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Abstract—Urban land usage classification is a critical task in
big data based smart city applications that aim to understand
the social-economic land functions and physical land attributes
in urban environments. This paper focuses on a migratable
urban land usage classification problem using remote sensing
data (i.e., satellite images). Our goal is to accurately classify the
land usage of locations in a target city where the ground truth
land usage data is not available by leveraging a classification
model from a source city where such data is available. This
problem is motivated by the limitation of current solutions that
primarily rely on a rich set of ground-truth data for accurate
model training, which encounters high annotation costs. Two
important challenges exist in solving our problem: i) the target
and source cities often have different urban characteristics that
prevent the direct application of a model learned from the
source city to the target city; ii) the complex visual features in
satellite images make it non-trivial to “translate” the images
from the target city to the source city for an accurate classifica-
tion. To address the above challenges, we develop TransLand,
an adversarial transfer learning framework to translate the
satellite images from the target city to the source city for
accurate land usage classification. We evaluate our scheme
on the real-world satellite imagery and land usage datasets
collected from five different cities in Europe. The results show
that TransLand significantly outperforms the state-of-the-art
land usage classification baselines in classifying the land usage
of locations in a city.

1. Introduction

In this paper, we develop a principled adversarial transfer
learning framework to address the urban land usage classi-
fication problem in big data based smart city applications.
Urban land usage classification is the classification task to
understand the social-economic land functions and physi-
cal land attributes in urban environments [1]. Examples of
urban land usage classes include agriculture, urban-fabric,
forest and green land, and transportation [2]. Accurate land
usage classification is critical in various city planning and
management tasks (e.g., urban planning, real-estate evalu-
ation, road construction, and green lands protection) [3].
Recent advances in remote sensing provide a pervasive and

scalable solution to obtain rich visual insights on urban
land usage [4]. In particular, land usage information can
be identified by analyzing the surface objects and layouts
of the remote sensing data such as satellite images (e.g.,
an area of high-density buildings often indicates the urban-
fabric class) [5].

A significant amount of efforts have been made to ad-
dress the land usage classification problem in data mining,
machine learning, and geographical information systems [5],
[6], [7], [8]. Those approaches primarily rely on a rich
set of ground-truth data on land usage in the studied area
as the training data to extract the relevant image features
and build accurate classification models [6]. However, such
ground-truth data is not always available due to the high
cost of annotations and lack of government supports [9].
For example, less than 1% cities in Europe have publicly
available land usage data, where the majority of them are
major cities with a population larger than 100,000 1. In
Austria, for instance, the land usage data are only available
in 5 out of 77 cities. Therefore, the lack of ground-truth data
presents a fundamental challenge to the urban land usage
classification problem.

To address the above challenge, we focus on a migrat-
able land usage classification problem using remote sensing
data. Our goal is to accurately classify the land usage of
locations in a target city where the ground-truth land usage
data is not available by leveraging a classification model
learned in a source city where such data is available. For
example, consider two cities in Germany: Berlin and Dort-
mund, both of which are located in the northern Germany
area with similar urban characteristics. However, Berlin has
the ground-truth land usage data collected and published
by European Environment Agency (EEA) but Dortmund
does not. In this example, our goal is to learn the land
usage classes of locations in Dortmund (i.e., target city)
by leveraging the land usage classification model learned
in Berlin (i.e., source city). Such a migratable urban land
usage classification problem is non-trivial to solve due to
several technical challenges we elaborated below.

Model Migration between Disparate Cities. A possible
solution to address the migratable land usage classification

1. https://www.eea.europa.eu/data-and-maps/data/urban-atlas/
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problem is to “transfer” (i.e., directly apply or modify)
the classification model learned from the source city to
classify the land usage of locations in the target city [6],
[8]. However, two important limitations exist in current
solutions. First, the target and source cities often have dif-
ferent urban characteristics (e.g., city landscape and layouts,
architecture styles, and types of topography) that would
prevent the direct application of a model learned from the
source city to the target city. In particular, a previous study
shows a significant classification performance drop when
the classification model learned from one city is directly
applied to another [6]. Second, a few solutions accommo-
date the disparity between different cities by re-training the
classification model of the source city using a high quality
labeled dataset from the target city [8]. However, such a
training dataset with ground truth labels of the target city
is not available in the migratable land usage classification
problem we study in this paper.

