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Abstract—This paper estimates new confidence bounds on
source reliability in social sensing applications. Scalable and
robust estimation of source reliability is a key challenge in
social sensing where humans or human-operated sensors act
as data sources. In order to assess correctness of data, the
reliability of sources must first be assessed, yet this is complicated
when sources are not a priori known and vetted, but rather
can opt in at will, for example, by downloading a sensing
application on their mobile device. In our previous work, we
developed a maximum likelihood source reliability estimator and
approximately quantified confidence in its estimation based on
an asymptotic Cramer-Rao lower bound (CRLB). In this paper
we show that the asymptotic bound fails to track estimation
performance when the number of sources is small. We derive the
real CRLB to accurately characterize estimation performance
for scenarios where the asymptotic bound fails. We study the
limitations of the real and asymptotic CRLBs and show the
trade-offs they offer between computational complexity and
estimation scalability. We also evaluate the robustness of these
bounds to changes in the number of sources. The results offer
an understanding of attainable estimation accuracy of source
reliability in social sensing applications that rely on un-vetted
sources whose reliability is not known in advance.

Index Terms—Quantification; CRLB; Scalability; Robustness;
Social Sensing

I. INTRODUCTION

Social sensing has emerged as an important paradigm of
sensing applications, where humans are explicitly or implicitly
involved in the process of sensing and data collection. Scalable
and robust estimation of source reliability is a key challenge in
social sensing due to the fact that humans are generally less
reliable than well tested infrastructure sensors, and the cor-
rectness of their measurements is usually unknown a priori. In
previous work, we developed a maximum likelihood estimator
of source reliability [16] and quantified the confidence of the
estimation approximately based on an asymptotic Cramer-Rao
lower bound (CRLB) [15]. However, the asymptotic CRLB is
not accurate, because it deviates significantly from the actual
estimation variance in scenarios where the number of sources
in the system is small. In this paper, we derive the real CRLB

and show that it tracks the estimation variance tightly when the
asymptotic CRLB fails to be accurate. We study the scalability
limitations of real and asymptotic CRLBs and examine the
robustness of the estimation performance and corresponding
bounds to changes in the number of sources in the system.

It is shown that the estimation confidence can be quantified
accurately. The derived real CRLB is able to characterize
the estimation performance correctly when the number of
sources in the system is small. Additionally, the estimation
performance and the accuracy of CRLBs are shown to be
robust to changes in the number of sources.

The results of this paper are important because they allow
social sensing applications to assess the quality of data ob-
tained from human participants to a desired confidence level,
in the absence of independent means to verify the data and in
the absence of prior knowledge of reliability of sources. This
is attained via a well-founded analytic problem formulation
and a solution that leverages well-known results in estimation
theory.

The rest of this paper is organized as follows: We review
related work in Section II. In Section III, we briefly go
over the maximum likelihood estimation (MLE) approach
and the problem of quantifying source reliability in social
sensing applications. We then derive the real CRLB and outline
the asymptotic CRLB and the confidence interval on source
reliability in Section IV. The evaluation results are presented
in Section V. We discuss the limitations of our model and
possible extensions for future work in Section VI. Finally, we
conclude the paper in Section VII.

II. RELATED WORK

Social sensing has emerged as a new paradigm of sensing
applications due to the great increase in the number of mobile
sensors owned by common individuals and the proliferation
of Internet connectivity. A relevant body of work, called
fact-finders, in the machine learning and data mining com-
munities performs trust analysis to assess the credibility of
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sources and assertions claimed in information networks. Fact-
finding in social sensing is more challenging because of the
unknown reliability of data sources and the highly dynamic
nature of social sensing topologies [1]. The basic fact-finders
include Hubs and Authorities [10], Average.Log [12], and
TruthFinder [17]. Other extended fact-finders further analyze
properties or dependencies within assertions and sources [2],
[5]–[8]. Trust analysis has been performed for both homoge-
neous and heterogeneous network topology [13], [18].

The Bayesian Interpretation scheme [14] represents a recent
effort to convert the ranking outputs from fact-finders into
the Bayesian probability semantics. However, the accuracy
of truth estimation of this scheme is very sensitive to the
initial conditions of iterations due to its linear approximation
assumption. To overcome such limitations, Wang et al pro-
posed a maximum likelihood estimator based on Expectation
Maximization (EM) [16]. The maximum likelihood estima-
tor provides an optimal hypothesis on source reliability and
reported measurements, which is most consistent with the
observed data in social sensing. The EM scheme was shown to
beat Bayesian Interpretation and other state-of-art fact-finders
in the estimation performance. To quantify the estimation
accuracy in EM, a confidence bound based on asymptotic
CRLB was proposed [15]. However, this asymptotic bound
fails to be tight when the number of sources is small. In this
paper, we derived, for the first time, the real CRLB that is
able to accurately characterize the estimation performance for
the sensing network of a small number of sources.

