
EdgeBatch: Towards AI-empowered Optimal Task
Batching in Intelligent Edge Systems

Daniel (Yue) Zhang, Nathan Vance, Yang Zhang, Md Tahmid Rashid, Dong Wang
Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN, USA

{yzhang40, nvance1, yzhang42, mrashid, dwang5}@nd.edu

Abstract—Modern Internet of Things (IoT) systems are in-
creasingly leveraging deep neural networks (DNNs) with the
goal of enabling intelligence at the edge of the network. While
applying DNNs can greatly improve the accuracy of autonomous
decisions and inferences, a significant challenge is that DNNs are
traditionally designed and developed for advanced hardware (e.g.,
GPU clusters) and can not easily meet the real time requirements
when deployed in a resource-constrained edge computing envi-
ronment. While many systems have been proposed to facilitate
deep learning at the edge, a key limitation lies in the under-
utilization of the parallelizable GPU resources of edge nodes (e.g.,
IoT devices). In this paper, we propose EdgeBatch, a collaborative
intelligent edge computing framework that minimizes the delay
and energy consumption of executing DNN tasks at the edge by
sharing idle GPU resources among privately owned IoT devices.
EdgeBatch develops 1) a stochastic task batching mechanism that
identifies the optimal batching strategy for the GPUs on IoT
devices given uncertain task arrival times, and 2) a dynamic
task offloading scheme that coordinates the collaboration among
edge nodes to optimize the utilization of idle GPU resources in
the system. We implemented EdgeBatch on a real-world edge
computing testbed that consists of heterogeneous IoT devices
(Jetson TX2, TX1, TK1, and Raspberry Pi3s). The results show
that EdgeBatch achieved significant performance gains in terms
of both the end-to-end delay and energy savings compared to the
state-of-the-art baselines.

I. INTRODUCTION

The rise of Internet of Things (IoT) and Artificial Intelli-
gence (AI) leads to the emergence of Intelligent Edge Systems
(IES) that run AI models on the IoT devices at the edge of
the network [1]. A core IES technique is deep learning (deep
neural networks (DNN) in particular). Unlike traditional deep
learning solutions that offload the computationally intensive
inference tasks from the IoT devices to the cloud, IES directly
execute those tasks at the edge and provide several key advan-
tages (e.g., reduced bandwidth cost, improved responsiveness,
and better privacy protection) to the system [2]. Examples of
IES applications include mobile augmented reality (AR) on
smart devices [3], disaster damage assessment using citizen-
owned cameras [4], and traffic monitoring using vehicle dash-
board cameras [5].

Pushing intelligence to the IoT devices in IES is a major
challenge because DNNs were originally designed for ad-
vanced hardware (e.g., GPU clusters) and are not suitable
for resource constrained IoT devices deployed at the edge of
the network [6]–[9]. Moreover, running DNN algorithms often
incurs a high energy cost, which may rapidly drain the batteries

of IoT devices [10], [11]. To address this challenge, many
software and hardware based approaches have been developed.
Mainstream techniques include 1) neural network compression
that reduces the size and computational complexity of the
DNNs [12], [13], 2) dedicated equipment with on-board hard-
ware such as AI Chips and powerful GPUs that are specialized
for DNN tasks (e.g., AWS DeepLens [14] and Nvidia EGX
[15]), and 3) innovative software accelerators that increase the
energy efficiency and speed for DNN execution (e.g., DeepX
[16] and NVDLA [17]).

A key knowledge gap of the above solutions lies in the
fact that existing approaches focus on facilitating DNNs on
a single IoT device and ignore the opportunities to optimize
the performance of DNNs collectively in an IES environment
that consists of a diverse set of heterogeneous IoT devices
connected via network. In contrast, this paper develops a novel
resource management approach where IoT devices can offload
deep learning tasks to each other and finish them collabora-
tively. For example, consider an IES application where drivers
use their IoT devices (e.g., smartphones, dashboard cameras,
unmanned aerial vehicles (UAVs)) to collaboratively detect the
plate number of a suspect’s vehicle using deep neural network
object detection algorithms [5]. In our solution, lower-end
devices (e.g., a dashboard camera) can offload complex object
detection tasks to high-end devices (e.g., a UAV with a GPU
on board). Such collaboration in IES allows IoT devices to
fully explore the available computing power at the edge to
execute DNN tasks.

A few recent efforts have been made to facilitate the col-
laboration of privately owned IoT devices through innovative
task allocation [18], [19] and incentive design [20], [21].
However, they only focus on CPU-intensive tasks and ignore
the unique execution model of GPU-intensive DNN tasks. The
GPU execution model features data parallelism, which allows
multiple DNN tasks to be processed together (referred to as
“batching”) and reduces the average execution time for each
task [22]. In this paper, we focus on a novel optimal task
batching problem in collaborative IES, where the goal is to
identify the optimal batch size (i.e., the number of tasks to be
processed in parallel) when the DNN tasks are processed on
the GPUs of IoT devices. While batching problems have been
studied extensively in traditional real-time systems [23], [24],
the optimal batching of DNN tasks in IES raises several new
technical challenges.

Figure 1: Delay and Energy Trade-off of Batch Size

Complex delay and energy trade-off : the first challenge
lies in the complex trade-off of delay and energy that is
directly affected by the task batching strategy. In a single node
scenario, batching can significantly save processing time of
DNN tasks through parallel computing but causes extra power
consumption. For example, on a typical edge computing device
such as Nvidia TX2, increasing the batch size from 1 to 5 leads
to 18% decrease in delay but 3.4% increase in average power
consumption. Such trade-off is more complex in a distributed
IES where the delay not only includes the processing time of
the DNN tasks, but the unpredictable task waiting time as well
as data offloading overhead. We illustrate this trade-off through
an example in Figure 1. Batching Strategy 1 (top) uses a batch
size of 2 tasks, and Batching Strategy 2 (bottom) uses a batch
size of 6 tasks. We first discuss the trade-off between delay
and batch size. We observe that a larger batch size will reduce
the average processing time of a task but increase the total task
waiting time (e.g., in Strategy 2, task A will have to wait until
task F arrives before being processed). In contrast, a smaller
batch size will lead to less waiting time but yield a higher
execution time for each task due to the under-utilization of
the GPU [22]. A similar trade-off is observed on the energy
aspect as well. For example, a larger batch size would lead
to a longer idle period where GPU is in a low power state.
However, the processing power of GPU will become higher
due to its increased utilization caused by the larger batch of
data being processed [25]. It is therefore a challenging task
to identify the optimal batch size that can achieve a desirable
balance between the delay and energy requirements of DNN
applications in IES.

Uncertain Task Arrival: The second challenge lies in the
uncertainty of the task arrival time in IES. Existing work
in task batching either assumes the task release time or task
period is known a priori [24] or assumes the task arrival time
follows a certain distribution or pattern [26]. In contrast, our
model assumes the task release time is unpredictable and the
tasks can arrive at an IoT device at random times, thus making
the task batching problem significantly more challenging. The
rationale behind our assumption is twofold: 1) the DNN

tasks are released whenever new sensing measurements are
collected, which is unknown in many IES applications; and 2)
the networking environment (e.g., the queue size, available
bandwidth, router status) is dynamically changing and the
data transmission time cannot be precisely estimated in IES.
Consider the plate detection application where drivers can take
a picture of a car at any moment. When the image processing
tasks are offloaded over the network, the transmission time
depends on the signal strength and the network traffic, both
of which are hard to predict.

Asymmetric Information: the third challenge lies in the fact
that both IoT devices and the application server lack the
global knowledge of system status. In a distributed system
like IES, locally optimal task batching decisions may not
necessarily be globally optimal. Consider an IES scenario that
incorporates heterogeneous IoT devices. These IoT devices can
have very different architecture, energy profile, and computing
capabilities. In principle, it is ideal to allocate more tasks
to devices that have abundant GPU resources (e.g., a nearby
UAV that is not actively using its GPU) so that the devices
can efficiently perform task batching without an excessive
waiting time. However, such a control mechanism requires the
global knowledge of system information (e.g., the hardware
specifications, the GPU utilization, the remaining battery of
each device) and centralized control of all devices in the
system. Unfortunately, the IoT devices in IES are often owned
by individuals who may not be willing to share the status
information of their devices with the application or other users
due to various concerns (e.g., privacy, energy, bandwidth)
[27]. Therefore, an IoT device in IES has full information
about its own status but limited information about others.
This asymmetric information trait of IES makes the optimal
task batching decisions over heterogeneous IoT devices a
challenging task to accomplish.