Complex Satellite Imagery Data Translation. An alter-
native way to solve the migratable land usage classification
problem is to judiciously “translate” the satellite images
from the target city so that they can be better recognized
by the classification model learned in the source city. For
example, Figure 1 shows a set of satellite images of the
same land usage class (i.e., urban-fabric) from two cities. We
observe that the translated satellite image (C) shares several
key visual features (e.g., high contrast ratio, red rooftop,
and clear road outlines) with the image (B) in the source
city while keeping the basic content of the original image
(A) in the target city. Such visual features are critical for
the accurate land usage classification task [10]. However,
it remains a challenging task to automatically establish an
effective image translation process as shown in Figure 1. In
particular, it is not a trivial task for the translation scheme to
accurately segment and translate all individual objects from
a satellite image with the excessive fine-grained details and
complex visual features [11].

Figure 1. An Example of Satellite Image Translation

To address the above challenges, we develop TransLand,
an adversarial transfer learning framework for migratable
land usage classification using remote sensing data. Trans-
Land is an unsupervised solution that does not require any
labeled data from the studied area (i.e., target city) for
the classification task. In particular, to address the first
challenge, we develop a novel adversarial transfer learning
approach to translate the satellite images from the target
city to match the urban characteristics of the source city

where a well-trained classification model has been built.
To address the second challenge, we design a set of deep
convolutional neural network architectures and a grouping
mechanism to establish accurate object segmentation and
reduce the noise introduced in the translated images. To the
best of our knowledge, TransLand is the first adversarial
transfer learning approach to address the migratable land
usage classification problem using remote sensing data. The
unsupervised nature of TransLand makes it applicable to
the “data drought” problem in similar big data applications
where the labeled data from the studied area is unavailable.
We evaluate the TransLand framework using the real-world
satellite imagery and land usage dataset collected from five
different cities in Europe. The results show that TransLand
significantly outperforms the state-of-the-art land usage clas-
sification baselines in terms of classification accuracy.

2. Related Work

2.1. Smart City Applications

Advanced information and communication technologies
(e.g., Internet-of-Things (IoT), edge computing, 5G net-
works) are integrated to collect the sensing measurements
about the urban environment for many smart city appli-
cations [12], [13], [14]. Examples of such applications
include intelligent traffic risk sensing systems to prevent
road accidents [15], smart grid systems to reduce energy
consumption and minimize the power shortage [16], urban
crowdsensing systems to report real-time air quality [17],
and city-wide crime occurrences prediction to improve urban
public safety [18]. Several important challenges exist in
the smart city applications. Examples include data qual-
ity assurance [19], multi-modal data fusion [20], privacy
protection [21], and platform heterogeneity [22]. However,
the migratable urban land usage classification using satellite
imagery data remains to be an open and challenging prob-
lem. In this paper, we develop a novel adversarial transfer
learning framework to address this problem by translating
the satellite images from the target city to match the urban
characteristics of the source city.

2.2. Land Usage Classification

Efforts have been made towards addressing the land us-
age classification problem in data mining, machine learning,
and geographical information systems [5], [6], [7], [8]. For
example, Castelluccio et al. tuned the deep convolutional
network architectures for semantic classification of urban
land usage [5]. Albert et al. developed a deep learning based
approach to identify patterns in urban environments using
the satellite imagery data and open-source survey data [6].
Liu et al. designed a spatial pyramid pooling framework
to extract multi-scale deep features from high resolution
satellite images for land use classification [7]. Hu et al.
leveraged multiple pre-trained deep convolutional neural
networks to learn efficient image representations for land



use classification [8]. However, those approaches cannot be
directly applied to our migratable land usage classification
problem because they all rely on a rich set of ground-truth
data on land usage in the studied area to extract the deep
image features and build accurate classification models [9].
In contrast, we develop a novel adversarial transfer learning
approach to classify the land usage classes in the areas where
the ground-truth data is not available.

2.3. Generative Adversarial Learning

Our work is also related to the generative adversarial
learning technique, which has been applied in many areas
such as image generation, representation learning, intelligent
transportation and remote sensing [23], [24], [25], [26].
For example, Denton et al. proposed a deep generative
parametric image model to automatically create high quality
image samples using the Laplacian pyramid of adversarial
networks [23]. Radford et al. developed an unsupervised
representation framework to learn the general representation
of image features through deep convolutional generative
adversarial networks [24]. Zhang et al. designed a deep
transfer learning framework to provide reliable traffic risk
estimation via generative adversarial networks [25]. Jia et al.
proposed a cyclic domain adaptation approach to estimate
the land covers under different weather conditions data [26].
To the best of our knowledge, the TransLand is the first ad-
versarial transfer learning approach to solve the migratable
urban land usage classification problem.