In statistics and estimation theory, the Cramer-Rao lower
bound (CRLB) is defined as the inverse of Fisher information
matrix and represents a lower bound on the estimation variance
of a deterministic parameter [4]. The maximum likelihood
estimation (MLE) possesses many nice asymptotic properties,
one of which is called asymptotic normality. The asymptotic
normality basically states that the maximum likelihood esti-
mation is asymptotically distributed with Gaussian behavior
as the data sample size increases, and the covariance of the
MLE reaches the Cramer-Rao lower bound. In this paper, the
confidence interval is derived by computing the CRLB of the
estimation parameters and leveraging the asymptotic normality
of the maximum likelihood estimation.

III. PROBLEM STATEMENT

For our social sensing problem, we adopt the model used
for maximum likelihood source reliability estimation in social
sensing [15]. Consider a social sensing application model
where a group of M sources, S1, ..., SM , make individual
observations about a set of N measured variables C1, ..., CN
in their environment. For example, a group of local residents
might join a geo-tagging campaign to report litter locations in
the park. Hence, each measured variable denotes the existence
or lack thereof of litter at a given location. We consider only
binary variables and assume, without loss of generality, that
their “normal” state is negative (e.g., no litter on the ground).
Hence, sources report only when the positive state of the
measured variable (e.g., litter found) is encountered. Each

source generally observes only a small subset of all variables
(e.g., states of places they have been to).

Let us also define some notations we used: Si denotes
the ith source, Cj denotes the jth measured variable and
SiCj denotes Si reporting Cj to be true. The social sensing
topology describing who report what can be represented by
an observation matrix SC, where SiCj = 1 when source Si
reports that Cj is true, and SiCj = 0 otherwise. Moreover,
let P (Ctj) and P (Cfj ) denote the odds that the actual variable
Cj is indeed true and false, respectively. Let the probability
that source Si reports an observation be si. Further, let the
probability that source Si is right be ti and the probability that
she is wrong be 1 − ti. Note that, this probability represents
the source’s reliability, which is not known a priori. Formally,
ti is defined as:

ti = P (Ctj |SiCj) (1)

Let us also define ai as the (unknown) probability that source
Si reports a variable to be true when it is indeed true, and bi
as the (unknown) probability that source Si reports a variable
to be true when it is in reality false. Formally, ai and bi are
defined as follows:

ai = P (SiCj |Ctj) bi = P (SiCj |Cfj ) (2)

The Bayes’ theorem provides us with the relationship be-
tween ti, ai and bi:

ai =
ti × si
d

bi =
(1− ti)× si

1− d
(3)

where d is the overall prior probability that a randomly chosen
measured variable is true. Note that, this value can be known
from past statistics. It does not indicate, however, whether any
particular claim about a specific measured variable is true or
not.

To handle the unknown correctness of measured variables in
the model, a hidden variable Z is incorporated for each variable
to indicate whether it is true or not (i.e., zj is 1 when the
measured variable Cj is true and 0 otherwise). A maximum-
likelihood estimator [16] can now take the observation matrix
SC as the input and iterate between the E-step and M-step
of EM scheme until the estimation converges. An output of
the EM scheme is the maximum likelihood estimation (MLE)
of source reliability computed from its estimation parameter
vector θ = (a1, a2, ...aM ; b1, b2, ...bM ). Our goal in this paper
is to i) derive the real CRLB that accurately characterizes
the estimation performance of the MLE on source reliability
when the number of sources is small; ii) study the scalability
limitations of both real and asymptotic CRLB; iii) evaluate the
robustness of estimation performance and the derived CRLBs
to changes in the number of sources.

IV. CONFIDENCE INTERVAL DERIVATION FROM CRLB

In this section, we show that the confidence interval on
source reliability is derived by computing the Cramer-Rao
lower bound (CRLB) for the estimation parameters (i.e., θ) and
leveraging the asymptotic normality of maximum likelihood
estimation. We start with the real CRLB derivation and identify
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its scalability limitation. We then outline the asymptotic CRLB
that works for the sensing topology with a large number of
sources. 1 Finally, we compute the confidence interval on
source reliability based on the derived CRLB.

