
An Integrated Top-down and Bottom-up Task
Allocation Approach in Social Sensing based Edge

Computing Systems
Daniel (Yue) Zhang, Dong Wang

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN, USA
Email: yzhang40@nd.edu, dwang5@nd.edu

Abstract—With the advance of mobile computing, Internet of
Things, and 5G networks, social sensing based edge computing
(SSEC) systems have emerged as a new computation paradigm
where people and their personally owned devices collect and
process sensing measurements about the physical world at the
edge of networks. In this paper, we focus on the task allocation
problem in SSEC where rational edge devices are motivated by
incentives to collectively accomplish the computation tasks in the
system. Several unique challenges exist to solve this problem:
(i) the edge devices often do not share the complete context
information (e.g., CPU, memory usage) in the task allocation
process due to privacy concerns; (ii) the edge devices are rational
actors who may have competing objectives with the application;
(iii) the application server and edge devices are usually owned
by different entities, making the coordination in task allocation
more challenging. This paper develops a novel integrated Top-
Down and Bottom-Up (TDBU) task allocation framework to
address these challenges. In particular, TDBU incorporates a
bottom-up game-theoretic model that allows the edge devices to
specify their task preferences in a way that maximizes their
payoffs. It also incorporates a top-down control model that
ensures the performance of the applications using control theory.
The TDBU was implemented on a real-world edge computing
testbed that consists of heterogeneous devices (Jetson TX1, TK1
boards, Raspberry Pi3). We compared the performance of TDBU
with state-of-the-art baselines through a real-world social sensing
application. The results showed that our solution significantly
outperformed the baselines in various application settings.

I. INTRODUCTION

In recent years, social sensing has emerged as a new sensing
paradigm for collecting real-time measurements about the
physical world using humans or the privately owned devices
on their behalf [1]. Examples of social sensing applications
include obtaining real-time situation awareness in the af-
termath of a disaster using observations from online social
media [2], monitoring the air quality of a city using inputs
from people with portable sensors [3], and detecting real-time
traffic abnormalities using mobile phone apps of drivers [4].

The emergence of edge computing pushes the frontier of
computation, service, and data from the cloud to the edge of
the networks [5], [6] and brings new opportunities for social
sensing applications. By adopting edge computing, social
sensing applications can offload the computation tasks to the

edge devices (e.g., smart phones and nodes in the Internet of
Things) as well as local edge servers (e.g., micro data centers
and smart gateways) [7]. The benefits of running social sensing
applications in the edge computing systems (referred to as
Social Sensing based Edge Computing Systems or SSEC) are
multi-fold: (i) it saves the overall network bandwidth for data
transmission and reduces the risks of overloading the backend
servers; (ii) it enables immediate responses to time-sensitive
applications, allowing services to be delivered to the end users
more efficiently; (iii) the massive computation power at edge
devices is better utilized and the end users can also obtain
rewards by executing the computation tasks on their devices.

A critical problem in the SSEC is task allocation where ra-
tional edge devices are motivated by incentives to collectively
accomplish the computation tasks in the system. Existing
task allocation schemes in edge computing can be classified
into two major categories: top-down (centralized) approach
and bottom-up (decentralized) approach. In a top-down based
approach, a centralized decision maker (e.g., an edge server) is
assumed to have full control and information of the tasks and
the computation resources in the system [8]. It assigns tasks
to edge devices based on their run-time status (e.g., CPU and
memory usage) to meet the performance requirements of the
application. The key limitation of the top-down approach is
that it makes strong assumptions on the global knowledge of
the system which is often not practical in SSEC systems [9]. In
a bottom-up based approach, the privately owned edge devices
make their own task allocation decisions in a distributed
manner without the need for a centralized decision maker [10].
Such an approach gives control to the end users to maximize
their payoffs. However, it is challenging for a bottom-up
approach to maintain the desirable system performance due to
the myopic view of the system information from individual
edge devices and their rational nature [11]. Consequently,
we found neither top-down nor bottom-up approaches can
effectively address the task allocation problem in SSEC due
to several unique challenges as discussed below.

Asymmetric Information Challenge: This challenge refers to
the fact that neither the edge device nor the application has
complete information (e.g., hardware specs, energy profile, re-



source utilization) about the entire SSEC system. For example,
the application often does not have detailed information about
the edge devices due to the privacy concerns of end users and
the excessive overhead of synchronizing devices’ status to the
remote server. In contrast, the edge devices are fully aware of
its own device status but they do not have the information of
resources that are owned by the application (i.e., local edge
servers and remote data centers). Due to the lack of holistic
information of the SSEC system, it is difficult to enforce
optimal task allocation decisions by either the application (top-
down) or the edge devices (bottom-up).

Competing Objective Challenge: A SSEC application and
the edge devices may have inconsistent and even competing
objectives. From the application’s perspective, it is important
to ensure that the edge devices finish the allocated tasks in a
timely fashion to meet the Quality of Service (QoS) require-
ments. In contrast, privately owned edge devices are assumed
to be rational actors who are often less concerned about
the QoS of the application but more concerned about their
own costs (e.g., device’s utilization, energy, memory usage)
and payoff. Due to such competing objectives, task allocation
performed on either side (application or edge device) could
inevitably be suboptimal to the other.