In this paper, we develop a new collaborative IES framework
called EdgeBatch to jointly address the above challenges.
In particular, to address the first two challenges, EdgeBatch
develops a new task batching solution that can identify the
optimal batch size for GPU-intensive DNN tasks to opti-
mize the trade-off between the end-to-end delay of tasks
and energy consumption for IoT devices. To address the
third challenge, EdgeBatch develops a novel supply chain-
based task offloading scheme that can effectively moderate
the collaboration among IoT devices in real-time to facilitate
the batching decision process without requiring the private
status information of the IoT devices. To the best of our
knowledge, EdgeBatch is the first DNN task batching solution
with uncertain task arrival time and information asymmetry
for collaborative IES applications. We implemented a system
prototype of EdgeBatch on a real-world collaborative edge
testbed that consists of Nvidia Jetson TX2, TX1 and TK1
boards, and Raspberry Pis. EdgeBatch was evaluated using
a real-world DNN application: Crowd Plate Detection. We
compared EdgeBatch with state-of-the-art baselines in real-
time and edge computing systems. The results show that our
scheme achieves a significant performance gain in terms of

both the end-to-end delay and energy savings.

II. RELATED WORK

A. AI at The Edge

AI at the edge is a growing trend in both industry and
academic research. The real-time response requirement of IoT
applications, in conjunction with data privacy and network
connectivity issues, call for intelligent edge devices that are
able to support delay-sensitive computation for deep learning
on-site [1], [2]. Many solutions have been developed to pro-
mote deep learning using IoT devices. One common technique
is “neural network compression” which can significantly re-
duce the complexity of the neural network so that it can be run
on resource constrained IoT devices efficiently. For example,
Yao et al. developed DeepIoT, a neural network compression
framework that reduces the number of parameters by over
90%, resulting in a significant reduction in execution time
and energy cost of running deep neural networks at the edge
[12]. Han et al. developed Deep Compression - a pipeline
of pruning, quantization, and Huffman coding techniques to
reduce both the storage and energy consumption of deep neural
networks [13]. Many hardware solutions have also been pro-
posed. For example, AI-enabled chips and dedicated hardware
have been developed and integrated into video cameras, hand-
held devices, and vehicles to allow edge devices to run deep
learning tasks efficiently. Typical hardware include EdgeBox
from Microsoft [28], DeepLens from AWS [14], and TPU from
Google [29]. In addition, some hardware accelerators have
been proposed to further speedup the computation at the edge
with a low energy cost [8], [30]. There are also several recent
software-hardware co-design approaches that extract both the
data and control flow parallelism. In particular, they design
hardware accelerators for some parts of DNN codes and assign
other parts to CPUs or GPUs [31], [32]. In this work, we
propose an alternative approach to facilitate AI at the edge by
introducing a new task batching scheme in collaborative IES.

B. Task Offloading in Edge Computing

One of the key problems studied in resource management
in edge computing is task offloading (sometimes referred to as
computation offloading) which is the transfer of resource inten-
sive computational tasks to an external server/device [33]. Task
offloading is particularly important for resource constrained
devices that cannot process complex tasks on their own,
especially under a strict timing requirement [34]. Existing
task offloading systems are mostly top-down approaches which
assume that a centralized decision maker (often an algorithm
running on the back-end server) makes global offloading
decisions with the assumption that edge devices are fully
controlled and cooperative [27], [35]. For example, Ning et
al. formulated a Mixed Integer Linear Programming based
approach to offload computational tasks from IoT devices
to nearby servers that minimize the end-to-end latency [36].
Wang et. al developed a dynamic service migration scheme
using a Markov decision process that dynamically adjusts
the task offloading strategy of the mobile devices when the

locations of device owners change over time [37]. These
top-down approaches cannot address our problem due to
the asymmetric information challenge where each device’s
energy profile and dynamic status are hidden from the ap-
plications [27]. To address the limitations of centralized task
offloading schemes, decentralized decision-making schemes
have been developed in edge computing systems, where de-
cisions are made autonomously by IoT devices. For example,
Zhang et al. developed CoGTA, an edge computing system
that allows non-cooperative and heterogeneous devices to trade
tasks and claim rewards [20]. Jin et al. proposed a game-
theoretic decentralized task offloading protocol for a dynamic
and uncertain environment [38]. However, the above solutions
do not utilize data parallelization of GPUs for computation
intensive deep learning tasks. In contrast, we develop a new
collaborative IES framework that combines an optimal task
batching scheme with a new task offloading scheme to fully
leverage the idle GPU resources at the edge.

C. Parallel Computing and Task Batching

Parallel computing allows a machine to process several jobs
simultaneously, thus significantly increasing the efficiency and
utilization of the system [39]. A standard approach to achieve
parallelization is task batching where a scheduler assigns mul-
tiple tasks to the processing unit and process them in parallel
[23]. For example, Wang et al. developed a real-time batching
scheme that finds energy-optimal batching periods for asyn-
chronous tasks on heterogeneous sensor nodes to minimize
energy consumption with end-to-end deadline constraints [24].
He et al. introduced a Batched Stream Processing (BSP) model
that identifies the optimal data size to be processed for large-
scale data streams [40]. A set of batching mechanisms have
been developed for content delivery applications such as music
streaming and video sharing [41], [42]. These models mainly
focus on CPU-intensive or I/O tasks and are not applicable to
the GPU-intensive DNN tasks that we study in this paper. A
few GPU batching techniques have been developed to enable
data parallelism for GPU tasks [43], [44] by parallelizing
large matrix operations (which are key operations in deep
learning tasks). However, these solutions are designed for a
single GPU rather a networked edge computing system that
we study in this work. Moreover, these models assume prior
knowledge of either task arrival time or task period. We found
the challenging problem of designing an optimal task batching
strategy for GPU intensive tasks with stochastic task arrival
time in a collaborative and distributed edge computing system
has not been addressed in previous literature.

III. PROBLEM FORMULATION

In this section, we formally define the models and objectives
of the EdgeBatch framework.

A. System Models and Assumptions

Figure 2 illustrates an example of a DNN application of IES
called crowd plate detection, where a set of private vehicles
collaboratively track down suspects of AMBER alerts [5]. In

this application, IoT devices (e.g., vehicles equipped with dash
cameras and smart devices owned by citizens) form a city-wide
video surveillance network that tracks moving vehicles using
the automatic license plate recognition (ALPR) technique [45].

In an IES application, the IoT devices not only collect sensor
data but also perform deep learning tasks to process the data at
the edge. In the plate detection example, the smartphones can
not only capture images of the suspect’s car, but also perform
deep learning algorithms to detect the plate number in the
captured images.

In addition to the IoT devices, a set of edge servers (e.g.,
cloudlets, smart routers, or gateways) are deployed by the
application to provide additional data storage and computation
power in locations of proximity to the IoT devices. In the
above plate detection application, the application deploys
Road-side-units (RSUs) on streets of interest as edge servers to
coordinate the nearby IoT devices (e.g., the vehicles currently
located on the street). These edge servers provide local data
processing capabilities to reduce the end-to-end latency and of-
fer a generic communication interface between heterogeneous
IoT devices in the system [3], [10]. We refer to the sensing
and computational resources at the edge (i.e., IoT devices and
edge servers) as edge nodes EN = {E1, E2, ..., EN}, where
N is total number of edge nodes in the system.

Figure 2: An Example of Plate Recognition Application

A key enabling technology in collaborative IES is task
offloading, where an IoT device can choose to offload the data
processing tasks to any device/service in the collaborative IES.
Due to the dynamic nature of the IES system (e.g., the status
of the computing nodes, the task pool, and the network envi-
ronment can change over time), the task offloading strategies
also need to be dynamic. In our model, we define the IES
application as a time-slotted system with a total of T time
slots. We use t ∈ [1, T] to denote the t-th time slot.

We then leverage the terms in supply chain models in
economics [46] to define three types of edge nodes supplier,
manufacturer, and consumer in the context of task offloading.

DEFINITION 1. Supplier (S): the edge node that collects
the sensing data.

DEFINITION 2. Manufacturer (M): the edge node that
performs the DNN tasks to process the data.

DEFINITION 3. Consumer (C): the edge node that receives
the final result from the DNN tasks.

We use Ei ∈ S, Ei ∈M and Ei ∈ C to denote an edge node
is a supplier, manufacturer, or consumer, respectively. Note
that a given node can be of multiple types. For example, a node
that is both supplier and manufacturer collects and processes
the data locally, and we use Ei ∈ S & Ei ∈M to represent
such a situation. Take the plate detection application as an
example. The suppliers are the vehicles that use dashboard
cameras to take images of car plates. The manufacturers are
the edge nodes (e.g., the RSUs) that process the images, and
the consumer can be the device owned by the response team
(e.g., the tablet in a police vehicle).