A. Real Cramer Rao Lower Bound

We first derive the real CRLB that characterizes the esti-
mation performance of the maximum likelihood estimation of
source reliability in social sensing. In estimation theory, the
CRLB expresses a lower bound on the estimation variance of
a minimum-variance unbiased estimator. In its simplest form,
the bound states the variance of any unbiased estimator is at
least as high as the inverse of the Fisher information [9]. The
estimator that reaches this lower bound is said to be efficient.
For notational convenience, we denote the observation matrix
SC as the observed data X and use Xij = SiCj for the
following derivation.

The likelihood function (containing hidden variable Z) of
the maximum likelihood estimation we get from EM can be
expressed as [16]:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{
M∏
i=1

a
Xij

i (1− ai)(1−Xij) × d× zj

+

M∏
i=1

b
Xij

i (1− bi)(1−Xij) × (1− d)× (1− zj)

}
(4)

where zj is the hidden variable. The EM scheme is used to
handle the hidden variable and aims to find:

θ̂ = argmax
θ

p(X|θ) (5)

where

p(X|θ) =

N∏
j=1

{
M∏
i=1

a
Xij

i (1− ai)(1−Xij) × d

+

M∏
i=1

b
Xij

i (1− bi)(1−Xij) × (1− d)

}
(6)

By definition of CRLB, it is given by

CRLB = J−1 (7)

where
J = E[5θ ln p(X|θ)5Hθ ln p(X|θ)] (8)

where J is the Fisher information of the estimation pa-
rameter, 5θ = ( ∂

∂a1
, ... ∂

∂aM
, ∂
∂b1

, ...., ∂
∂bM

)H and H denotes
the conjugate transpose operation. In information theory, the
Fisher information is a way of measuring the amount of
information that an observable random variable X carries
about an estimated parameter θ upon which the probability of
X depends. The expectation in Equation (8) is taken over all
values for X with respect to the probability function p(X|θ)

1The asymptotic bound was previously published in a workshop paper [15].
The workshop has no printed proceedings. This paper extends the workshop
results

for any given value of θ. Let X represent the set of all possible
values of Xij ∈ {0, 1} for i = 1, 2...M ; j = 1, 2, ...N . Note
|X | = 2MN . Likewise, let Xj represent the set of all possible
values of Xij ∈ {0, 1} for i = 1, 2...M and a given value of
j. Note |Xj | = 2M . Taking the expectation, Equation (8) can
be rewritten as follows:

J =
∑
X∈X

5θ ln p(X|θ)5Hθ ln p(X|θ)p(X|θ) (9)

Then, the fisher information matrix can be represented as:

J =

[
A C
CT B

]
where submatrices A, B and C contain the elements related
with the estimation parameter ai, bi and their cross terms
respectively. The representative elements Akl, Bkl and Ckl
of A, B and C can be derived as follows:

Akl = E
[ ∂

∂ak
ln p(X|θ) ∂

∂al
ln p(X|θ)

]
= E

[(∑
j

(2Xkj − 1)Zj

a
Xkj

k (1− ak)(1−Xkj)

∑
q

(2Xlq − 1)Zq

a
Xlq

l (1− al)(1−Xlq)

)]
=
∑
j

∑
q

E
[ (2Xkj − 1)Zj(2Xlq − 1)Zq

a
Xkj

k (1− ak)(1−Xkj)a
Xlq

l (1− al)(1−Xlq)

]
(10)

where

Zj = p(zj = 1|X) =
Aj × d

Aj × d+Bj × (1− d)

where

Aj =

M∏
i=1

a
Xij

i (1− ai)(1−Xij) Bj =

M∏
i=1

b
Xij

i (1− bi)(1−Xij)

(11)

Zj is the conditional probability of the measured variable Cj
to be true given the observation matrix. After further simpli-
fication as shown in the appendix A, Akl can be expressed as
the summation of only the expectation terms where j = q:

Akl =
∑
j

E
[ (2Xkj − 1)(2Xlj − 1)Z2

j

a
Xkj

k (1− ak)(1−Xkj)a
Xlj

l (1− al)(1−Xlj)

]

=

N∑
j=1

∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M
i=1
i 6=k

Aij
∏M
i=1
i 6=l

Aijd
2∏M

i=1Aijd+
∏M
i=1Bij(1− d)

(12)

where

Aij = a
Xij

i (1− ai)(1−Xij) Bij = b
Xij

i (1− bi)(1−Xij)

(13)

We rewrite Ak,l = NĀk,l where Ākl is:

Ākl =
∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M
i=1
i 6=k

Aij
∏M
i=1
i6=l

Aijd
2∏M

i=1Aijd+
∏M
i=1Bij(1− d)

(14)
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It should also be noted that the summation in Equation (14)
is the same for all j.