3. Problem Definition

In this section, we formally define the migratable urban
land usage classification problem using the remote sensing
data. We first define a few key terms that will be used in
the problem statement.
Definition 1. Source City (A): We define a source city to

be a city where the ground-truth urban land usage data
is available.

Definition 2. Target City (B): We define a target city to be
the studied city of interest where the ground-truth urban
land usage data is not available.

Definition 3. Sensing Cell: Following a similar procedure
in [6], we use the geographic grid to divide both the
source and target cities into disjoint sensing cells where
each cell represents a subarea of interest. In particular,
we define I and J to be the number of cells in the source
and target city, respectively. We denote i as the ith grid
cell in the source city, and j as the jth grid cell in the
target city.

Definition 4. Satellite Image (S): We define S to be
the satellite images collected from the online map ser-
vice (e.g., Google Map Platform). We define SA =
{SA

1 , S
A
2 , ..., S

A
I } and SB = {SB

1 , S
B
2 , ..., S

B
J } to repre-

sent the set of satellite images collected from the sensing
cells in the source and target city, respectively. Figure 1

shows examples of such images for both source and
target city. In addition, we define Sall to be the complete
set of satellite images from both source and target city
(e.g., Sall = SA ∪ SB).

Definition 5. City-specific Urban Characteristics: it refers
to the visual features (e.g., contrast ratios, color distri-
butions, surface objects) of the satellite images that are
characteristic for a given city. For example, (A) and (B)
in Figure 1 have clearly different urban characteristics
in terms of contrast ratio (low vs. high) and building
colors (dark vs. red building roof). Such differences are
often originated from the architecture styles, population
density, and topography types of different cities.

Definition 6. Satellite Image Content: it refers to the basic
objects and their layouts (e.g., buildings, plants, roads,
forests) in a satellite image.

Definition 7. Translated Satellite Image (S): we define
SB = {SB

1 , S
B
2 , ..., S

B
J } to be the set of translated

satellite images generated by our TransLand scheme
for the target city. A translated image SB

j matches the
urban characteristics of the source city while preserving
the intrinsic content of its original image SB

j in the
target city. Image (C) in Figure 1 is an example of the
translated satellite image.

Definition 8. Land Usage Class (C): We use C to in-
dicate the land usage class (e.g., agriculture, urban-
fabric, forest and green land, and transportation) of a
sensing cell in a city. In particular, we define CA =
{CA

1 , C
A
2 , ..., C

A
I } and CB = {CB

1 , C
B
2 , ..., C

B
J } for the

source and target city, respectively. In particular, CA
i

indicates the class of land usage in sensing cell i from
the source city and CB

j indicates the class of land usage
in sensing cell j from the target city.

The goal of the migratable urban land usage classifica-
tion problem is to correctly classify the land usage label
of all sensing cells in the target city using the land usage
classification model learned from the source city. Using the
definitions above, our problem is formally defined as:

argmax
ĈB

j

Pr(ĈB
j = CB

j | SA, SB , CA), ∀1 ≤ j ≤ J (1)

where ĈB
j is the estimated land usage class for the sensing

cell j in the target city B. This problem is challenging due
to the arbitrarily large and complex visual feature space in
satellite imagery data and lack of training data of the land
usage in the target city. To address this problem, we develop
a TransLand scheme in the next section.

4. Solution

4.1. Overview of TransLand Framework

TransLand is an adversarial transfer learning frame-
work that translates the satellite images from the target



city to the source city for the land usage classification.
It consists of three modules: i) Cross-city Satellite Image
Translation (CSIT), ii) Grouping Mechanism for Noise Re-
duction (GMNR), and iii) Land Usage Classification Module
(LUCM). First, the CSIT module is the core of TransLand
that translates the satellite images from the target city to
match the urban characteristics of the source city without
requiring any ground-truth land usage data from the target
city. Second, the GMNR module divides the locations from
both source and target city into different subsets based on
the learned correlation between the complex visual features
from satellite imagery data to further boost the classification
accuracy. Finally, the LUCM module learns the estimated
land usage class of each sensing cell in the target city by
feeding the translated satellite images into a classification
model trained in the source city. The overview of TransLand
is shown in Figure 2.

Figure 2. Overview of TransLand framework

4.2. Cross-city Satellite Image Translation (CSIT)

We develop a cross-city satellite image translation mod-
ule that translates the satellite images from the target city
to the source city using a novel adversarial transfer learning
network. We first define two types of network architectures
used in this module:
Definition 9. Translator Network (T ): we define TBA

as a translator network whose function is to translate
the satellite images from city B (target city) to match
the urban characteristics of city A (source city). In
particular, we characterize the function of the translator
network below:

TBA : SB
j ∈ B → SB

j ∈ A (2)

where SB
j and SB

j are the original and translated satellite
images in cell j from the target city, respectively.