The goal of task offloading is to identify an optimal dynamic
supply chain graph of the system as defined below.

DEFINITION 4. Dynamic Supply Chain Graph (Gt
edge): a

directed 3-partite graph Gt
edge = (Vt

S ,V
t
M , vtC ,L

t
SM ,L

t
MC ,)

where vertex V t
i ∈ Vt

S ,V
t
M , vtC , represents that the edge node

Ei is a supplier, manufacturer, or consumer, respectively at
time slot t. Link Ei ∈ S → Ej ∈ M ∈ Lt

SM signifies that
supplier Ei collects the data and offloads the DNN tasks to
manufacturer Ej at time slot t. Link Ei ∈ M → Ej ∈ C ∈
Lt
MC signifies that manufacturer Ei sends the final results to

the consumer Ej at time slot t.

For example, a supply chain of Ea → Eb → Ec represents
that Ea first collects the data, then asks Eb to process the data,
which then sends the final result to Ec. Similarly, a supply
chain Ea → Ea → Eb denotes that node Ea collects the
image data and run the DNN task on-board, and then send
the final result to node Ec. The superscript t for the supply
chain graph Gt

edge and links (e.g., Lt
SM) refers to the fact that

the supply chain is dynamically changing, depending on the
availability of edge devices, the status of the nodes, as well
as the workloads in the system. We discuss in details on how
such dynamic supply chains are formed in Section IV-B.

B. Task Model

This paper focuses on a representative category of deep
learning applications at the edge: deep neural network based
image analysis [47]. We define a task that converts the
captured image data to the final analysis results by running
a Convolutional Neural Network (CNN), a widely used neural
network algorithm for image analysis [47]. A CNN task is
commonly processed using deep learning frameworks (e.g.,
Tensorflow, Caffe) that run on a GPU.

The key research problem we study in this paper is task
batching. We assume that the above CNN tasks can be run
on a GPU in parallel. The number of tasks that are executing
simultaneously on GPU is referred to as the batch size of an
edge node:

DEFINITION 5. Task Batching Size |Bm,i|: the number
of CNN tasks to be processed simultaneously on the GPU of
an edge node Ei at the m-th batch. Assuming the the IES
application is finite, each edge node Ei processes the tasks in
a total of M(i) batches B1,i, B2,i, ...BM(i),i. The size (i.e.,
number of tasks to be processed) of a batch Bm,i is denoted
as |Bm,i|.

IoT devices collect sensing data from the physical world
(i.e., collect and report an image from the camera). A collected
image triggers a corresponding CNN task to process it. We
assume that the application generates a set of K(t) tasks
at the time slot t, TKt = {τ t1, τ t2, ...τ tK(t)}. Each task is

associated with a 3-tuple τ tk = (Γ
t(R)
k ,Γ

t(A)
k ,∆). Here Γ

t(R)
k

is the task release time which is the time slot when the
image has been collected. Γ

t(A)
k is the task arrival time which

is the time slot when the image reaches a manufacturer. If
the manufacturer is the same node as the supplier, we set
Γ
t(A)
k = Γ

t(R)
k . ∆ is the deadline requirement that captures

the user desired Quality of Service (QoS). In this work, we
assume all tasks are homogeneous (i.e., same priority level,
input type, and algorithm to execute) and set all tasks to have
the same deadline. This task model is quite common in image
detection applications using deep learning techniques [4], [48].
We discuss how EdgeBatch can handle heterogeneous task
models in Section VII.

Note that in an IES application scenario, each task can
be accomplished by either one or more devices. The extra
communication delay will be incurred whenever a device
offloads its data to another. Formally, an extra communication
task will be generated to perform data offloading for every
supply chain link, i.e., Ei ∈ S → Ej ∈ M ∈ Lt

SM when
i 6= j, and Ei ∈ M → Ej ∈ C ∈ Lt

MC when i 6= j. In the
scenario where the supplier is also the manufacturer (i.e., the
image data is processed on the same node), or the manufacturer
happens to be the consumer, no additional communication task
is generated for data offloading.

C. Energy Model

Energy consumption is a major concern for battery con-
strained IoT devices. In this paper, the energy consumption
of an edge node Ei is derived as: ei =

∫ T

1
(P t

Comp,i +
P t

Trans,i) dt, 1 ≤ i ≤ N, 1 ≤ t ≤ T , where P t
comp is the

power consumption for computation and P t
trans is power for

data transmission via wireless network for edge node Ei at
time slot t. Note that P t

comp can be highly dynamic and the
relationship between power consumption and the workload
can be non-linear and time-varying [49]. Therefore, we do not
assume the application is able to precisely estimate the energy
consumption on each edge node in the system. Instead, we
assume each edge node can measure the power consumption
on its own (e.g., through the built-in energy modules) and do
not share such information with the application. We discuss
the energy measurement in Section V.

D. Objectives

The QoS of the application is defined as the end-to-end
delay (E2E delay) of each task:

DEFINITION 6. End-to-end Delay of A Task (Dt
k): the

total amount of time taken for a task to transform a unit of
sensor measurement (i.e., an image) to be processed and sent
to the consumer node. It includes the total computation time of
the CNN to process the image in task τ tk, the overhead of the
EdgeBatch modules, and the total communication overhead
for additional data offloading process in τ tk.

Based on the definitions and models discussed above,
we formally define the objective of EdgeBatch as follows.
Our goal is to develop an optimal task batching scheme to
minimize the total energy consumption of the edge nodes
and the end-to-end (E2E) delay of the application simulta-
neously. Therefore, we formulate our problem as a multi-
objective optimization problem that targets at finding the
optimal task batching sizes |Bi,m|, 1 ≤ i ≤ N, 1 ≤ m ≤M(i)
for each edge node that can:

minimize: ei,∀1 ≤ i ≤ N

minimize:
T∑

t=1

K(t)∑
k=1

Dt
k,∀1 ≤ k ≤ K, 1 ≤ t ≤ T

given: Gt
edge, 1 ≤ t ≤ T

(1)

IV. THE EDGEBATCH FRAMEWORK

In this section, we introduce our EdgeBatch framework
to solve the problem formulated in the previous section.
EdgeBatch consists of two sub-modules (Figure 3): 1) a local
Stochastic Optimal Task Batching (SOTB) module that identi-
fies the optimal batch size of CNN tasks to fully utilize the data
parallelization of GPU resources on edge nodes; 2) a global
Optimal Contracting with Asymmetric Information (OCAI)
module that manages the supply chains of the edge nodes to
further utilize the idle GPU resources in the edge. The two
modules work interactively to minimize energy and delay of
the system. Note that the task batching problem with a single
objective (e.g., makespan minimization) has been proven to
be NP-Hard in the strong sense [50], [51]. The problem
becomes even more challenging due to the multi-objective
formulation in our optimization problem in Equation (2) and
the challenges presented in Introduction. Therefore, we found
it impractical to obtain an efficient globally optimal solution
for the optimization problem in Equation (2). Therefore, we
break down our problem into two sub-problems (i.e., optimal
batching solved by SOTB and the task offloading solved by
OCAI) to make the problem tractable. The detailed discussion
of the optimality of each sub-module is presented at the end
of following subsections.

A. Stochastic Optimal Task Batching Module (SOTB)

The SOTB module is designed to decide the optimal task
batch size in real-time to explore a desired trade-off between
delay of tasks and energy consumption of the IoT devices.

Figure 3: Overview of the EdgeBatch Framework

In a collaborative IES, a manufacturer node cannot precisely
predict when a supplier would offload the sensing data to
it. For example, a manufacturer has received 3 images from
suppliers after the last processing batch. The manufacturer,
without knowing the arrival time of the next image, needs
to decide whether to wait for the 4th image or process the
3 images immediately to avoid excessive waiting time. This
problem shares the same intuition as the bus waiting problem
in the transportation planning , where a driver needs to decide
how long a bus needs to wait at a bus stop to balance 1)
the average waiting time of the arriving passengers, and 2)
the chance of delayed arrival to the destination caused by
the wait [26]. However, our problem is much more complex
than the bus waiting problem because we do not assume prior
distribution of the task arrival time and we need to consider
the energy trade-off caused by batching in the system.