By similar calculations, we can obtain the inverse of the
Fisher information matrix as follows:

J−1 =
1

N

[
Ā C̄
C̄T B̄

]−1
where we define the klth element of B̄, C̄ as:

B̄kl =

∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M
i=1
i 6=k

Bij
∏M
i=1
i6=l

Bij(1− d)2∏M
i=1Aijd+

∏M
i=1Bij(1− d)

(15)
C̄kl =

∑
x∈X j

(2Xkj − 1)(2Xlj − 1)
∏M
i=1
i 6=k

Aij
∏M
i=1
i 6=l

Bijd(1− d)∏M
i=1Aijd+

∏M
i=1Bij(1− d)

(16)

Note that the sum of Ākl, B̄kl and C̄kl are over the 2M

different permutations for Xij i = 1, 2, ...M and a given
j. This is much smaller than the 2MN permutations for X .

This gives us the real CRLB. Note that more measured
variables simply lead to better estimates for θ as the variance
decreases as 1

N . The decrease in variance for the estimates as
a function of M is more complicated. We can only compute
it numerically.

B. Asymptotic Cramer Rao Lower Bound

Observe that the complexity of the real CRLB computation
in the above subsection is exponential with respect to the
number of sources (i.e., M ) in the system. Therefore, it is
inefficient (or infeasible) to compute the real CRLB when
the number of sources becomes large. In this subsection, we
outline the asymptotic CRLB for efficient computation in
the sensing topology with a large number of sources. The
asymptotic CRLB is derived based on the assumption that the
correctness of the hidden variable (i.e., zj) can be correctly
estimated from EM. This is a reasonable assumption when
the number of sources is sufficient [15]. Under this assump-
tion, the log-likelihood function of the maximum likelihood
estimation we get from EM can be expressed as follows:

lem(x; θ) =

N∑
j=1

{

zj ×

[
M∑
i=1

(Xij log ai + (1−Xij) log(1− ai) + log d)

]
+ (1− zj)

×

[
M∑
i=1

(Xij log bi + (1−Xij) log(1− bi) + log(1− d))

]}
(17)

We first compute the Fisher Information Matrix at the MLE
from the log-likelihood function given by Equation (17). Ac-
cording to prior work [16], the maximum likelihood estimator
θ̂MLE is given by:

âMLE
i =

∑
j∈SJi Z

c
j∑N

j=1 Z
c
j

b̂MLE
i =

Ki −
∑
j∈SJi Z

c
j

N −
∑N
j=1 Z

c
j

(18)

where SJi is the set of measured variables reported by source
Si and Zcj is the converged probability of the jth measured
variable to be true from EM algorithm. Observe that each
âMLE
i or b̂MLE

i is computed from N independent samples
(i.e., measured variables).

Plugging lem(x; θ) given by Equation (17) into the Fisher
information defined in Equation (8), we have the representa-
tive element of Fisher Information Matrix from N measured
variables as:

(J(θ̂MLE))i,j (19)

=


0 i 6= j

−EX
[∂2lem(x;ai)

∂a2i
|ai=âMLE

i

]
i = j ∈ [1,M ]

−EX
[∂2lem(x;bi)

∂b2i
|bi=b̂MLE

i

]
i = j ∈ (M, 2M ]

Substituting the log-likelihood function in Equation (17)
and MLE in Equation (18) into Equation (19), the asymptotic
CRLB (i.e., the inverse of the Fisher Information Matrix) can
be written as:

(J−1(θ̂MLE))i,j =


0 i 6= j
âMLE
i ×(1−âMLE

i )
N×d i = j ∈ [1,M ]

b̂MLE
i ×(1−b̂MLE

i )
N×(1−d) i = j ∈ (M, 2M ]

(20)

Note that the asymptotic CRLB is independent of M under
the assumption that M is sufficient, and it can be quickly
computed from the MLE of the EM scheme.

C. Confidence Interval

In this subsection, we show that the confidence interval of
source reliability can be obtained by using the CRLB we
derived in previous sections and leveraging the asymptotic
normality of the maximum likelihood estimation.