Disparate Ownership Challenge: In SSEC, the computation
and communication resources are often owned by different
entities. For example, the edge devices are often owned by
their end users while the underlying infrastructure (e.g., local
edge servers, access points, and remote data centers) is often
owned by the SSEC application. The challenge for top-down
task allocation is that it cannot assume the privately owned
edge devices are always available and fully cooperative in
the task allocation process. In fact, the compliance issue from
end users is a key concern in social sensing applications [11].
Similarly, the challenge for bottom-up task allocation is that it
is inappropriate to assume the edge devices can directly control
the infrastructure owned by the application. A task allocation
scheme that explicitly considers the disparate ownership in
SSEC has yet to be developed.

To address the above challenges, this paper develops a novel
integrated Top-Down Bottom-Up (TDBU) approach to solve
the task allocation problem in SSEC. In particular, to meet
the objective of the edge devices, we develop a bottom-up
game theoretic approach in TDBU that allows edge devices
to specify their preferred tasks in a way that maximizes their
payoffs. To meet the objective of the application, we develop
a top-down control mechanism in TDBU using stochastic
control theory and online learning to regulate the task al-
location process that ensures the QoS performance of the
application. The TDBU scheme is novel because it allows the
edge devices and the application to “meet in the middle” and
reconcile their competing objectives using a holistic solution.
In particular, the top down module i) observes the bottom-up
task preference decisions from edge devices and decides the
optimal task offloading strategy to ensure the overall system
performance; and ii) leverages top-down incentive schemes to
implicitly guide the edge devices to pick the tasks that they

are most likely to finish in time. We implemented a system
prototype of TDBU on a real-world edge computing platform
that consists of Jetson TX1, TK1 boards, and Raspberry Pi3.
The TDBU was evaluated using a real-world social sensing
application: Real-time Traffic Monitoring [12]. We compared
TDBU with the state-of-the-art task allocation schemes used
in edge computing systems. The results show that our scheme
achieves a significant performance gain in terms of meeting
the objectives of both applications and edge devices.

II. RELATED WORK

A. Social Sensing and Edge Computing

Social sensing has received a significant amount of attention
due to the proliferation of low-cost mobile sensors and the
ubiquitous Internet connectivity [13]. A large set of social
sensing applications are sensitive to delay, i.e., have real-time
requirements. Examples of such applications include intelli-
gent transportation systems [4], environmental sensing [3],
and disaster and emergency response [14]. Traditional social
sensing applications push all the computation tasks to the re-
mote servers/cloud, which can be quite ineffective, particularly
for delay-sensitive applications, when the network bandwidth
is limited and the communication latency is high [9], [15].
Edge computing systems complement traditional centralized
social sensing solutions by offloading computation tasks to the
edge devices to significantly reduce the communication costs
and application latency [16]. A comprehensive survey of edge
computing is given by Shi et al. [6].

B. Top-down (Centralized) Computation Allocation

The task allocation is an important problem in distributed
and real-time systems and many top-down solutions have been
developed to address this problem [8], [9], [17]. In these
solutions, a centralized decision maker (e.g., back-end server)
makes global task allocation decisions. For example, Davare
et al. proposed a Mixed Integer Linear Programming based
approach to meet the deadlines and minimize the end-to-end
latency in hard real-time systems [8]. Wang et. al considered
the assignment of mobile computational tasks over multiple
cloudlets to optimize the overall computation efficiency [18].
Zhang et. al developed a heterogeneity-aware task allocation
scheme that can map interdependent tasks to be assigned to
devices with heterogeneous hardware and runtime environment
that jointly minimizes task delay and energy consumption [19].
Most of the top-down schemes assume that edge devices are
fully controlled and cooperative [7], [18]. Such assumption
does not hold in the SSEC systems where the end users might
refrain from providing necessary information to accomplish
the tasks allocated by the top-down approaches [20].

C. Bottom-up (Decentralized) Computation Allocation

Considering the limitations of top-down task allocation
schemes, bottom-up approaches have been developed to allow
edge devices to select tasks in a distributed manner. For
example, Liu et al. proposed a data offloading scheme using
multi-item auction and congestion game approaches to decide



the optimal strategy for edge devices to offload tasks to the
cloud [21]. Chen et al. proposed a game-theoretic approach to
achieve an efficient and decentralized computation offloading
[22]. However, these approaches assume the edge devices are
cooperative and cannot be applied to our SSEC system where
edge devices are rational actors. The most relevant work was
proposed by Zhang et al., in which a bottom-up task allocation
scheme (referred to as BGTA) was developed to allow non-
cooperative edge devices to pick their preferred tasks using
dynamic incentives [11]. However, this approach cannot ad-
dress the unique challenges of asymmetric information and
disparate ownership of SSEC discussed in the introduction.

III. PROBLEM FORMULATION

A. System Model

A typical social sensing based edge computing (SSEC)
system architecture is shown in Figure 1. In SSEC, a set of
X privately owned edge devices ED = {E1, E2, ..., EX} per-
form the sensing and computation tasks near the data sources
(i.e., social sensors). The application server AS (often built into
a remote data center/cloud) provides a global service interface
to all users of interest to the social sensing applications. A
set of Y local edge servers ES = {ES1, ES2, ..., ESY }
(e.g., micro data centers, cloudlets, smart routers, or gateways)
provide additional data storage and computation power in
locations of close proximity to the edge devices. In SSEC,
edge devices are commonly connected to the remote social
sensing applications through these local edge servers that coor-
dinate the task allocation of all edge devices that communicate
with it [7]. Such a design provides local data processing
capability to reduce the end-to-end latency and offer a generic
communication interface between heterogeneous edge devices
and the remote applications [6].

We assume both AS and ES are owned by the application
manager who provides incentives to edge devices ED to
reward their contributions in accomplishing the computation
tasks.