We first formally define the mathematical model and key
terms used in the SOTB module. For an edge node Ei ∈
EN , we assume it processes its tasks in a total of M batches,
{B1, B2, ..., BM} where Bm denotes the m-th batch, 1 ≤
m ≤M . For ease of notation, we ignore the index for the edge
node (i.e, the subscript i) in this subsection. Each batch Bm is
associated with a 3-tuple: Bm = (|Bm|,Γs

m,Γ
e
m), where |Bm|

is the batch size defined in Section III. Γs
m and Γe

m are the
batch start and end time respectively. For example, Γs

m = t1
and Γe

m = t2 denote the Bm starts at time slot t1 and ends at
time slot t2.

We further define two cost functions that are associated with
the batch size below.

DEFINITION 7. Batch Delay Cost Function f(·): the
average processing delay for a specific batch size. In particular,
f(|Bm|) denotes the average processing delay of Bm.

DEFINITION 8. Batch Power Cost Function g(·): the
average computation power consumption for a specific batch
size. In particular, g(|Bm|) is the average power consumption
of Bm.

We assume the two cost functions are non-linear and are
known only by the edge node itself but unknown to other
nodes/servers. Therefore, each edge device needs to compute
f(·) and g(·) based on its unique computing power and energy
profile. We elaborate the profiling of these cost functions for
different types of edge nodes in Section VI. The batch size

also affects the batch holding time defined below:

DEFINITION 9. Batch Holding Time Hm: the time the
edge node needs to wait it till processes the next batch Bm. It
is formally calculated as: Hm = Γs

m − Γe
m−1, where a larger

batch size would result in a longer holding time.
We further assume that each edge node has a capacity Θ

which is defined as the maximum number of images that can
be processed by the GPU on the device. When the edge node
reaches its capacity, adding more images will not reduce the
average task processing delay.

To model the trade-off between delay and energy, we define
two loss functions: delay loss and energy loss.

DEFINITION 10. Delay Loss W
(D)
m : the total delay for all

tasks if performing batching Bm, including both processing
delay and waiting delay.

DEFINITION 11. Energy Loss W(E)
m : the total energy costs

of tasks if performing batching Bm, including the energy cost
during both GPU idle and execution slots.

The delay loss W (D)
m depends on three factors: 1) the delay

of the tasks that were left behind from the previous batch L1;
2) the processing time of the current batch L2; and 3) the total
waiting time of the tasks arrived between the previous batch
and the current batch L3. We have:

W (D)
m = L1 + L2 + L3 (2)

L1 can be derived as the number of left-over images from
last batch times the batch holding time of the current batch
Bm. Formally, we have

L1 = Hm · Lm−1 (3)

where Lm−1 denotes the left-over images from last batch to
be processed at Bm. It is recursively defined as follows:

Lm−1 = max[(Γs
m−1 − Γe

m−1) ·RΓsm−1,Γ
e
m−1

+ Lm−2 −Θ, 0]
(4)

where RΓsm−1,Γ
e
m−1

is the average task arrival rate in
[Γs

m−1,Γ
e
m−1].

L2 is derived as the batch delay cost f(·) multiplied by the
number of images to be processed. Formally, we calculate L2

as:
L2 = f(|Bm|) · |Bm|

=
(∑

I∈Bm

f1(I) + f2(|Bm|)
)
· |Bm| (5)

where I ∈ Bm denote an image I in the batch Bm. f1(I) is
the preprocessing (e.g., encoding and resizing of the image)
time of an image, which must be done before CNN algorithm
runs on the GPU [47]. f2(|Bm|) is the actual execution time
(parallelizable) on GPU given the batch size.
L3 is derived as the total amount of waiting time for images

that arrive between the start of Bm−1 and the end of Bm.
Formally, we derive L3 as:

L3 =
∑

I∈Am

(Γs
m − ΓI) (6)

where Am denotes the set of the images that arrive between
the (m−1)-th and the m-th batch, and ΓI ,Γ

e
m−1 ≤ ΓI ≤ Γe

m

denotes the arrival time of an image I . Note that in this
definition, L3 explicitly considers the the communication
delay of transmitting the images in Am.

We illustrate an example of delay cost breakdown in Figure
4. In this example, the previous batch Bm−1 has a left-over
Task D which cannot be processed by the GPU. Therefore, it
suffers both holding delay (L1) and processing delay L2. Task
E arrives between the two batches and suffers from waiting
for Bm to start (L3), and processing delay (L2).

Figure 4: Delay Costs

Next, we derive W (E)
m of the batch Bm as follows:

W (E)
m =

Γsm∑
Γem−1

g(0) ·Hm +

Γsm+f(|Bm|)∑
Γsm

g(|Bm|) · L2 (7)

where g(0) is the idle-time power consumption where the
edge node is merely holding for the next batching without
processing any tasks.

Using the loss functions W (D)
m and W (E)

m , we can define the
task batching problem as a constrained optimization problem:

arg min
B1,B2,...,BM

W (D)
m + λ ·W (E)

m , 1 ≤ m ≤M

s.t., |Bm| ≤ Θ
(8)

where λ is a weighting factor that balances the importance
of delay and energy. λ is often defined by the application to
reflect its emphasis on delay minimization (lower λ value) or
energy savings.

In our problem, we need to predict the batching size in
real-time and cannot observe the task arrivals in the future.
Therefore, variables such as the future arriving tasks Am and
task holding time Hm are unknown. To address this challenge,
we design an integrated offline-online regret minimization
framework to dynamically decide the optimal batch size. In
particular, we start with an initial batch size. After the batch
has been processed, we “look back” to see if another batch
size would be better (referred to as “regret”) in terms of the
combined loss function defined in Equation (8) through an
offline evaluation phase. Based on the regret, we adjust our
batch size in the future so the regret can be minimized using an
online learning phase. We elaborate on the two phases below.

Offline Evaluation Phase: the offline phase leverages the
historical data to evaluate the mistakes (regret) that the current

batching strategies have made. In particular, we derive the
regret function R as:

R|Bm−1| =

m−1∑
m′=1

W̃
(D)
m′ + λ · W̃ (E)

m′ −W
(D)
m′ − λ ·W

(E)
m′ (9)

where W (D)
m′ and W

(E)
m′ denote the delay and energy loss if

optimal task batching strategies Γ̃s
1, Γ̃

s
2, ..., Γ̃

s
M were picked.

The optimal strategies are derived by solving Equation (8)
using a genetic algorithm [26]. W̃ (D)

m′ and W̃
(E)
m′ denote the

delay and energy loss associated with the actual task batching
strategies we had made in the past.

Online Learning Phase: after deriving the regret, we design
an online learning phase to guide the next batching strategy
to be as close to the optimal solution as possible. Formally,
we assume a set of available actions A to be taken for the
next batch. Here, the actions are defined as the available batch
sizes i.e., A = {1, 2, ...,Θ}. We use a weight vector W =
{w1, w2, ..., wΘ} to represent the probabilistic distribution for
the action set, where wi(1 ≤ i ≤ Θ) is the probability of
choosing batch size as i as the next strategy. The weight vector
follows the constraint

∑
w∈W = 1.

Given the above definitions, we derive an accumulated
regret as:

R =

Θ∑
i=1

(wi · Ri) (10)

The accumulative regret represents the extra cost compared
to the cost achieved by the optimal batching size. The goal
of the online learning phase is to dynamically update W so
that the overall regret R can be minimized. We develop an
online regret minimization scheme by extending the PROD
algorithm [52]. We present our algorithm in Algorithm 1. The
above regret minimization algorithm allows the regret to be
bounded by O(

√
ln Θ · T). We refer to the proof in [52].

Algorithm 1 Online Regret Minimization
1: Input: weight vector W = {w1, w2, ..., wΘ}, learning parameter η,

current batch index m
2: Output: updated weight vector W ′ = {w′1, w′2, ..., w′Θ}
3: for all t ∈ [0, T] do
4: if t is a control point then
5: for all i ∈ [1,Θ] do
6: Normalize pi = η·wi∑Θ

i=1(η·wi)
7: end for
8: Update RB|m−1| = RB|m−1| · pi
9: for all i ∈ [1,Θ] do

10: w′i = (wi · (1 + η ·Ri))
η
η−1

11: end for
12: end if
13: end for
14: Return W ′

The offline evaluation phase is performed periodically due
to its computational complexity (period setup discussed in
Section VI). We refer to each period as a control period and
the beginning of each period as a control point. The online
learning phase is performed after each batch processing is
finished.