An example of the translator network is shown in Fig-
ure 3. It consists of three components: an image encoder, a
residual block component, and an image decoder. The image
encoder component has multiple convolutional layers and in-
stance normalization layers. In particular, the convolutional
layers extract the content from a satellite image and the
instance normalization layers normalize the parameters in
the convolutional layers to stabilize the content extraction

process. The residual block component has multiple resid-
ual blocks [27] to handle the complex task of segmenting
individual objects in a satellite image and applying correct
urban characteristics translation for the identified objects.
The image decoder component has multiple deconvolutional
layers and instance normalization layers. In particular, the
deconvolutional layers convert the latent representations of
translated images generated by the residual blocks to the
actual images used for land usage classification.

Figure 3. Illustration of Translator Network2

Definition 10. Discriminator Network (D): We define DA

as a discriminator network to exam whether a satellite
image Sx matches the urban characteristics of the satel-
lite images in a given city A or not:

DA :

{
1 : Sx ∈ A
0 : Sx /∈ A

(3)

where DA returns true (i.e., "1") if Sx matches the urban
characteristics of city A and false (i.e., "0") otherwise.

An example of the discriminator network is shown in
Figure 4. It consists of two components: 1) a down-sampling
component that reduces the resolution of the satellite image
representation (e.g., 224*224 -> 28*28) to identify a critical
set of visual features that best represent the urban charac-
teristics of a given city; 2) an output layer component that
includes a convolutional layer and an average pooling layer
to output the classification results using the learned low-
dimensional satellite image representation extracted by the
down-sampling component.

We define our loss functions for the translator network
TBA and the discriminator network DA to ensure the desired

2. Channel refers to the number of dimensions to represent the semantic
information embedded in each pixel (e.g., we have three channels (i.e.,
RGB) in an image). Resolution refers to the size of the matrix that
represents the visual information preserved in each layer.



Figure 4. Illustration of Discriminator Network

quality of translated satellite images generated from the
target city as follows:

LTBA : min
TBA

∑
SB
j ∈SB

||1−DA(TBA(S
B
j ))||2

LDA : min
TDA

∑
SB
j ∈SB

||0−DA(TBA(S
B
j ))||2

+
∑

SA
i ∈SA

||1−DA(S
A
i )||2

(4)

where LTBA
and LDA

are the loss functions for the trans-
lator network TBA and discriminator network DA, respec-
tively. || · ||2 denotes the L2-norm of a given matrix. The
rationale of the above loss functions is to let TBA and DA

compete with each other so that TBA can generate high
quality translated satellite images from the target city B
that match well with the urban characteristics of the source
city A. For example, the translator network TBA is effective
if TBA(S

B
j ) is confirmed positively by DA (i.e., returning

true). On the other hand, the discriminator network DA is
required to identify the poorly translated satellite images
from TBA that do not match the urban characteristics of
city A. Similarly, we also define the loss functions for the
translator network TAB and the discriminator network DB

for target city B (i.e., LTAB
and LDB

). These loss functions
are designed to convert the translated image (TBA(S

B
j ))

back to its original version to verify the quality of the
translated satellite images (TAB(TBA(S

B
j )) → SB

j ). In
particular, LTAB

and LDB
are defined as follows:

LTAB : min
TAB

∑
SA
i ∈SA

||1−DB(TAB(S
A
i ))||2

LDB : min
DB

∑
SA
i ∈SA

||0−DB(TAB(S
A
i ))||2

+
∑

SB
j ∈SB

||1−DB(S
B
j )||2

(5)

While the above adversarial loss functions ensure rea-
sonable satellite image translation from the target city to the
source city, it may also lead to a mode collapse problem dur-
ing the translation process: the translator network may map
different satellite images to an identical translated image
where the contents of the original images are lost [28]. The
collapse problem often happens when the source and target
cities differ so significantly in their urban characteristics that
the translator network fails to make accurate translations for
the images in the target city. To address this problem, we
adopt the cycle-consistent loss function [29] that leverages
the translation consistency to regularize the image transla-
tion process. In particular, we combine the cycle-consistent
loss function with the adversarial loss functions defined
above (i.e., LAB and LBA) to derive the final objectives
for the translator networks as follows:

LTAB ,TBA : min
TAB ,TBA

∑
SA
i ∈SA

||TBA(TAB(S
A
i ))− SA

i ||1

+
∑

SB
j ∈SB

||TAB(TBA(S
B
j ))− SB

j ||1

+
∑

SA
i ∈SA

||1−DB(TAB(S
A
i ))||2

+
∑

SB
j ∈SB

||1−DA(TBA(S
B
j ))||2

(6)

where LTAB ,TBA
indicates the final objective for the trans-

lator network TAB and TBA. || · ||1 indicates the L1-norm
of a given matrix. The idea is to ensure the translator
networks can translate the satellite images SA

i and SB
j

back to the original version after the translation process
(i.e.,TBA(TAB(S

A
i )) → SA

i and TAB(TBA(S
B
j )) → SB

j ).
This process ensures the content from the original version
of a translated image is preserved to its maximum extent.