Figure 1. Social Sensing based Edge Computing System

B. Task Model

We adopt a frame-based task model [23] commonly used in
the real-time system community where tasks are periodically
initialized and have the same period and deadline. We use Ω to
denote the common deadline of all the tasks in an application.
Ω captures the user desired QoS of the application (i.e., when
the tasks should be finished).

A social sensing application is assumed to have a set of
Z tasks, Task = {τ1, τ2, ...τZ}, which are initialized by
the application at the beginning of each sensing cycle. A
computation task for edge devices converts the raw sensor
measurements into desired intermediate outputs. The compu-
tation results of the task are sent back to the edge server for
further data processing and analysis. For example, consider
a typical SSEC application where drivers’ dash cameras are
leveraged to monitor the road condition. The edge devices can
perform data prepossessing by extracting visual and motion
features from the raw camera data. Then the output features
are sent to the local edge server for further analysis (e.g.,
object detection). Each task is associated with a 3-tuple:
τz = {VIz, VOz, cz,x} where VIz is the data volume to be
processed by task τz and VOz is the size of the output. cz,x
is the estimated worst-case execution time (WCET) if τz is
assigned to the edge device Ex.

C. Cost and Incentive Model

In order to motivate edge devices to perform computation
tasks, it is often necessary for SSEC to provide incentives
(either monetary or non-monetary) to end users to reward their
participation and compensate for their costs (e.g., energy) [11],
[24]. We first define a few terms in our model.

DEFINITION 1. Edge Cost (πx): it refers to the energy cost
that edge device EDx have to pay to finish the computation
tasks.

From the end users’ perspective, energy consumption is
a major concern considering the fact that most of the edge
devices are running on battery. In this paper, we adopt a
relatively simple energy model that is sufficient for demon-
strating how TDBU can take energy into consideration during
the task allocation process1. Given the WCET cz,x, the energy
consumed by executing τz on edge device Ex is computed as

ez,x = Powerx × cz,x, (1)

where Powerx is the average power consumption of edge
device Ex and is calculated by

Powerx = Powercomp,x + Powertrans,x (2)

where Powercomp is the power consumption for computation
and Powertrans is the power for data transmission and is
proportional to the transferred data size.

DEFINITION 2. Task Reward rz: it refers to the incentives
that the application provides for compensating the edge device
for completing each social sensing task. We assume the server
has a fixed budget (denoted as ηC) for the social sensing
application.

DEFINITION 3. Edge Payoff uz,x: it refers to the overall
benefit the edge device Ex receives by executing a task τz .
It defines the individual gain as a function of both cost and

1The TDBU framework can be readily extended to more complicated
energy models, e.g., supporting multiple voltage/frequency levels. The details
are omitted due to page limit.



reward of executing tasks on an edge device. More details on
the edge payoff are given in Section IV.

Our model also assumes edge devices are not malicious
(e.g., output fake computation results) or lazy (i.e., intention-
ally postpone execution time). We discuss how to deal with
situations where such assumptions do not hold in Section VII.

D. Objectives

Based on the above definitions, assumptions and system
models, we formally define the objectives of TDBU as follows.

Server (Application) Objective: From the server’s perspec-
tive, the objective is to satisfy the predefined QoS requirement,
characterized by the End-to-End delay of tasks.

DEFINITION 4. End-to-end delay of task (Lz): the total
amount of time taken for a unit of sensor measurement (e.g.,
a video frame of a road) to be processed (by both the edge
device and edge server) and turned into final data analysis
result (e.g., inferred traffic congestion index).

Formally, the server’s objective is to

minimize:
Z∑
z=1

δz, s.t.
Z∑
z=1

rz ≤ ηC (3)

where rz is the incentive for task τz . δz is a binary variable:
δz = 1 if task τz misses the deadline (i.e., Lz > Ω) and δz = 0
otherwise.

Edge Objective: From the perspective of edge devices, the
objective is to maximize their own payoffs. The edge devices
are often constrained by their physical distances to the task
(e.g., many tasks in social sensing are location-aware and is
associated with the sensing range of the device). We assume
an edge device EX collects and process sensor data within its
sensing range ηDx [3]. More details on setting up the sensing
range are discussed in Section VI.

Let distx,z denote the distance between EX and task τz .
Sx represents all the tasks allocated to Ex. We formally define
the edge objective as:

maximize:
∑
z∈Sx

uz,x,∀1 ≤ x ≤ X

s.t. distx,z ≤ ηDx,∀1 ≤ x ≤ X, ∀1 ≤ z ≤ Z
(4)

It is proven that the task allocation problem for heteroge-
neous distributed systems is in general NP-hard [18], [25].
The problem becomes more challenging in our multi-objective
formulation (Equations (3) and (4)) where objectives of the
application and edge devices are potentially conflicting and
additional constraints on costs and devices are imposed. In the
next section, we present the TDBU to address the problem.

IV. SOLUTION

An overview of TDBU is given in Figure 2. The TDBU
scheme consists of two major components: i) a game-theoretic
Bottom-up Task Preference (BUTP) module that allows edge
device to pick their preferred tasks based on their own payoffs,
and ii) a Top-Down Optimal Control (TDOC) module that

ensures the objectives of both server and edge are satisfied.
We elaborate these components below.