B. Optimal Contracting with Asymmetric Information

The SOTB module above locally optimizes the trade-off
between delay and energy cost on a single node. This module
alone cannot satisfy the optimization problem defined in
Equation (1) because global control of the system is necessary
to provide the optimized QoS for the application. Consider a
scenario where a manufacturer node receives too many tasks
from its suppliers. The manufacturer node can be overloaded
and fail to meet QoS requirements of the application as well
as encounters high energy consumption. On the other hand, a
manufacturer node that receives too few tasks would fail to
fully leverage the idle GPU resource on the node. We found
global control mechanisms that dynamically adjust the task
offloading (i.e., the supply chains) of edge nodes is crucial
in addressing this issue. A key challenge of designing such a
global control scheme lies in the information asymmetry where
no party in the system is allowed to have full information
of all edge nodes. To this end, we design a decentralized
Optimal Contracting model with Asymmetric Information
(OCAI) scheme that allows edge nodes to negotiate and build
supply chains autonomously without revealing their private
information. In particular, the OCAI consists of two interactive
processes: 1) a manufacturer node first evaluates its operation
status and decides whether to take more tasks from the
application and at what quantity through a resource listing
process; 2) the suppliers observe the requested tasks from the
manufacturers and decide which manufacturer to offload task
to through a bidding process.

Resource Listing Process: the resource listing process
evaluates the utilization of an edge node (whether it is over-
whelmed by too many tasks or it is underutilized) and decides
how many more tasks the edge node will take. This is a
challenging decision problem because the operational status
(GPU usage, CPU usage, memory) is quite dynamic and hard
to predict in the IES. For example, a smartphone owned by a
user can be idle when the user is charging the phone but very
busy when the user is using the phone apps. Therefore, it is
difficult for an edge node to decide whether it will be capable
of taking more tasks in the future.

Luckily we found the problem can be nicely mapped to an
inventory model in economics [46]. In particular, the inventory
model studies the problem of whether an inventory should
be refilled and at what quantity if so given unpredictable
demands. We map our problem as follows: the total number
of tasks that an edge node processes is the “inventory size”,
denoted as V . The number of tasks that the edge node can
finish per time slot is the “demand”, denoted as D. The goal
is to define a threshold R, and a refill size Q, so that every
time the inventory size drops below the threshold R, a new
order of Q tasks should be issued to satisfy future demands
in the system.

We solve this problem by extending the classical (Q,R)
reordering model [53] that can jointly derive the optimal Q
and R values. Assuming the edge node needs to reorder Q

tasks, the associated cost C(Q) is derived as:

C(Q) = λh · (R+
Q

2
) +

λk ·D
Q

+ λp ·
n(R) ·D

Q
(11)

where parameter λh is the holding cost per tasks, which
represents the average delay cost of each task that has not been
processed, including the newly added Q tasks and remaining
R tasks. Parameter λk is the fixed cost for each order, which
is the execution delay of the (Q,R) model. Intuitively, the
smaller the Q is, the more likely the edge node will need
to refill again in the near future, causing extra execution
delay. Parameter λp is the cost per idle task if the inventory
cannot satisfy demand (i.e., the edge node is not fully utilized).
n(R) =

∫∞
R

(x−R) dx is the expected idle tasks per time slot.
Taking partial derivatives of the Equation (13) with regard

to Q and R, we get:

∂C(Q)

∂Q
=
λh
2
− λk ·D

Q2
− λp ·D · n(R)

Q2

∂C(Q)

∂R
= λh −

λp ·D · (1− F (R))

Q

(12)

where F (R) =
∫∞
R
x dx, denoting the probabilistic distribution

of R. By making the partial derivatives as 0, we can derive
the close-form solution as:

Q =

√
2D · (λk + λp · n(R))

λh
, F (R) =

1−Q · λh
λp ·D

(13)

The optimal Q and R in above form can be found using the
iterative algorithm in [53].

Note that the resource listing process is performed on all
edge nodes that can process CNN tasks (i.e., the ones with
GPUs). This design allows suppliers with idle GPU resources
to serve as manufacturers as well. After deriving Q and R, we
develop a new bidding algorithm that allows the suppliers to
pick the best manufacturer for task offloading.

Bidding Process: the bidding process allows the supplier
and manufacturer to identify the optimal offloading strategy
using a game-theoretic framework. In particular, the manufac-
turer lists a bid of Q every time its inventory is less than R,
meaning it can take Q more tasks from the suppliers. The
suppliers will then compete with each other to bid for the Q
tasks. Note that we assume the manufacturers will have no
information about the supplier’s status during bidding.

We design a game-theoretic bidding scheme that allows
each supplier to selfishly pick the task that maximizes its own
utility while taking into account the other suppliers’ offloading
strategies. We first define a We first define a delay and energy-
aware utility function for a supplier Ei to offload task to Ej

as Ui,j , which is calculated as:

Ui,j = −
(πenergy + λ · πdelay) ·Qj

Nj
(14)

where πenergy and πdelay denote the transmission energy and
transmission (i.e., data offloading) delay for device Ei to send
a task to Ej , respectively. Qj denotes the number of tasks
posted by Ej , and Nj is the congestion rate representing the

number of suppliers that are competing for Ej’s tasks. The
intuition of the above utility function is as follows. The cost
term πenergy +λ ·πdelay guides the suppliers to pick the nearby
manufacturers that can minimize the communication delay and
transmission energy. The factor Qj

Nj further takes into account
the decisions from competing suppliers and reduces the chance
of picking a manufacturer whose requested tasks have already
been claimed by many other suppliers.

Based on the utility function, each supplier will pick the
offloading strategy that gives the highest utility until an ε-Nash
Equilibrium [54] is reached. We say a ε-Nash Equilibrium is
reached if any of the supplier nodes cannot further increase
utility by ε by unilaterally changing its strategy from Ui,j to
U ′i,j , i.e., Ui,j ≥ U ′i,j + ε. The challenge for this step is that
no suppliers can estimate the decision of others (due to the
information asymmetric), making it difficult for them to make
the best responses. Therefore, we design a decentralized Nash
Equilibrium solution based on a fictitious play negotiation
scheme [19]. This scheme only requires the estimation of the
congestion rate Nj of each task. We summarize our algorithm
in Algorithm 2.

Algorithm 2 Bidding Scheme
1: Input: A set of suppliers S = {S1, S2, ..., SI}; task listings Q =
{Q1, Q2, ..., QJ}, decay factor µ ∈ (0, 1]

2: Output: offloading strategy for each supplier Z = {z1, z2, ...zI}.
3: Initialize: convergence flag converge← False
4: while converge 6= True do
5: for Si ∈ S do
6: Si finds manufacturer zi = j′ based on minimizing Equation (14)
7: Si sends zi to the edge server, receives convergence flag
8: Server updates Nj′ +=1
9: Si receives congestion rates Nj , ∀1 ≤ j ≤ J

10: Si predicts Nj ← µ · Nj + (1− µ) · Nj , ∀1 ≤ j ≤ J
11: end for
12: end while
13: Return Z

We further clarify and discuss the optimality of the OCAI
algorithm. First of all, we found a globally optimal solution to
our problem is both intractable (proven to be NP-Hard in [27],
[55], [56]) and impractical due to the lack of global device
information in IES (i.e., the information asymmetry challenge
discussed in the introduction). For example, a globally optimal
solution would require the edge nodes to be fully cooperative
and constantly share and synchronize their current status with
the server. Given the complete status information of all edge
devices in the system, a central controller (e.g., the edge
server) will then be able to derive the globally optimal task
offloading strategy of the system. However, such information-
sharing requirement of the global optimal solution not only
violates the assumption that an IES is composed mainly
of privately owned IoT devices, but also causes excessive
communication burden in the system.

Therefore, we divide the optimization problem into two sub-
tasks: the resource listing process and the bidding process.
For the resource listing process, the (Q, R) model we adopt
identifies the optimal reorder threshold and order size [46]
in the stochastic inventory reorder problem. We find an exact

Table I: Specifications of Edge Nodes

Type CPU GPU Memory
Pi3 1.2 GHz Cortex-A53 N/A 1GB LPDDR2
TX2 2.0 GHz Cortex-A57 256-core Pascal 8GB LPDDR4
TX1 2.0 GHz Cortex-A57 256-core Maxwell 4GB LPDDR4
TK1 2.32 GHz Cortex-A15 192-core Kepler 2GB LPDDR3

match from our problem to the stochastic inventory reorder
problem. Consequently, the derived Q, R values in Equation
(13) are optimal as well.

For the bidding process, the game theoretic approach targets
at finding an locally optimal strategy for each edge node by
reaching the Nash Equilibrium where each edge node cannot
further maximize its own utilities. We understand that such
local optimal strategy is not necessarily the optimal outcome
of all edge nodes (i.e., the sum of utilities of all edge nodes).
However, it is impractical to find such a global/Pareto optimal
solution in a decentralized game theory problem where each
edge node is not allowed to have access to other node’s utility
function (which would leak the device’s private node status
and require constant synchronization of all nodes’ status) [
[57].