Similarly, we combine the loss function LDA
and LDB

to obtain the final objective LDA,DB
for the discriminator

networks as follows:
LDA,DB : min

DA,DB

∑
SB
j ∈SB

||0−DA(TBA(S
B
j ))||2

+
∑

SA
i ∈SA

||1−DA(S
A
i )||2

+
∑

SA
i ∈SA

||0−DB(TAB(S
A
i ))||2

+
∑

SB
j ∈SB

||1−DB(S
B
j )||2

(7)

Given the final objectives LTAB ,TBA
and LDA,DB

, the
optimal instances (i.e., T ∗AB , T

∗
BA, D

∗
A, D

∗
B) of all networks

can be learned using the Adaptive Moment Estimation
(Adam) optimizer [30]. Finally, we leverage T ∗BA to generate
the translated satellite images for the target city as follows:

SB
j = T ∗BA(S

B
j ),∀SB

j ∈ SB (8)

where SB
j and SB

j are the original and translated satellite
image for sensing cell j in the target city, respectively.



4.3. Grouping Mechanism for Noise Reduction
(GMNR)

While the adversarial transfer learning network can
establish effective satellite image translations, it can also
introduce unexpected noise during the translation process.
Figure 5 shows an example of such a case. We observe
that the translated image (D) does capture the characteristics
of the forest and green land class in image (B) from the
source city (i.e., changing the dominating color from green
to brown). However, the characteristics of urban-fabric class
in the image (C) from the source city is also mistakenly
introduced into image (D) (e.g., the green trees are translated
to the red building roofs). This is because the translated
images can learn the urban characteristics from any land
usage class in source city. Such noise could significantly
degrade the classification performance (e.g., classifying (D)
as the urban-fabric in the above example).

Figure 5. Illustration of Satellite Image Translation Affected by Noise

To address the above problem, we develop an unsuper-
vised grouping mechanism that groups the satellite images
with high visual similarities from the source and target city
to avoid the noise in the translation process. In particular,
we first define the translation subset as follows.

Definition 11. Translation Subset (Ssub): we divide the
complete set of satellite images Sall into different sub-
sets (i.e., Ssub = {Ssub

1 , Ssub
2 , ..., Ssub

K }), where each
subset contains the satellite images from both source and
target city that share high similarities in terms of the vi-
sual features (e.g., dominant color, texture). Such visual
features can be extracted through deep neural network
based feature extraction methods (e.g., DenseNet [31]).

The above process ensures the satellite images that
share similar visual similarities are divided into the same
translation subset. Finally, we apply the adversarial transfer
learning network introduced in the previous subsection to
preform the image translation task for each translation sub-
set. The translated satellite images will be used for the final
image classification task discussed in the next subsection.

4.4. Land Usage Classification Module (LUCM)

After obtaining the translated satellite image for each
sensing cell in the target city, TransLand performs a multi-
class image classification task to classify the land usage
for each translated satellite image by leveraging the clas-
sification model learned in the source city. Rather than re-
inventing the wheel, we adopt the state-of-the-art ImageNet-
based conventional neural network tool (i.e., VGG [32])
trained in the source city for the classification task. In par-
ticular, we consider the label smoothing during the training
process to improve the robustness of the learned classi-
fication model [33]. An important parameter in the label
smoothing process is the smoothing parameter λ, which
controls the trade-off between the model convergence and
noise tolerance for the learned classification model. In the
evaluation section, we show the performance of Transland
in terms of various λ values.

Finally, we summarize the TransLand framework in
Algorithm 1. The inputs to the framework are i) the collected
satellite images SA and SB from the source and target city,
respectively, and ii) the land usage data from source city
CA. The outputs are estimated land usage classes for all
sensing cells in the target city ĈB .

