: We evaluate our
proposed scheme on two real-world data traces collected
from Twitter. We found that there exists a non-trivial amount
of widely spread misinformation, spams, and noisy data on
Twitter due to the open data collection environment and



Table II: Evaluation Metrics

Accuracy
∑

j∈L TPj+TNj∑
j∈L TPj+TNj+FNj+FPj

Precision
∑

j∈L TPj∑
j∈L TPj+FPj

Recall
∑

j∈L TPj∑
j∈L TPj+FNj

F1-Score 2∗Precision∗Recall
Pecision+Recall

unvetted nature of data sources [1]. Moreover, few users on
Twitter contribute many tweets towards a given topic, which
leads to a social media sensing scenario with incomplete
data. The above characteristics of Twitter provide us a good
opportunity to investigate the performance of the CA-DTD
scheme in a real world setting. We present the details of the
two data traces2 as follows (Table III).

Data Trace Boston Bombing Hurricane Matthew
Start Date Apr. 15 2013 Oct. 6 2016

Time Duration 4 days 14 days
# of Sources 64,381 125,932

# of Claims (Tweets) 73,331 247,313
# of Claims per Source 1.14 1.96

Table III: Data Trace Statistics

We also observe majority of the measured variables are
non-static in the data traces (Figure 2). For example, the
truth values of 72% measured variables in Boston Bombing
dataset and 75% measured variables in Hurricane Matthew
dataset evolve at least once during the data collection period,
which provides good case studies to study the performance
of CA-DTD and baselines in a dynamic setting.

Hurricane DatasetBombing Dataset

Figure 2: Frequency of Truth Evolving

Boston Bombing Trace: We collected Twitter data related
to the 2013 Boston Bombing event through Twitter open
search API (using the query terms “Boston”, “Marathon”,
“Bombing”) and specified geographic regions related to the
event (using a circular region centered at Boston with a
radius of 100 miles). We use the mainstream news media
as the complementary sources in this case study. Since it’s
a historical event, we built a crawler to search for top news

2http://apollo.cse.nd.edu/

reports that are relevant to bombing event using the Google
Search’s customized time frame feature. We collected 78
reports from six major news medias (New York Times,
CNN, Fox News, Washington Post, USNews, and BuzzFeed)
during the event.

Hurricane Matthew Trace: We collected Twitter data
related to the Hurricane Matthew event in 2016, which was
a deadly and destructive hurricane from the Caribbean to
the United States. We use the same API to collect the
tweets with query terms “Hurricane”, “Matthew”. We set
a geographic region that covers all United States cities. For
complementary sources, we collected 150 reports from the
same news medias.

Data Pre-processing: we first group tweets with similar
contents into the same cluster using a variant of K-means
clustering algorithm and a distance metric that is commonly
used for Twitter data (i.e., Jaccard distance) [9]. We treat a
topic directly related to the event of interest in each cluster as
a measured variable (e.g., the location of the suspect, number
of casualties during the hurricane) and tweets discussing
the same topic are considered as claims associated with the
corresponding measured variable.

In order to compute the trust score of claims, we
first derive the Coherence Score by calculating the content
similarity between a claim and its corresponding measured
variable using the Jaccard distance. We then calculate the
Uncertainty Score by implementing a simple text classifier
using skit-learn and trained it with the training data provided
by CoNLL-2010 Shared Task [7]. To compute the Inde-
pendent Score, we classified the retweets or tweets that are
significantly similar to the previous tweets as repeated claims
and assign them relatively low independent scores. To label
Source Attitude, we applied a method that classifies a tweet
as “agree” or “disagree” based on its content (e.g., whether a
tweet includes certain negative words such as “fake”, “false”,
“not true”, “debunked”, “rumor”). Finally, we divide the data
traces into one-hour intervals based on the timestamps of
the tweets and get 131 time intervals for Boston Bombing
and 335 for Hurricane Matthew respectively. The time
interval is chosen as a trade-off between the frequency of
the truth discovery updates and the amount of data in each
time interval.

Labeling Ground Truth: Since both datasets are based on
historical events and rumors and myths have been revealed
over time, we obtain the ground truth of the measured
variables based on credible post-event reports. In particular,
we hired three individuals to manually look up facts about
each claim from credible sources and reconcile our collected
facts. We divided the claims at each time interval into fact-
checkable and non-fact-checkable. For example, a claim
“The Boston Bombing suspect was seen to escape from
Stata Center, M.I.T” is considered as non-fact-checkable
because we cannot identify where the suspects have been
at that time. We excluded all “non-fact-checkable” claims



from evaluation.