The maximum likelihood estimator posses a number of
attractive asymptotic properties. One of them is called asymp-
totic normality, which basically states the MLE estimator is
asymptotically distributed with Gaussian behavior as the data
sample size goes up, in particular [3]:

(θ̂MLE − θ0)
d→ N(0, J−1(θ̂MLE)) (21)

where J is the Fisher Information Matrix computed from all
samples, θ0 and θ̂MLE are the true value and the maximum
likelihood estimation of the parameter θ respectively. The
Fisher information at the MLE is used to estimate its true
(but unknown) value [9]. Hence, the asymptotic normality
property means that in a regular case of estimation and in the
distribution limiting sense, the maximum likelihood estimator
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θ̂MLE is unbiased and its covariance reaches the Cramer-Rao
lower bound (i.e., an efficient estimator).

From the asymptotic normality of the maximum likelihood
estimator [4], the error of the corresponding estimation on
θ follows a norm distribution with zero mean and the co-
variance matrix given by the CRLB we derived in previous
subsections. Let us denote the variance of estimation error
on parameter ai as var(âMLE

i ). Recall the relation between
source reliability (i.e., ti) and estimation parameter ai and bi is
ti = ai×d

ai×d+bi×(1−d) . For a sensing topology with small values
of M and N, the estimation of ti has a complex distribution and
its estimation variance can be approximated [4]. For a sensing
topology with sufficient M and N (i.e., under asymptotic
condition), the denominator of ti can be approximated as si
based on Equation (3).2 Therefore, (t̂MLE

i − t0i ) also follows
a norm distribution with 0 mean and variance given by:

var(t̂MLE
i ) =

(
d

si

)2

var(âMLE
i ) (22)

Hence, we are now able to obtain the confidence interval
that can be used to quantify the estimation accuracy of the
maximum likelihood estimation on source reliability. The
confidence interval of the reliability estimation of source Si
(i.e., t̂MLE

i ) at confidence level p is given by the following:

(t̂MLE
i − cp

√
var(t̂MLE

i ), t̂MLE
i + cp

√
var(t̂MLE

i )) (23)

where cp is the standard score (z-score) of the confidence level
p. For example, for the 95% confidence level, cp = 1.96.
Therefore, the derived confidence interval of the source reli-
ability MLE, as we demonstrated, can be computed by using
the CRLB derived in this section.

In this section, we derived a confidence interval that allows
social sensing applications to assess the accuracy of their
estimation of reliability of sources. Hence, applications can
not only produce a best hypothesis regarding correctness of
sources, but also compute their confidence in this hypothesis.
In the following section, we evaluate the accuracy of the
computed confidence bounds.

V. EVALUATION

In this section, we present the evaluation of the performance
of the computed confidence interval of source reliability and
the derived CRLBs in social sensing. We built a simulator
in Matlab 7.10.0 that generates a random number of sources
and measured variables. A random probability Pi is assigned
to each source Si representing his/her reliability (i.e., the
ground truth probability that they report correct observations).
For each source Si, Li observations are generated. Each
observation has a probability Pi of being true (i.e., reporting
a variable as true correctly) and a probability 1−Pi of being
false (reporting a variable as true when it is not). One can think
of these variables as observed “problems”. Sources do not
report “lack of problems”. Hence, they never report a variable

2The value of si can be estimated as Li
N

, where Li is the number of
observations reported by source Si

to be false. We let Pi be uniformly distributed between 0.5
and 1 in our experiments3.

A. Evaluation of Confidence Interval

In this subsection, we evaluate the performance of the
confidence interval on source reliability derived in the pre-
vious section. We carried out experiments over three different
observation matrix scales: small, medium and large. The
simulation parameters are listed in Table I. The total number of
measured variables is the sum of both true and false ones. The
average observations reported by each source is set to 100. For
each observation matrix scale, we run the EM algorithm and
compute the confidence interval on source reliability based
on Equation (23). We repeat the experiments 100 times for
each observation matrix scale. Three representative confidence
levels (i.e., 68%, 90%, 95%) are used in our evaluation.

Observation
Matrix
Scale

Number of
Sources

Number of
True Measured
Variables

Number of
False Measured
Variables

Small 100 500 500
Medium 200 1000 1000
Large 300 2000 2000

TABLE I
PARAMETERS OF THREE TYPICAL OBSERVATION MATRIX SCALE

Figure 1 shows the normalized probability density func-
tion (PDF) of source reliability estimation error over three
observation matrix scales. We computed the experimental
PDF by leveraging the actual estimation error (i.e., compare
to the ground truth) and the confidence interval derived in
Section IV. We compared the experimental PDF with the stan-
dard Gaussian distribution to verify the asymptotic normality
property of estimation results. We observe the experimental
PDF match well with the theoretical Gaussian distribution over
three observation matrix scales.