Algorithm 1 Summary of the TransLand Framework
1: input: SA,SB , CA

2: output:ĈB

. grouping phase
3: set Sall = SA ∪ SB

4: generate Ssub (Def. 11) from Sall (GMNR in Sec. 4.3)
. translation phase

5: for each Ssub
k in Ssub do

6: optimize LTAB,TBA
(Equation 6) and LDA,DB

(Equation 7) to obtain
T∗
BA

7: for each SB
j in Ssub

k do
8: generate SB

j using T∗
BA (Equ. 8)

9: add SB
j to SB

10: end for
11: end for

. classification phase
12: obtain classification model using SA and CA (LUCM in Sec. 4.4)
13: for each SB

j in SB do
14: apply classification model to generate ĈB

j

15: add ĈB
j to ĈB

16: end for
17: output ĈB

5. Evaluation

In this section, we evaluate the performance of the
TransLand scheme using the real-word satellite imagery and
land usage datasets collected from five different cities in
Europe. We compare the performance of TransLand with
the state-of-the-art deep learning frameworks for land usage
classification. The results show that TransLand significantly
outperforms the baselines in terms of classification accuracy.

5.1. Dataset

We collect real-world satellite imagery and land us-
age datasets from five different cities in Europe: Budapest



(Hungary), Berlin (Germany), Madrid (Spain), Barcelona
(Spain), and Athens (Greece). These cities have diversi-
fied cultural and architectural characteristics (e.g., architec-
ture styles, urban layouts, and population density), which
presents a challenging scenario for the migratable land
usage classification problem. We summarize the datasets as
follows:

• Satellite Imagery Dataset: we collect the publicly
available satellite imagery dataset from the five Eu-
ropean cities through Google Maps Platform 3. In
particular, the collected images are of 224×224 res-
olution that provides sufficient visual information for
a sensing cell of a city for our application [6].

• Ground-truth Land Usage Dataset: we use the
Urban Atlas dataset published by the European En-
vironment Agency 4 to obtain the ground truth labels
of land usage class in the studied cities. Please
note that the above ground-truth dataset is used for
the purpose of evaluation only and is not always
available due to the high cost of annotations and
lack of government supports [9].

In our evaluation, we randomly sample 800 satellite im-
ages that belong to four widely adopted urban land usage
classes 5 for our experiments: agriculture, urban-fabric, for-
est and green land, and transportation as shown in Figure 6.

Figure 6. Examples of Land Usage Classes

5.2. Baselines and Metrics

We compare TransLand with several state-of-the-art
deep learning frameworks that are widely used in the pre-
vious literature for land usage classification. To ensure the
fairness of comparison, the inputs to all compared schemes
are set to be same (i.e., satellite imagery data from both
source and target city and the training data on land usage
from the source city only.)

• InceptionResNetV2 [34]: it is a popular deep neural
network framework that combines inception archi-
tectures with residual connections to accelerate the
training process of the land usage classification task.

• InceptionV3 [35]: a scalable deep learning archi-
tecture that leverages convolutions factorization and

3. https://developers.google.com/maps/documentation/javascript/
get-api-key

4. https://www.eea.europa.eu/data-and-maps/data/urban-atlas/
5. https://land.copernicus.eu/user-corner/technical-library/

urban-atlas-mapping-guide

regularization to ensure the effectiveness of the
learned classification model.

• DenseNet [31]: a densely connected convolutional
network that imposes a novel concatenation mech-
anism to ensure the classification accuracy while
assuaging the vanishing-gradient problem. In partic-
ular, we consider all three variations of DenseNet
with different network depths in our experiments
(i.e., DenseNet121, DenseNet169, DenseNet201).

• VGG [32]: it is a very deep convolutional network
architecture for large-scale image classification tasks
by employing multiple deep convolutional layers to
improve the classification accuracy.

• MobileNet [36]: a lightweight deep neural network
that utilizes multiplier operations to improve the
computational efficiency in its classification model.

• NasNet [37]: a transfer learning based neural net-
work image classification model that dynamically
adapts convolutional architectures to achieve the de-
sired classification accuracy across different image
classification tasks.

In our experiments, all baselines are pre-trained on Ima-
geNet [38] and fine-tuned on the ground-truth land usage
dataset. In our evaluation, we also consider the baseline
Grouping that leverages the translation subsets generated by
the grouping mechanism (discussed in Section 4.3) for land
usage classification (i.e., the land usage class of a satellite
image from the target city is considered to be the same as
the class of majority satellite images from the source city
in that subset). In addition, the Random baseline estimates
the land usage class of a sensing cell by randomly picking
a class label from all possible land usage classes.