V. SYSTEM IMPLEMENTATION

This section presents our experimental platform and the
implementation of the EdgeBatch framework.

A. Hardware Setup

We implement the EdgeBatch framework on a real-world
collaborative edge computing testbed that consists of 12 het-
erogeneous devices: 1 Jetson TX2, 1 TX1, and 2 TK1 boards
from Nvidia, and 8 Raspberry Pi3 Model B boards. Figure 5
shows the implemented hardware platform for EdgeBatch.
These devices represent heterogeneous hardware capabilities
(Table I). We chose TX2 board as the edge server due to its
superior computing power. All devices are connected via a
local wireless router. We leverage TCP socket programming
for reliable data communication among edge nodes. We did
not explicitly explore the fault tolerance (e.g., device failure,
packet loss, signal loss) aspect of the communication problem
and will investigate it in future work.

Figure 5: Heterogeneous Collaborative Edge Test Bed

B. Energy Measurement

To measure the energy consumption in our experiment, we
used an INA219 Current Sensor IC, interfaced to an Arduino
Uno Micro-controller board via I2C bus to constantly monitor
the current of each edge node. We multiply the current values
with the default voltage (19 V for TX1 and TX2, 12 V
for TK1, and 5 V for Pi3) to obtain the real-time power
consumption of edge nodes.

C. System Modules and Protocol

We further describe the software implementation of Edge-
Batch. All edge nodes equipped with GPU has the Tensorflow
installed and execute the CNN tasks when a batch starts.

Edge Server Module: The edge server module runs on
each edge server. It consists of a bidding server program.
The bidding server program performs the bidding algorithm in
the OCAI module to dynamically decide which manufacturer
a supplier node should be assigned to. It coordinates the
edge nodes in the negotiation phase of the bidding process
(Algorithm 2) by informing the suppliers about the current
congestion rate and the available tasks at each manufacturer.

Edge Modules: On each edge node (including the edge
server), we develop two modules under the EdgeBatch frame-
work: the bidding client program, and the SOTB program. The
bidding client program is to find the optimal manufacturer for
task offloading in the system. The client program talks to the
bidding server program at the edge server to understand which
tasks have been picked by other devices. If the edge node is a
manufacturer, it runs the SOTB program periodically to decide
the optimal batching strategy when processing incoming tasks.

VI. EVALUATION

In this section, we present an extensive evaluation of Edge-
Batch on the edge computing platform discussed in the previ-
ous section. We present the evaluation results through a real-
world image analysis case studies: Crowd Plate Detection. The
results show that EdgeBatch achieves significant performance
gains in terms of delay and energy efficiency compared to
state-of-the-art baselines.

A. Experiment Setup

Our case study Crowd Plate Detection (CPD) has been
introduced in Section III. In particular, we use the CNN algo-
rithm developed in [58]: a pre-trained ImageNet model VGG-
16. The VGG-16 model is a state-of-the-art deep CNN with
16 layers for image recognition tasks. We use the automatic
license plate recognition (ALPR) dataset [59] to emulate the
collected images from IoT devices.

We choose the following baselines from recent literature.
We observe that there exists no baseline that jointly addresses
the task batching and task offloading issues in collaborative
edge systems. Therefore, we first picked a few representative
baselines for task batching schemes.
• No Batching (NB): the images are processed one by one

by the GPU on edge nodes.

• Fixed Size Batching (FS): a heuristic batching scheme
where the batching is performed whenever the number of
arrived images reaches α1.

• Fixed Period (FP): a heuristic task batching scheme
where the batching is performed periodically with a
period of α2.

• Bus Waiting (BW) [60]: a dynamic task batching scheme
used in solving the optimal bus waiting time.

• Online Learning (OL) [61]: an online learning-based
batching algorithm that dynamically adjusts the batch
holding time using an online feedback control mecha-
nism.

We also choose a few state-of-the-art baselines that manage
the task offloading of the edge computing systems for a fair
comparison with our scheme.
• BGTA [27]: A bottom-up task offloading scheme that

allows manufacturers to selfishly compete for tasks to
maximize utilities.

• TDA [36]: A top-down task offloading scheme that uses
Mixed Integer Linear Programming (MILP) to minimize
the deadline miss rate of tasks.

• CoGTA [20]: A recent task offloading scheme that allows
edge nodes to trade tasks using a negotiation scheme
that satisfies the delay and energy requirements of the
application.

Note that both BGTA and TDA baselines do not allow IoT
devices to offload tasks to each other. Instead, they let IoT
devices offload tasks to edge servers (i.e., the TX2 board). We
combine the task batching and offloading baselines as follows:
we first run the task offloading scheme to dynamically organize
the task flows of the collaborative edge system. We then run
the task batching scheme to identify the optimal batch size for
each edge node that has received offloaded tasks.

We have an initial bootstrapping phase to tune the pa-
rameters in the systems of the above schemes. We run the
experiment for 100 time slots and find the parameters that
give the minimum delay and energy costs (based on Equation
(8) in Section IV). In particular, we set α1 = 4, α2 = 200 ms
for FS and FP baselines, respectively. We set the duration for
a time slot as 100 ms and the control period for the SOTB
and OCAI algorithms in EdgeBatch as 5 seconds.

B. Task Batching Profiling

We first profile the computation time and energy cost
functions f(·) and g(·) (defined in Section IV) with a varying
batching size. We observe that, in general, increasing the
batching size would reduce the average computation time of
the images because of data parallelization (Figure 6(a)). The
average delay slightly increases for TX1 and TK1 when the
batch size exceeds 20 and 40 respectively. This is because the
large batch sizes overload the GPUs on the two nodes and
eventually delay the tasks. The above observations reiterate
the potential benefit of leveraging large batch size to improve
the delay of the tasks. We also found that devices with
higher-end GPUs (i.e., TX1 and TX2) have significantly more

improvement than the device with lower-end GPU (i.e., TK1).
This observation highlights the importance of considering the
heterogeneity of the edge nodes in the design of an optimal
task batching strategy.

(a) Batch Size vs Computation Time (b) Batch Size vs Power

Figure 6: Edge Node Profiling vs Batch Size
We also observe that increasing the batch size would in-

crease the power consumption of an edge node (Figure 6(b)).
The power consumption increase is also observed to be more
significant on the devices with higher-end GPUs (i.e., TX1
and TX2). The goal of EdgeBatch is to identify the optimal
batching strategy that best optimizes the above delay-energy
trade-off (i.e., Equation (8) in Section IV).

C. End-to-End Delay

In the next set of experiments, we evaluate the end-to-
end (E2E) delay of all the compared schemes. We run the
experiment 100 times to generate the results and each run
consists of 1000 time slots. Figure 7 summarizes the E2E
delays of all the combinations of baselines and EdgeBatch.
We show both the average delay and the one standard devi-
ation of the results. We observe that the EdgeBatch scheme
has the least E2E delay and the smallest standard deviation
compared to the baselines. Compared to the best-performing
baseline (CoGTA+OL), EdgeBatch achieved 31.1% decrease
in E2E delay. We attribute such a performance gain to 1)
the task batching module (SOTB) that fully utilizes the data
parallelization of the GPUs to save average processing time of
the CNN tasks; and 2) our task offloading algorithm (OCAI)
that finds the optimal supply chains that allow the edge nodes
to search for the most efficient way to collaboratively finish
CNN tasks. We also observe that the schemes without batching
have significantly longer E2E delays compared to schemes that
adopt task batching. This again highlights the importance of
task batching for DNN applications at the edge.

An important concern regarding the EdgeBatch scheme
is the communication overhead of the data offloading tasks
in the supply chains. We found in Figure 7 that the data
offloading overhead for all compared schemes is relatively
small compared to the overall E2E delay of the tasks. We
also observe that the BGTA and TDA schemes have higher
communication overheads than our scheme and CoGTA.

To further evaluate the effect of the communication tasks
for data offloading, we compare EdgeBatch with all the task
offloading baselines by gradually increasing the number of
tasks per time slot. The results are shown in Figure 8. We

Figure 7: Average E2E Delay for All Schemes

found that the BGTA and TDA schemes consistently have
significantly higher communication overheads than our scheme
and CoGTA. This is due to the fact that both BGTA and TDA
offload all tasks that an edge node cannot finish to the edge
server, which becomes the bottleneck for the data offloading
requests. In contrast, both EdgeBatch and CoGTA achieve
a much lower overhead because they are able to distribute
the data offloading tasks by performing peer offloading (i.e.,
IoT devices can offload DNN tasks to each other). While
EdgeBatch has a similar data offloading overhead as CoGTA, it
is superior because its optimized batching strategy allows IES
system to perform DNN tasks much faster (as shown later in
Figures 9 and 10).