Figure 2. Overview of TDBU

A. Game-Theoretic Bottom-Up Task Preference Module

We first develop a BUTP scheme by addressing the objec-
tives of edge devices via game theory. A key design philosophy
of TDBU is to allow edge devices to express their task
preferences in the allocation process. This design i) allows an
edge device to selfishly identify the strategy that maximizes
their own payoffs, and ii) hides the details of device status
from the server and effectively preserves the privacy of end
users.

In BUTP, edge device competes for the computation tasks
by playing a non-cooperative game. The high-level game
protocol of the BUTP is as follows:

1) At the beginning of a sensing cycle, the application
defines Z tasks and the reward rz for each task τz .

2) Each edge device selfishly picks a task that has the
highest payoff for itself. We refer to one round of this
task allocation process as an “iteration”.

3) Within each iteration, we assume each edge device is
myopic and only picks one task at a time (this is referred
to as “singleton property” that reduces the strategy space
from O(2Z) to O(Z)) [26].

4) Keep iterating until all edge devices reach a consensus.
5) EAch device sends outputs of the executed task to the

edge server to claim rewards.
The above protocol follows the rule of singleton weighted

congestion game where the Pure Strategy Nash Equilibrium
is guaranteed to exist [27]. This is crucial for edge devices
to make mutually satisfactory task allocation decisions. The
convergence property of BUTP is evaluated in Section VI-C.

Given the above game protocol, we formally derive a key
element in the BUTP: the payoff function. The payoff function
depends on three factors: 1) the cost for processing a selected
task, 2) the reward associated with the completion of a task,
and 3) a penalty function that the server applies to penalize
delayed computation results.

We first define the cost as:

πz,x =

{
ez,x, distx, z ≤ ηDx
∞, distx, z > ηDx

(5)



where ez,x is the energy consumed by running task τz on Ex
as discussed in Section III. distx,z is the physical distance
between Ex and the sensing location of task τz . We assume
an edge device has a sensing radius of ηDx within which it is
capable of collecting sensing data.

Given the cost function above, each edge device tries to
find the optimal game strategy that minimizes its own cost.
This will result in no tasks being picked for execution (since
picking no tasks incurs zero cost at each edge device). How-
ever, such task allocation results obviously conflict with the
objective of the application. Therefore, the reward is provided
to incentivize end users to contribute their resource on edge
devices. The reward is assigned based on an initial reward rz
and a reward penalty function lz,x,y defined as:

lz,x,y =


λ× Ω

Ω− (td(x, y) + cz,x)
, td(x, y) + cz,x < Ω

∞, td(x, y) + cz,x ≥ Ω

(6)

where td(x, y) denotes the transmission delay from edge
device Ex to edge server ESy . cz,x is the WCET of τz and Ω is
the task deadline defined in Section III. λ is a parameter that
will be tuned via a dynamic incentive controller (discussed
in IV-B). The intuition of this reward penalty function is
to penalize a “lazy but greedy” edge device that targets at
obtaining high rewards by picking many tasks but fails to finish
them. Specifically, the closer the finishing time of a task is to
the deadline, the higher the penalty is.

Assume that device Ex picks task τz in an iteration and
N(z) is the number of devices that pick τz . Based on the
reward, penalty and cost, we define the payoff function uz,x
of edge device Ex for finishing task τz as:

uz,x =

Exp(
rz

πx × lz,x,y′
) =

rz × (Ω− cz,x − td(x, y′))

λ× Ω×N(z)× ez,x
0, πz,x =∞

(7)

where Exp(·) calculates the expected payoff, which is simply
the original payoff divided by the number of device that pick
the same task.y′ refers to the local edge server that is assigned
to each edge device EX . We assume y′ is the local edge server
that is closest to Ex as discussed in Section III.

To ensure that each edge device makes its best decision
towards its rationally selfish objective, our goal is to find a
Nash Equilibrium for BUTP. The Nash Equilibrium exists in
a non-cooperative game where each player is assumed to know
the equilibrium strategies of all other players and no player has
anything to gain by only changing his/her own strategy [28].

A unique challenge in finding the Nash Equilibrium in
BUTP is that an edge device does not know the strategies
of other devices to make the best response of its own (similar
as an auction scenario where each bidder would not share
her own valuation of an item beforehand). However, a nice
property of BUTP is that each edge device knows all in-
formation in the payoff function (Equation (7)) except the
number of devices that pick the task (i.e., N(z) in Equation

(7)). Therefore, to derive the best response, each edge device
only needs to estimate N(z), which represents an aggregated
preference of all edge device toward a task. We develop a
Distributed Joint Strategy Fictitious Play (DJSFP) algorithm
to achieve this goal (see Algorithm 1).

Algorithm 1 DJSFP Algorithm For Payoff Maximization
1: Initialize: S ← newArray[X], EH ← newArray[Z][X], sig ←
False, converge← False

2: while converge 6= True or iterCount ≤ maxIter do
3: iterCount← iterCount+ 1
4: initialize N(z) = 1, ∀1 ≤ z ≤ Z
5: find brx ← strategy for Ex based on maximizing Equation (7)
6: send brx to local edge server, receive N(z), ∀1 ≤ z ≤ Z of all

tasks and convergence signal sig
7: converge← sig
8: update EHz,x ← µEHz,x + (1− µ)N(z), S[x]← brx
9: end while

10: Return S[x]

In Algorithm 1, EHz,x is the empirical histogram that each
edge device Ex used to predict N(z) in the next sensing cycle.
µ ∈ (0, 1] is a decay factor that controls the importance of
more recent observations of N(z).