To evaluate the performance of all compared schemes,
we adopt four representative metrics that are commonly
used for multi-class classification problem. In particular,
we use i) Mirco-F1 and Marco-F1 [39]; ii) Cohen’s kappa
Score (K-Score) [40]; iii) Matthews Correlation Coefficient
(MCC) [41]. Intuitively, a higher Micro-F1, Marco-F1,
MCC, or K-Score indicates a better classification perfor-
mance. In our experiments, all hyper-parameters are opti-
mized using the Adam optimizer [30]. All reported results
are averaged over 50 experiments.

5.3. Evaluation Results

In the first set of experiments, we evaluate the perfor-
mance of all compared schemes over different target cities
for a given source city. In particular, we select the source
city as Athens and vary the target cities to be Madrid,
Berlin, and Barcelona. The three target cities are observed to
have distinct urban characteristics (e.g., architecture styles,
city layouts, and topography types). The evaluation results
are presented in Table 1. We observe that the TransLand
scheme consistently outperforms the baselines on all metrics
across different target cities. For example, the performance
gains of TransLand over the best-performing baseline (i.e.,
VGG) with Madrid as the target city on Micro-F1, Marco-
F1, K-Score, and MCC are 6.52%, 6.67%, 8.71%, and



Table 1. EVALUATION RESULTS BY VARYING TARGET CITIES

Athens-> Madrid Athens -> Berlin Athens -> Barcelona

Algorithm Mirco-F1 Macro-F1 K-Score MCC Mirco-F1 Macro-F1 K-Score MCC Mirco-F1 Macro-F1 K-Score MCC

Random 0.2505 0.2493 0.0007 0.0004 0.2522 0.2511 0.0029 0.0028 0.2520 0.2508 0.0027 0.0025

Grouping 0.3750 0.3580 0.1667 0.1735 0.4063 0.4015 0.2083 0.2099 0.3375 0.3134 0.1167 0.1211

InceptionResNetV2 0.4233 0.3538 0.2311 0.2743 0.4836 0.4539 0.3115 0.3294 0.4071 0.3610 0.2094 0.2383

InceptionV3 0.4635 0.3806 0.2846 0.3329 0.4997 0.4519 0.3329 0.3632 0.4437 0.3943 0.2583 0.2997

DenseNet121 0.4067 0.2951 0.2089 0.2878 0.4740 0.4084 0.2986 0.3797 0.3952 0.3373 0.1936 0.2441

DenseNet169 0.4057 0.3037 0.2076 0.3007 0.4436 0.3481 0.2581 0.3402 0.3562 0.2809 0.1416 0.2190

DenseNet201 0.2744 0.1491 0.0325 0.1070 0.2970 0.1965 0.0627 0.1519 0.2760 0.1579 0.0347 0.1052

VGG 0.4880 0.4829 0.3172 0.3219 0.4063 0.4027 0.2085 0.2109 0.3720 0.3804 0.1626 0.1627

MobileNet 0.2849 0.2052 0.0456 0.0774 0.4034 0.3092 0.2045 0.2773 0.3186 0.2367 0.0915 0.1391

NASNet 0.4395 0.3922 0.2527 0.2734 0.4376 0.3854 0.2502 0.2793 0.4208 0.3814 0.2277 0.2426

TransLand 0.5532 0.5496 0.4043 0.4062 0.5178 0.4698 0.3571 0.3712 0.4797 0.4487 0.3063 0.3156

Table 2. EVALUATION RESULTS BY VARYING SOURCE CITIES

Budapest -> Barcelona Berlin-> Barcelona Madrid -> Barcelona

Algorithm Mirco-F1 Macro-F1 K-Score MCC Mirco-F1 Macro-F1 K-Score MCC Mirco-F1 Macro-F1 K-Score MCC

Random 0.2508 0.2496 0.0011 0.0018 0.2513 0.2501 0.0018 0.0010 0.2523 0.2512 0.0031 0.0014

Grouping 0.3999 0.3941 0.1999 0.2021 0.4438 0.4075 0.2583 0.2666 0.3188 0.2302 0.0917 0.1071

InceptionResNetV2 0.4251 0.3861 0.2334 0.2481 0.4496 0.4129 0.2661 0.2844 0.4717 0.4501 0.2956 0.3029

InceptionV3 0.4177 0.3994 0.2236 0.2294 0.4584 0.4061 0.2779 0.2979 0.4178 0.3703 0.2238 0.2414

DenseNet121 0.3645 0.3467 0.1526 0.1674 0.3735 0.3450 0.1646 0.1728 0.3577 0.3294 0.1436 0.1713