B. Experiment Results

We report the results of the Boston Bombing dataset
in Table IV. Observe that the CA-DTD scheme performs
the best among all compared truth discovery schemes. For
example, the CA-DTD scheme outperforms the best per-
formed baseline by 8.5%, 5.3%, 3.0% and 5.2% on accuracy,
precision, recall and F1-Score respectively. The performance
gains of CA-DTD scheme are mainly achieved by (i) ex-
plicitly modeling the evolving truth of measured variables
using CA-HMM, (ii) incorporating physical constraints to
regulate the truth transitions of measured variables, and (iii)
seamlessly integrating information from both online social
media and traditional news media to handle incomplete
and noisy social sensing data. The results of the Hurricane
Matthew data trace are shown in Table V. We observe that
CA-DTD continues to achieve the best performance among
all compared schemes. For example, CA-DTD outperforms
the best performed baseline by 4.5%, 4.0%, 1.7% and 5.0%
on accuracy, precision, recall and F1-Score respectively.

Table IV: Results on Boston Bombing Data Trace

Method Accuracy Precision Recall F1-Score

CA-DTD 0.906 0.928 0.889 0.909
SSTD 0.821 0.850 0.858 0.853
DynaTD 0.817 0.875 0.859 0.857
Recursive EM 0.754 0.822 0.793 0.807
Recursive MAP 0.735 0.820 0.748 0.782
TruthFinder 0.770 0.797 0.861 0.828
RTD 0.791 0.719 0.765 0.742
CATD 0.789 0.838 0.832 0.835
ETCIBoot 0.793 0.840 0.831 0.837

Table V: Results on Hurricane Matthew Data Trace

Method Accuracy Precision Recall F1-Score

CA-DTD 0.903 0.918 0.833 0.873
SSTD 0.858 0.831 0.816 0.823
DynaTD 0.828 0.878 0.665 0.757
Recursive EM 0.819 0.837 0.684 0.752
Recursive MAP 0.821 0.819 0.713 0.762
TruthFinder 0.746 0.702 0.642 0.671
RTD 0.818 0.843 0.674 0.749
CATD 0.781 0.709 0.774 0.741
ETCIBoot 0.793 0.822 0.620 0.707

We also evaluate the execution time of all compared
schemes. In particular, we run our experiments on a desk-
top with an 8-core Intel i7 Processor and 16G of RAM.
The running time results are reported in Table VI. We
observe that the CA-DTD scheme outperforms all baselines
including the dynamic schemes that handle the streaming
data (i.e. SSTD, DynaTD, Recursive EM, and Recursive
MAP). The computational efficiency is mainly achieved by
the CA-HMM where the physical constraints greatly reduce
the dimensions of solution space. We also attribute the

performance gain to the fast convergence of our CA-DTD
scheme as shown in Figure 3. The y-axis is the difference of
sources’ authority scores WEy,WI and the x-axis denotes
the current iteration index while the 0-th iteration represents
the initial assignments of the authority scores. We observe
that CA-DTD converges after a couple of iterations.

Table VI: Evaluation on Running Time (Seconds)

Data Trace Bombing Hurricane

CA-DTD 22.443 53.711
SSTD 28.714 66.252
DynaTD 32.132 62.793
Recursive EM 37.913 78.918
Recursive MAP 27.184 92.724
TruthFinder 159.474 202.594
RTD 92.831 177.785
CATD 42.782 102.343
ETCIBoot 45.094 133.515

(a) Convergence of WI (b) Convergence of WEy

Figure 3: Convergence Analysis of CA-DTD

VI. CONCLUSION

This paper develops the CA-DTD scheme to solve the
dynamic truth discovery problem in big data social media
sensing applications. The CA-DTD scheme explicitly ad-
dresses two important challenges: physical constraint aware-
ness and noisy and incomplete data. In particular, we develop
a CA-HMM to model the dynamic states of the measured
variables and incorporate physical constraints to regulate
state transitions in the model. The CA-DTD also integrates a
data fusion component into the CA-HMM to explore the data
heterogeneity to improve the truth discovery accuracy. The
evaluation results on two real world social media sensing
data traces demonstrate that CA-DTD achieves significant
performance gains compared to the state-of-the-art baselines
in dynamic truth discovery. The results of this paper are
important because they lay out a solid analytical foundation
to address dynamic truth discovery by explicitly exploring
physical constraints in social media sensing applications.
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