BUTP alone will not guarantee QoS objective of the ap-
plication since its objective is to allow edge devices can find
the task set that selfishly maximizes their own payoffs. In the
next subsection, we show how top-down control is applied to
bridge the competing objectives of the edge and the server.

B. Top-Down Optimal Control Module

In this subsection, we design a Top-Down Optimal Control
(TDOC) module to complement the BUTP module to meet the
QoS objective of the application. The TDOC module consists
of two control mechanisms: 1) a Lyapunov optimization based
stochastic task offloading controller to maximize the QoS
while explicitly considering the payoffs of edge devices; 2)
an online-learning based dynamic incentive controller to adjust
the payoff of each edge device to address the system dynamics
(e.g., deadline miss rate, device status) using feedback control.

The reason for the top-down control is that the server cannot
count on the selfish edge device to perform optimal task
allocation to meet the QoS requirements of the application.
In particular, the E2E delay is composed of both the delay
on the edge as well as the edge servers. Therefore, the server
has to ensure the task results are offloaded to the right edge
server so QoS objective is met. This will be addressed by the
stochastic task offloading controller. On the other hand, the
payoff function of the edge devices may not align well with
the server’s objective. This will be addressed by the dynamic
incentive controller component.

1) Stochastic Task Offloading Controller via Lyapunov Op-
timization: Once the edge devices make their task allocation
decisions and execute the selected tasks, the results of the tasks
will be sent to the local edge servers in a real-time manner.
From the perspective of the local edge server, the arrival time
of the computation results from edge devices can be highly
dynamic and unpredictable, thus treated as “random events”.
The server has to make dynamic decisions on where the task



result should be offloaded to. A naı̈ve solution is to simply
allow edge devices to offload task results to the nearest local
edge server (i.e., y′ defined in Equation (7)). However, this
solution is not optimal because the local edge server can be
overloaded if the volume of offloading data from edge devices
is large. This will cause the excessive E2E delay of tasks.

On the other hand, this top-down task offloading control
can cause edge devices to suffer some loss. For example, if
the server asks an edge device to offload to an edge server
that is far away, it will not only increase the reward penalty,
but also induces higher energy cost of the edge device. In
TDOC, we design a Stochastic Task Offloading Controller by
leveraging Lyapunov optimization technique to manage the
task offloading on the edge servers. This technique not only
guarantees QoS, but also minimizes the loss on the edge.

We first formally define the edge loss as the deficit of the
payoff after the control action being applied as compared to the
expected payoff before the control action. We assume SSEC is
a time-slotted system and the control decisions can be applied
in each time slot t, 1 ≤ t ≤ T . We use pedge(t) to denote the
edge loss at time slot t

We further define an edge server delay dz,y(t) that measures
the accumulated delay if incoming execution result of task τz
at time slot t is assigned to the edge server ESy . Formally,
dz,y(t) = DATz + cz,y where cz,y is the worst-case execution
time if the offloaded computation result of τz is processed at
ESy , and DATz is the data arrival time that captures the total
amount of time it takes from a task τz being generated till the
edge server receives the data.

The goal is to take control actions (i.e., deciding task
offloading destination and admission control) such that time-
average edge loss pedge(t) is minimized while the QoS objec-
tive of the application is satisfied. Formally, we have:

Minimize : lim
t→∞

1

T

T∑
t=1

E(pedge(t));

Subject to : lim
t→∞

1

T

T∑
t=1

E(dz,y(t)) ≤ Ω;

(8)

This objective can be achieved through the Lyaponuv op-
timization [29], which is a principled framework to control
a dynamic and unpredictable system to a stable status. In
particular, we define a Lyapunov function L(t) to measure
the deficiency of the system towards the QoS objective:

L(t) =
1

2

Y∑
y=1

Qy(t)2 (9)

where Qy(t) is a delay backlog function (often called “virtual
queue” in control theory) that can be represented as:

Qy(t+ 1) = max[Qy(t) + dz,y(t)− Ω, 0], Qy(0) = 0 (10)

It is easy to show that the constraint in Equation (8) can be
converted to to limt→∞

1
T

∑T
t=1E(Qy(t)) = 0,∀1 ≤ y ≤ Y .

This requires controlling the virtual queues to be mean rate

stable [30]. To keep the queue stable while minimizing edge
loss, we define and minimize a drift-plus-penalty expression:

V × pedge(t) + ∆L(t) (11)

where V is a scalar that can be tuned to place more emphasis
on edge loss minimization or QoS requirement. ∆L(t) is a
one-shot Lyapunov drift function: ∆L(t) = L(t+ 1)− L(t).

Lemma. The drift-plus-penalty expression in Equation (11) is
upper bounded by UB = V pedge(t)+

∑Y
y=1Qy(t)×dz,y(t)+

C, where C is a constant.

Proof: from Equation (10), the following equality holds

Qy(t+ 1) ≤ Qy(t) + dz,y(t)

=⇒1

2
Qy(t+ 1)2 ≤ Qy(t)2 + dz,y(t)2 + 2Qy(t)× dz,y(t)

=⇒∆L(t) =
1

2

Y∑
y=1

Qy(t+ 1)2 − 1

2

Y∑
y=1

Qy(t)2

≤ 1

2

Y∑
y=1

dz,y(t)2 +

Y∑
y=1

Qy(t)× dz,y(t)

Let C = max{ 12
∑Y
y=1 dz,y(t)2} = 1

2Y Ω2 (we assume tasks
are preempted upon missing deadlines). The lemma is proved.