Figure 8: Average Data Offloading Overhead for All Schemes

We further evaluate the E2E delay with respect to the
task frequency (i.e., number of tasks per time slot) in Figure
9. We compare EdgeBatch against the best-performing task
offloading scheme (i.e., CoGTA) coupled with different task
batching schemes. We observe that EdgeBatch significantly
outperforms all baselines in various task frequency settings.
This shows that EdgeBatch is more robust than the baselines
when the workload in the system changes. We attribute this
performance gain to the adaptive design of the SOTB scheme
that can adjust the batching size in real-time with uncertain
arrival rate of the tasks.

We also evaluate the deadline hit rate (DHR) of the applica-
tion under different deadline requirements of the system. The
DHR is defined as the ratio of the CNN tasks that have finished
within the deadline. We fix the task frequency as 6 tasks per
time slot and gradually relax the deadline requirement. The
results are presented in Figure 10. We observe that EdgeBatch
significantly improves the DHR compared to all schemes

and is the first one that reaches 100% DHR as the deadline
increases. This result further showcases that EdgeBatch can
better satisfy the real-time requirements of the application.

Figure 9: E2E Delay in CPD Figure 10: DHR in CPD

D. Energy Consumption

In the next set of experiments, we focus on the energy
consumption of edge nodes. As mentioned in Section IV, the
energy consumption is normalized to reflect the proportion
of battery that is consumed by a scheme to accomplish all
tasks [19]. The results of the average normalized energy
consumption on edge nodes are shown in Table II. We can
observe that EdgeBatch consumes significantly less energy as
compared to all other baselines except TDA. TDA consumes
the least amount of energy because it tends to push all the tasks
from the suppliers to the edge server (i.e., the TX2 boards).
In another word, the TDA scheme under-utilizes the diverse
resources on the edge devices and pushes all extra computation
burden to the server nodes. Such a task offloading strategy
gives TDA scheme the largest amount of delay as shown in
Figure 7-8.

Table II: Normalized Energy Consumption Comparison

TX2 TX1 TK1 Pi3 Overall
EdgeBatch 0.802 0.781 0.753 0.633 8.470
BGTA + NB 0.893 0.875 0.879 0.675 9.344
BGTA + FS 0.874 0.865 0.855 0.675 9.238
BGTA + FP 0.852 0.866 0.847 0.675 9.180
BGTA + BW 0.887 0.858 0.840 0.675 9.221
BGTA + OL 0.824 0.827 0.829 0.675 9.011
TDA + NB 0.923 0.903 0.803 0.553 8.576
TDA + FS 0.885 0.864 0.755 0.553 8.326
TDA + FP 0.857 0.841 0.724 0.553 8.162
TDA + BW 0.862 0.852 0.748 0.553 8.242
TDA + OL 0.833 0.839 0.719 0.553 8.100
CoGTA + NB 0.906 0.880 0.843 0.682 9.350
CoGTA + FS 0.875 0.853 0.851 0.682 9.251
CoGTA + FP 0.837 0.832 0.819 0.682 9.068
CoGTA + BW 0.842 0.866 0.830 0.682 9.168
CoGTA + OL 0.822 0.817 0.828 0.682 9.026

“Overall” is the sum of normalized energy consumption of all edge nodes.

VII. CONCLUSION AND FUTURE WORK

This paper presents the EdgeBatch framework to support
DNN applications in Intelligent Edge Systems. We develop a
novel task batching scheme for GPU-enabled IoT devices that
significantly accelerates CNN-based image detection tasks at
the edge. We also design a new task offloading scheme by
extending the supply chain and game theory models to coordi-
nate the collaboration among edge nodes such that the QoS of

the application is optimized. We implemented the EdgeBatch
framework on a real-world heterogeneous edge computing
testbed and evaluate it through a real-world DNN application.
The results demonstrate that EdgeBatch achieves significant
performance gains compared to state-of-the-art baselines in
terms of reduced delay and improved energy efficiency.

Our model has some limitations that deserve further in-
vestigation. First, the dynamic feature of IoT network may
affect the distributed sensor and processing nodes setup (e.g.,
the availability of some edge nodes may be intermittent due
to the mobility issue). EdgeBatch can be readily extended
to handle this issue by leveraging two core designs in the
system. First, the OCAI module of EdgeBatch is designed
to generate dynamic supply chain graphs through a game-
theoretic process. In this process, each edge node evaluates
the dynamic communication overhead, available computing
resources, and energy consumption, and self-organize into a
dynamic supply chain that minimizes communication delay
and energy cost. In this design, if an edge node becomes
unavailable (e.g., has a poor network connection or travels to
a distant area), it is unlikely to be selected as a manufacturer
due to excessive communication cost. The second core design
to address dynamics is the STOB module, which assumes
no prior knowledge of the task arrival time and is agnostic
about the network delay variations caused by mobility. We
note such stochastic design of the STOB batching model
is also robust against the dynamics of mobile devices. One
particular issue we did not consider in our model is the task
reassignment where a mobile device becomes unavailable and
has tasks unfinished. This can be addressed by extending
the OCAI module in our system to further incorporate task-
reassignment and adaptive workload management strategies
(such as FemtoCloud [18], DPA [62]) where unfinished tasks
could be immediately migrated to other backup devices. We
leave these extensions for future work.

Second, we assume a simplified task model in the Edge-
Batch system where the tasks are homogeneous and pipelined.
While such a simplification is common in resource man-
agement of many edge computing systems [10], in real-
world scenarios, a task can be composed of multiple subtasks
with heterogeneous inputs (e.g., images, texts, videos, sensor
readings, etc.) where the subtasks may also have complex de-
pendencies [20]. A potential solution to handle heterogeneous
tasks is to leverage heterogeneous supply chain models where
the manufactures with diversified facilities process different
types of materials from the suppliers [63]. We plan to further
improve EdgeBatch by considering the runtime scheduling of
heterogeneous DNN tasks using frameworks such as SOSPCS
[31], and incorporating more complex task modeling tech-
niques such as MakeFlow [64] and DCSS [65] that regulate
the system workflow to impose the relevant task dependencies.

Finally, this paper focuses on a particular type of deep learn-
ing task, namely CNN based image detection. While this type
of task enables many killer applications in edge computing
(e.g., disaster response [4], abnormal event detection [66], and
traffic alert systems [27]), we plan to further test EdgeBatch

on a more diversified set of DNN techniques and application
scenarios. For example, the recurrent neural networks (e.g.,
RNN, LSTM, GRU) and neural encoding techniques (e.g.,
autoencoders and network embedding) are also commonly
used in IES applications (e.g., voice recognition and urban
sensing [67]). We expect EdgeBatch to be able to accelerate
these DNN algorithms as well since the task batching scheme
in EdgeBatch explores the fundamental trade-off between
delay and energy, which is common to DNN algorithms that
run on GPU-enabled IoT devices [12].

REFERENCES

[1] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” pp. 31–36, 2018.

[2] D. Y. Zhang, N. Vance, and D. Wang, “When social sensing meets edge
computing: Vision and challenges,” 2019, accepted.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[4] X. Li, H. Zhang, D. Caragea, and M. Imran, “Localizing and quantifying
damage in social media images,” arXiv preprint arXiv:1806.07378,
2018.

[5] Q. Zhang, X. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Big
data sharing and processing in collaborative edge environment,” pp. 20–
25, 2016.

[6] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural
network,” pp. 67–79, 2018.

[7] H. Li, K. Ota, and M. Dong, “Learning iot in edge: deep learning for the
internet of things with edge computing,” IEEE Network, vol. 32, no. 1,
pp. 96–101, 2018.

[8] G. Zhong, A. Dubey, C. Tan, and T. Mitra, “Synergy: An hw/sw
framework for high throughput cnns on embedded heterogeneous soc,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 2, p. 13, 2019.

[9] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi,
and F. Kawsar, “Squeezing deep learning into mobile and embedded
devices,” IEEE Pervasive Computing, vol. 16, no. 3, pp. 82–88, 2017.

[10] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[11] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile
edge computing in 5g heterogeneous networks,” IEEE access, vol. 4,
pp. 5896–5907, 2016.