DenseNet169 0.3560 0.3305 0.1413 0.1531 0.3715 0.3311 0.1620 0.1728 0.3852 0.3672 0.1803 0.2116

DenseNet201 0.2976 0.2523 0.0635 0.0701 0.2931 0.2440 0.0575 0.0667 0.2821 0.2041 0.0428 0.0817

VGG 0.4340 0.4212 0.2453 0.2483 0.4586 0.4415 0.2781 0.2808 0.4633 0.4360 0.2845 0.2905

MobileNet 0.3170 0.2387 0.0893 0.1132 0.3580 0.2902 0.1440 0.1662 0.3390 0.3143 0.1187 0.1280

NASNet 0.3774 0.3631 0.1698 0.1812 0.4555 0.4211 0.2740 0.2900 0.4209 0.3709 0.2278 0.2484

TransLand 0.5218 0.5063 0.3625 0.3686 0.4826 0.4471 0.3101 0.3209 0.5278 0.5122 0.3705 0.3784

8.43%, respectively. Such performance gain mainly comes
from the fact that TransLand judiciously learns the urban
characteristics of the source city and translates the satellite
images from the target city through a principled adversarial
transfer learning network. In particular, the translated satel-
lite images successfully capture the key visual features of
the satellite images from the source city without losing the
basic content of the original images.

In the second set of experiments, we evaluate the perfor-
mance of all schemes over different source cities for given a
target city. In particular, we set the target city as Barcelona
and vary the source cities to be Budapest, Berlin, and
Madrid. Our objective here is to evaluate whether TransLand
and the baselines are capable of providing reliable land
usage classification results across the classification models
learned from different source cities. The evaluation results
are presented in Table 2. We observe that TransLand contin-
ues to outperform all baselines across different source cities.
For example, the performance gains achieved by TransLand
compared to the best-performing baseline with Budapest as
the source city on Micro-F1, Marco-F1, K-Score, and MCC

are 8.78%, 8.51%, 11.72% and 12.03%, respectively. Such
performance gains demonstrate the effectiveness of Trans-
Land in translating the satellite images to provide accurate
land usage classification services by leveraging classification
models trained in different source cities.

In the third set of experiments, we study the per-class
land usage classification performance of the TransLand
scheme by presenting the classification confusion matrix
for each source and target city combination in the above
experiments. The results are shown in Figure 7. We observe
that our scheme is able to achieve high accuracy when
classifying the urban-fabric and forest and green land across
different source and target city combinations. For example,
the classification accuracy achieved by TransLand are 0.75
for urban-fabric in Budapest -> Barcelona and 0.82 for
forest and green land in Berlin -> Barcelona. Such a high
classification accuracy in some critical urban land usage
classes demonstrates the promising use cases of TransLand
in smart city applications (e.g., effective urban planning,
green land protection). We also observe that the agriculture
class is often mis-classified as the forest and green land



class in several source and target city combinations. This
is mainly because those two classes share some similar
visual characteristics (e.g., dominant color, object texture),
which provides fuzzy and insufficient visual evidences for
TransLand to perform accurate classification tasks.

(a) Athens -> Madrid (b) Athens -> Berlin

(c) Athens -> Barcelona (d) Budapest -> Barcelona

(e) Berlin -> Barcelona (f) Madrid -> Barcelona

Figure 7. Confusion Matrices of TransLand Scheme

Finally, we study the robustness of TransLand model by
varying the values of the parameters in our model. An im-
portant parameter in our model is the smoothing parameter
λ (defined in Section 4.4). This parameter controls the trade-
off between the model convergence and noise tolerance in
TransLand model. The results are shown in Figure 8. We
observe that the performance of our scheme is relatively
stable as the value of λ changes across different source and
target city combinations.

6. Conclusion

This paper develops a TransLand framework to solve the
migratable land usage classification problem using remote
sensing data. Our framework addresses two critical chal-
lenges, namely model migration between disparate cities
and complex satellite imagery data translation. In partic-
ular, we develop a principled adversarial transfer learning
framework to effectively translate the satellite images from
the target city to the source city for the land usage clas-
sification. The evaluation results on the real world case
studies from five different cities in Europe demonstrate that
TransLand achieves significant performance gains compared

(a) Athens -> Madrid (b) Athens -> Berlin

(c) Athens -> Barcelona (d) Budapest -> Barcelona

(e) Berlin -> Barcelona (f) Madrid -> Barcelona

Figure 8. Robustness of TransLand Scheme

to the state-of-the-art land usage classification baselines in
accurately classifying the land usage of locations in a city.
The authors believe TransLand provides useful insights to
address similar “data drought" problems in other big data
applications.
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