To satisfy our objective in (8), our controller observes
the current delay backlog Qy(t) and incoming task results
at every time slot t, and then picks a control decision to
greedily minimize the upper-bound UB. The controller has
the following control decisions:
• Admission Control (A0(t)) - decide if a task’s results to

be admitted.
• Server Offloading Control (A1(t)) - decide which edge

server for task offloading.
Let A0

x,y,z(t) denote the control strategy where the task τz
from edge device Ex is assigned to ESy at time slot t, and
A1
x,z(t) denote that the task τz from Ex has not been admitted

for processing.
The edge loss ∆pedge(t), given a control decision, becomes:

pedge(t) =

{
unewz,x − uoldz,x, if apply A0

x,y,z(t)

uoldz,x, if apply A1
x,z(t)

(12)

where uoldz,x and unewz,x denote the payoff expected by edge
device Ex and the new payoff if the task results been sent to
ESy . Note that the edge servers alone cannot derive pedge(t)
due to asymmetric information. Each edge device is required to
send to the edge server necessary information (i.e., ez,x, uoldz,x)
to compute pedge(t) after finishing executing tasks.

The delay backlog Qy(t) becomes:

Qy(t) =

{
Qy(t) + cz,y, if apply A0

x,y,z(t)

Qy(t), if apply A1
x,z(t)

(13)

At each time slot, the application enumerates all control
options and find the one that minimizes UB. The complexity
of this process is O(Z). We refer to more details in [30].



2) Dynamic Incentive Controller via Online Learning: The
BUTP module ensures that the edge devices can achieve the
maximum payoff given the reward assignment of each task.
As shown in the payoff function Equation (7), the definition of
the reward penalty function plays a critical role with respect
to whether a task is picked by an edge device for execution.
Static reward penalty functions are shown to be suboptimal for
the application to satisfy the QoS requirements [11]. On one
hand, if we set the reward penalty too stringent (by setting λ
too large in Equation (6)), edge devices will only compete for
the tasks with high initial rewards without considering whether
they can finish the tasks or not. On the other hand, if we set
the reward penalty too leisure (by setting λ too small), no edge
devices would compete for the time-consuming tasks.

In TDOC, we develop a simple and effective Dynamic
Incentive Controller for the server to dynamically update the
reward penalty function in order to meet the QoS objective of
the application via an online learning framework. In particular,
we set a control loss function φ as the average complexity of
tasks (characterized by the input size of a task VIz) that meets
the deadlines as compared to the average complexity score of
the tasks that missed the deadlines:

φ =

∑N
z=1 VIz × (1− δz)∑Z

z=1(1− δz)
−
∑Z
z=1 VIz × δz∑Z

z=1 δz
,

Z∑
z=1

δz 6= 0 or Z

(14)
where δz is defined as whether a task τz meets the deadline or
not (in Section III). Based on the loss function φ and a learning
parameter η, the reward penalty is updated via a classical
online learning Exponential Weights Algorithm (EWA) [31]
as:

λnew = λold × e−ηφ, (15)

V. SYSTEM IMPLEMENTATION AND EXPERIMENT
PLATFORM

This section presents the hardware setup used in our exper-
iments and our implementation of the TDBU framework.

A. Hardware Platform

We use three PC workstation with Intel E5-2600 V4 pro-
cessor and 16GB of DDR4 memory as the local edge servers.
The edge servers also coordinate edge devices to synchronize
their strategies after each iteration of the BUTP algorithm.

The hardware platform consists of 15 edge devices: 2
Jetson TX1 and 3 Jetson TK1 boards from Nvidia, and 10
Raspberry Pi3 Model B boards. The detailed hardware set up
is given in [20]. These edge devices have heterogeneous energy
profiles and computation capabilities and are commonly used
in portable computers, UAVs, and autonomous vehicles. All
devices and the edge server are connected via a wireless router.
The data communication is achieved using TCP sockets.

B. Energy Profiling

Energy data are needed in our system. We use FLUKE
AC/DC current clamps to monitor real-time current signal
of each edge device and capture the current values using
a National Instruments USB-6216 Data Acquisition (DAQ)

system. We then multiply the current values with the default
voltage (12 V for TK1, 19 V for TX1 and 5 V for Pi3) to
obtain the power consumption by each edge device.

VI. EVALUATION

In this section, we study the performance of our TDBU
scheme using the SSEC system described in V. We first discuss
the baselines for comparison and then present the evaluation
results using a real-world social sensing application.

A. Baselines

• Bottom-Up Game-theoretic Task Allocation (BGTA):
A pure bottom-up edge computing task allocation scheme
that allows edge devices to selfishly compete for tasks to
maximize their own payoffs [11].

• Top-Down Allocation (TDA): A top-down task alloca-
tion scheme that uses Mixed Integer Linear Programming
(MILP) to minimize the deadline miss rate [8]. The MILP
requires the server to estimate the status (e.g., background
utilization and frequency) of the edge devices. In our
experiment, we dynamically adjust the estimation of the
background utilization and choose the setting that works
best for MILP.

• Top-Down Allocation with Full Information (Ideal):
An ideal case of TDA where the server has full context
information of all edge devices.

• Congestion (COG): A congestion game based edge
computing task allocation scheme where the reward of
a task is monotonically decreasing as more edge devices
claiming that task [32].

• Greedy-Max Reward (GMXR): A greedy computation
allocation scheme where an edge device always picks the
tasks with the highest reward.

Note that the “Ideal” baseline assumes the server has full
information of the edge device. This is not practical in the
SSEC system and unfair to TDBU and other baselines that
assumes incomplete information of the edge devices at the
server. we treat the performance of “Ideal” as an upper-bound
and investigate how close the performance of TDBU and other
schemes can go compared to the upper-bound.