[12] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot:
Compressing deep neural network structures for sensing systems with a
compressor-critic framework,” p. 4, 2017.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[14] “Aws deeplens,” https://aws.amazon.com/deeplens/, accessed: 2019-04-
23.

[15] “Nvidia egx edge computing platform,” https://www.nvidia.com/en-us/
data-center/products/egx-edge-computing/, accessed: 2019-04-23.

[16] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar, “Deepx: A software accelerator for low-power deep
learning inference on mobile devices,” p. 23, 2016.

[17] F. Farshchi, Q. Huang, and H. Yun, “Integrating nvidia deep learn-
ing accelerator (nvdla) with risc-v soc on firesim,” arXiv preprint
arXiv:1903.06495, 2019.

[18] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” pp.
9–16, 2015.

[19] D. Y. Zhang, T. Rashid, X. Li, N. Vance, and D. Wang, “Heteroedge:
taming the heterogeneity of edge computing system in social sensing,”
pp. 37–48, 2019.

[20] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang,
“Cooperative-competitive task allocation in edge computing for delay-
sensitive social sensing,” 2018.

[21] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algorithms
for peer data sharing in pervasive edge computing environments,” pp.
605–614, 2017.

[22] D. Franklin, “Nvidia jetson tx2 delivers twice the intelligence to the
edge,” NVIDIA Accelerated Computing— Parallel Forall, 2017.

[23] G. Neubig, Y. Goldberg, and C. Dyer, “On-the-fly operation batching in
dynamic computation graphs,” pp. 3971–3981, 2017.

[24] D. Wang, T. Abdelzaher, B. Priyantha, J. Liu, and F. Zhao, “Energy-
optimal batching periods for asynchronous multistage data processing
on sensor nodes: foundations and an mplatform case study,” Real-Time
Systems, vol. 48, no. 2, pp. 135–165, 2012.

[25] Y. Wang, B. Li, R. Luo, Y. Chen, N. Xu, and H. Yang, “Energy efficient
neural networks for big data analytics,” p. 345, 2014.

[26] Y. Xuan, J. Argote, and C. F. Daganzo, “Dynamic bus holding strategies
for schedule reliability: Optimal linear control and performance analy-
sis,” Transportation Research Part B: Methodological, vol. 45, no. 10,
pp. 1831–1845, 2011.

[27] D. Zhang, Y. Ma, Y. Zhang, S. Lin, X. S. Hu, and D. Wang, “A real-
time and non-cooperative task allocation framework for social sensing
applications in edge computing systems,” pp. 316–326, 2018.

[28] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals
from edges,” pp. 391–405, 2014.

[29] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” pp. 1–12, 2017.

[30] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput cnn inference on embedded arm big. little
multi-core processors,” arXiv preprint arXiv:1903.05898, 2019.

[31] Y. Xiao, S. Nazarian, and P. Bogdan, “Self-optimizing and self-
programming computing systems: A combined compiler, complex net-
works, and machine learning approach,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 6, pp. 1416–1427,
2019.

[32] K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “From
model to fpga: Software-hardware co-design for efficient neural network
acceleration,” pp. 1–27, 2016.

[33] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[34] A. Toma and J.-J. Chen, “Computation offloading for real-time systems,”
pp. 1650–1651, 2013.

[35] D. Y. Zhang, C. Zheng, D. Wang, D. Thain, X. Mu, G. Madey,
and C. Huang, “Towards scalable and dynamic social sensing using a
distributed computing framework,” pp. 966–976, 2017.

[36] Z. Ning, P. Dong, X. Kong, and F. Xia, “A cooperative partial compu-
tation offloading scheme for mobile edge computing enabled internet of
things,” IEEE Internet of Things Journal, 2018.

[37] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” pp. 1–9, 2015.

[38] L. F. Bertuccelli, H.-L. Choi, P. Cho, and J. P. How, “Real-time multi-
uav task assignment in dynamic and uncertain environments,” American
Institute of Aeronautics and Astronautics, 2009.

[39] V. Kumar, Introduction to parallel computing. Addison-Wesley Long-
man Publishing Co., Inc., 2002.

[40] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou, “Comet:
batched stream processing for data intensive distributed computing,” pp.
63–74, 2010.

[41] S. Jagannathan, J. Nayak, K. Almeroth, and M. Hofmann, “On pricing
algorithms for batched content delivery systems,” Electronic Commerce
Research and Applications, vol. 1, no. 3-4, pp. 264–280, 2002.

[42] C. Jayasundara and V. Gopalakrishnan, “Facilitating multicast in vod
systems by content pre-placement and multistage batching,” pp. 1–10,
2013.

[43] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, “Batched
matrix computations on hardware accelerators based on gpus,” The
International Journal of High Performance Computing Applications,
vol. 29, no. 2, pp. 193–208, 2015.

[44] T. Dong, A. Haidar, S. Tomov, and J. Dongarra, “A fast batched cholesky
factorization on a gpu,” pp. 432–440, 2014.

[45] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license
plate recognition (alpr): A state-of-the-art review,” IEEE Transactions
on circuits and systems for video technology, vol. 23, no. 2, pp. 311–
325, 2012.

[46] C. J. Corbett, “Stochastic inventory systems in a supply chain with
asymmetric information: Cycle stocks, safety stocks, and consignment
stock,” Operations research, vol. 49, no. 4, pp. 487–500, 2001.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” pp. 1097–1105, 2012.

[48] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” pp. 779–788, 2016.

[49] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[50] A. Bellanger, A. Janiak, M. Y. Kovalyov, and A. Oulamara, “Scheduling
an unbounded batching machine with job processing time compatibili-
ties,” Discrete Applied Mathematics, vol. 160, no. 1-2, pp. 15–23, 2012.

[51] A. Oulamara, G. Finke, and A. K. Kuiteing, “Flowshop scheduling
problem with a batching machine and task compatibilities,” Computers
& Operations Research, vol. 36, no. 2, pp. 391–401, 2009.

[52] P. Gaillard, G. Stoltz, and T. Van Erven, “A second-order bound with
excess losses,” pp. 176–196, 2014.

[53] D. A. Schrady, “A deterministic inventory model for reparable items,”
Naval Research Logistics Quarterly, vol. 14, no. 3, pp. 391–398, 1967.

[54] I. Milchtaich, “Congestion games with player-specific payoff functions,”
Games and economic behavior, vol. 13, no. 1, pp. 111–124, 1996.

[55] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous
multi-core processors,” pp. 927–930, 2009.

[56] K. W. Tindell, A. Burns, and A. J. Wellings, “Allocating hard real-time
tasks: an np-hard problem made easy,” Real-Time Systems, vol. 4, no. 2,
pp. 145–165, 1992.

[57] V. I. Zhukovskiy and K. N. Kudryavtsev, “Pareto-optimal nash equilib-
rium: Sufficient conditions and existence in mixed strategies,” Automa-
tion and Remote Control, vol. 77, no. 8, pp. 1500–1510, 2016.

[58] H. Li, P. Wang, and C. Shen, “Toward end-to-end car license plate de-
tection and recognition with deep neural networks,” IEEE Transactions
on Intelligent Transportation Systems, no. 99, pp. 1–11, 2018.

[59] “Number plate datasets,” https://platerecognizer.com/
number-plate-datasets/, accessed: 2019-04-23.

[60] L. Fu and X. Yang, “Design and implementation of bus–holding control
strategies with real-time information,” Transportation Research Record,
vol. 1791, no. 1, pp. 6–12, 2002.

[61] S. Sorin, “Exponential weight algorithm in continuous time,” Mathemat-
ical Programming, vol. 116, no. 1-2, pp. 513–528, 2009.

[62] N. Vance, M. T. Rashid, D. Zhang, and D. Wang, “Towards reliability in
online high-churn edge computing: A deviceless pipelining approach,”
pp. 301–308, 2019.

[63] M.-L. Tseng, “Green supply chain management with linguistic prefer-
ences and incomplete information,” Applied Soft Computing, vol. 11,
no. 8, pp. 4894–4903, 2011.

[64] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
p. 1, 2012.

[65] Y. Xue, J. Li, S. Nazarian, and P. Bogdan, “Fundamental challenges
toward making the iot a reachable reality: A model-centric investiga-
tion,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 22, no. 3, p. 53, 2017.

[66] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in matlab,”
pp. 2720–2727, 2013.

[67] W. Zhou, Z. Shao, C. Diao, and Q. Cheng, “High-resolution remote-
sensing imagery retrieval using sparse features by auto-encoder,” Remote
sensing letters, vol. 6, no. 10, pp. 775–783, 2015.