B. Case Study: Real-time Traffic Monitoring

We evaluate the performance of TDBU and the baselines
through a case study of a real-world social sensing application:
Real-time Traffic Monitoring (RTM) [12]. In this application,
a set of drivers are tasked to use their dash cameras or
smartphones to take videos of the traffic in front of their
vehicles and extract relevant image features. These features
can be then sent to nearby edge servers (e.g., Road-Side-
Units) to further calculate the congestion rate of the road.
In our experiment, we collected the video data using dash
cameras from two vehicles. The data contains a total of 15
videos. We divided the application into 100 sensing cycles
and each sensing cycle processes video clips of 6 seconds.
To emulate the various data volumes of each raw video data
collected, we randomly sample each video clip between 1 to



15 image frames per second. A traffic monitoring task for edge
devices performs feature extraction (optical flow and HOG) to
the original raw video clip data (one task per video clip). For
each task, we assign a reward (normalized to [0, ηC]) based on
the data size. The extracted feature is further processed by the
edge server to infer the local traffic condition. We examine
a total of three “virtual streets” to emulate the sensing area
of interest (e.g., frequently congested street or a crossroad
in real-world), where each virtual street has an edge server
deployed. In the following experiments, we randomly assign
tasks and edge devices to the three virtual streets and assume
the sensing range ηDx of an edge device is within its assigned
street. We emulate extra communication latency (randomly
selected between 50-100ms) for devices and servers that are
not within the same street. We repeat the experiments 100
times to generate the results discussed below.

1) Quality of Service (Application (Server) Side): In the
first set of experiments, we focus on how the objective of
the application is achieved. In particular, we evaluate the
deadline hit rate (DHR) and end-to-end (E2E) delay of all
the compared task allocation schemes. The DHR results are
shown in Figure 3. We use all 15 edge devices and gradually
increase the deadline constraints. We observe that TDBU has
significantly higher DHRs than all the baselines except “Ideal”
(i.e., the upper bound of performance), and is the first one
that reaches 100% DHR as the deadline increases. We at-
tribute such performance gain to our optimal top-down control
module of TDBU that ensures the delay is constrained at the
local edge servers. We also observe that TDBU significantly
outperforms the BGTA scheme, the state-of-the-art bottom-
up baseline. This demonstrates the importance of top-down
control that guarantees the QoS of the server.

Figure 3. Deadlines vs. DHR

Figure 4. E2E Delay (Ω = 2s)

Figure 4 summarizes the E2E delays of all the schemes
as the number of tasks varies. We show the average delays
and the 90% confidence bounds. We observe that our TDBU
scheme has the least E2E delay and tightest confidence bounds
compared to the baselines. The results further demonstrate the
effectiveness of TDBU for meeting real-time QoS require-
ments of the application. The performance gain of the TDBU
is achieved by designing top-down policies (i.e., dynamic
incentives) to push the edge devices to pick the tasks they
can finish quickly to claim more rewards.

2) Payoff (Edge Device Side): In the second set of ex-
periments, we focus on how the objectives of edge devices
are achieved. Figure 5 shows the results of the normalized
payoffs gained by the edge devices. We observe that TDBU
has the highest payoff compared to all the baselines. This is
because TDBU allows edge devices to maximize their rewards
via achieving the Nash Equilibrium. Compared to other game-
theoretic schemes (i.e., COG and BGTA), the TDOC module
also allows TDBU to ensure the constrained E2E delay after
the task results have been sent to the edge servers. This allows
the TDBU to achieve higher deadline hit rates than BGTA as
shown in Figure 3 and hence reduces the chance of rewards
being penalized in the case of a deadline miss. We also note
that TDBU also outperforms the “Ideal” baseline in terms of
the edge device payoff. The reason is that “Ideal” scheme only
focuses on the overall performance of the application without
considering the benefits of edge devices.

Figure 5. Normalized Payoffs for Edge Devices

C. Allocation Overhead and Convergence

We show the task allocation overhead, in terms of BUTP
overhead, TDOC overhead as well as the overall overhead
in Figure 6(a). We observe the BUTP scheme is a major
contributor to the overhead in the TDBU. This is because
the TDOC scheme has a small complexity of O(Z) while
BUTP requires multiple iterations for edge devices to com-
pete for their preferred tasks. But we also observe that the
BUTP overhead is sub-linear as the number of tasks grows.
This is due to the singleton property of the BUTP protocol
that significantly reduces the search space for task strategies
(discussed in Section IV). We also attribute the efficiency of
the TDBU to the quick convergence of the BUTP algorithm
(see Figure 6(b)).



(a) Task Allocation Overhead (b) Convergence of BUTP

Figure 6. Overhead and Convergence Analysis

VII. CONCLUSION

This paper presents the TDBU framework to addresses three
fundamental challenges in solving the task allocation problem
for delay-sensitive social sensing applications in edge com-
puting systems, namely asymmetric information, competing
objective and disparate jurisdiction. We have implemented
TDBU on a real-world edge computing platform that includes
Nvidia Jetson TK1, TX1, and Raspberry Pi3 boards. The
evaluation results from a real-world social sensing applica-
tion demonstrate that TDBU achieves significant performance
gains in terms of meeting both the objectives of applications
and edge devices compared to the state-of-the-art baselines.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under Grant No. CNS-1831669, CBET-1637251,
CNS-1566465 and IIS-1447795, Army Research Office under
Grant W911NF-17-1-0409, Google 2017 Faculty Research
Award. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Office or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

REFERENCES

[1] D. Wang, B. K. Szymanski, T. Abdelzaher, H. Ji, and L. Kaplan, “The
age of social sensing,” arXiv preprint arXiv:1801.09116, 2018.

[2] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discovery in
social sensing: A maximum likelihood estimation approach,” in Proc.
ACM/IEEE 11th Int Information Processing in Sensor Networks (IPSN)
Conf, Apr. 2012, pp. 233–244.

[3] L. Wang, D. Zhang, A. Pathak, C. Chen, H. Xiong, D. Yang, and
Y. Wang, “Ccs-ta: Quality-guaranteed online task allocation in compres-
sive crowdsensing,” in Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM, 2015, pp.
683–694.

[4] Y. Zhang, Y. Lu, D. Y. Zhang, S. Lanyu, and D. Wang, “Risksens:
A multi-view learning approach toidentifying risky traffic locations in
intelligent transportation systems using social and remote sensing,” to
appear in Big Data (Big Data), 2018 IEEE International Conference on.
IEEE, 2018, accepted.

[5] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,”
in Intelligent Systems and Control (ISCO), 2016 10th International
Conference on. IEEE, 2016, pp. 1–8.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[7] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[8] A. Davare, J. Chong, Q. Zhu, D. M. Densmore, and A. L. Sangiovanni-
Vincentelli, “Classification, customization, and characterization: Using
milp for task allocation and scheduling,” Systems Research, 2006.

[9] D. Y. Zhang, C. Zheng, D. Wang, D. Thain, X. Mu, G. Madey,
and C. Huang, “Towards scalable and dynamic social sensing using
a distributed computing framework,” in Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on. IEEE, 2017,
pp. 966–976.

[10] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[11] D. Y. Zhang, Y. Ma, Y. Zhang, S. Lin, X. S. Hu, and D. Wang, “A real-
time and non-cooperative task allocation framework for social sensing
applications in edge computing systems,” in 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2018, pp. 316–326.

[12] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic mon-
itoring and accident detection at intersections,” IEEE transactions on
Intelligent transportation systems, vol. 1, no. 2, pp. 108–118, 2000.

[13] D. Wang, T. Abdelzaher, and L. Kaplan, Social sensing: building reliable
systems on unreliable data. Morgan Kaufmann, 2015.

[14] D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal, “Recursive
fact-finding: A streaming approach to truth estimation in crowdsourcing
applications,” in The 33rd International Conference on Distributed
Computing Systems (ICDCS’13), July 2013.

[15] M. T. Al Amin, T. Abdelzaher, D. Wang, and B. Szymanski, “Crowd-
sensing with polarized sources,” in Distributed Computing in Sensor
Systems (DCOSS), 2014 IEEE International Conference on. IEEE,
2014, pp. 67–74.

[16] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[17] Y. Zhang, D. Zhang, N. Vance, and D. Wang, “Optimizing online
task allocation for multi-attribute social sensing,” in 2018 27th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE, 2018, pp. 1–9.

[18] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task
assignment and scheduling in mobile edge clouds,” in Network Protocols
(ICNP), 2016 IEEE 24th International Conference on. IEEE, 2016, pp.
1–6.

[19] D. Y. Zhang, T. Rashid, X. Li, N. Vance, and D. Wang, “Heteroedge:
Taming the heterogeneity of edge computing system in social sensing,”
to appear in Internet-of-Things Design and Implementation (IoTDI),
2019 ACM/IEEE Third International Conference on. ACM, 2019,
accepted.

[20] D. Y. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang,
“Cooperative-competitive task allocation in edge computing for delay-
sensitive social sensing,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 243–259.

[21] D. Liu, L. Khoukhi, and A. Hafid, “Decentralized data offloading for
mobile cloud computing based on game theory,” in Fog and Mobile Edge
Computing (FMEC), 2017 Second International Conference on. IEEE,
2017, pp. 20–24.

[22] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, no. 5, pp. 2795–2808, 2016.

[23] A. Allavena and D. Mossé, “Scheduling of frame-based embedded sys-
tems with rechargeable batteries,” in Workshop on Power Management
for Real-time and Embedded Systems (co-located with RTAS 2001).

[24] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao,
“Incentives for mobile crowd sensing: A survey,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 54–67, 2016.

[25] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous
multi-core processors,” in Proceedings of the 46th Annual Design
Automation Conference. ACM, 2009, pp. 927–930.

[26] I. Milchtaich, “Congestion games with player-specific payoff functions,”
Games and economic behavior, vol. 13, no. 1, pp. 111–124, 1996.

[27] H. Ackermann, H. Röglin, and B. Vöcking, “Pure nash equilibria in
player-specific and weighted congestion games,” in WINE. Springer,
2006, pp. 50–61.

[28] X. Vives, “Nash equilibrium with strategic complementarities,” Journal
of Mathematical Economics, vol. 19, no. 3, pp. 305–321, 1990.



[29] M. Johansson and A. Rantzer, “Computation of piecewise quadratic
lyapunov functions for hybrid systems,” in Control Conference (ECC),
1997 European. IEEE, 1997, pp. 2005–2010.

[30] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[31] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

[32] R. Johari and J. N. Tsitsiklis, “Network resource allocation and a
congestion game,” in Proceedings of the Annual Allerton Conference
on Communication Control and Computing, vol. 41, no. 2. Citeseer,
2003, pp. 769–778.