Figure 2 shows the comparison between the actual estima-
tion confidence and three different confidence levels we set for
the small observation matrix scenario. The actual estimation
confidence is computed as the percentage of sources whose
estimation error stay within the corresponding confidence
bound for every experiment. This percentage represents the
probability that a randomly chosen source keeps its reliability
estimation error within the confidence bound. We observe that
the actual estimation confidence of using 3 different confidence
bounds stays close to the corresponding confidence levels we
used for the experiment. Moreover, at higher confidence levels,
a lower fluctuation of the actual estimation confidence is ob-
served. Similar results are observed for the medium and large
observation matrices as well, which are shown in Figure 3
and Figure 4. Additionally, we also note that the fluctuation of
the actual estimation confidence decreases as the observation
matrix scale increases. This is because the estimation variance

3In principle, there is no incentive for a source to lie more than 50% of the
time, since negating their statements would then give a more accurate truth
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(a) Small Observation Matrix (b) Medium Observation Matrix (c) Large Observation Matrix
Fig. 1. Normalized Source Reliability Estimation Error PDF

(a) 68% Confidence Level (b) 90% Confidence Level (c) 95% Confidence Level
Fig. 2. Source Reliability Estimation Confidence for Small Observation Matrix

(a) 68% Confidence Level (b) 90% Confidence Level (c) 95% Confidence Level
Fig. 3. Source Reliability Estimation Confidence for Medium Observation Matrix

(a) 68% Confidence Level (b) 90% Confidence Level (c) 95% Confidence Level
Fig. 4. Source Reliability Estimation Confidence for Large Observation Matrix

characterized by CRLB is inversely proportional to the number
of measured variables in the system, which will be further
evaluated in the next subsection.

B. Evaluation of CRLB
In this subsection, we evaluate the performance of derived

CRLBs (both real and asymptotic) by comparing them to the
actual estimation variance of the estimation parameter (i.e.,
ai, bi). The actual estimation variance is characterized by the
average RMSE (square root of the mean squared error) of all
sources. The first experiment evaluates the effect of the number

of sources (i.e., M ) in the system on the CRLB performance.
We start with the real CRLB evaluation. We fix the true and
false measured variables to be 1000 respectively, the average
observations per source is set to 100. We vary the number
of sources from 5 to 31. Reported results are averaged over
100 experiments and are shown in Figure 5. Observe that the
real CRLB tracks the actual estimation variance of estimation
parameters accurately even when the number of sources is
small (e.g., M ≤ 20) in the system. We also observe that the
RMSE is smaller than the Real CRLB when there are too few
sources. This is because the MLE is biased on those points
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(a) Real CRLB of ai

(b) Real CRLB of bi

Fig. 5. Real CRLB of ai and bi
versus Vaying M

(a) Asymptotic CRLB of ai

(b) Asymptotic CRLB of bi

Fig. 6. Asymptotic CRLB of ai and
bi versus Vaying M

(a) Real CRLB of ai

(b) Real CRLB of bi

Fig. 7. Real CRLB of ai and bi
versus Vaying N

(a) Asymptotic CRLB of ai

(b) Asymptotic CRLB of bi

Fig. 8. Asymptotic CRLB of ai and
bi versus Vaying N

due to the small dataset. As illustrated in Section IV-A, the
computation of real CRLB does not scale with the number
of sources in the system. Hence, we also evaluate the the
performance of asymptotic CRLB when the number of sources
becomes large. We keep the experimental configuration the
same as above, but change the number of sources from 10
to 150. Results are shown in Figure 6. We observe that the
asymptotic CRLB deviates from the actual estimation variance
when the number of sources is small (e.g., M ≤ 20). However,
as the number of sources becomes sufficient in the network,
the actual RMSE converges to the asymptotic CRLB quickly
and the difference between the two becomes insignificant.

The second experiment compares the derived CRLBs (both
real and asymptotic) to the actual RMSE of estimation parame-
ters when the number of measured variables (i.e., N ) changes.
As shown in Section IV, both the real and asymptotic CRLB
decrease as 1

N . As before, we first evaluate the performance of
real CRLB. We fix the number of sources as 20, the average
number of observations per source is set to 100. We also keep
the number of true and false measured variables the same.
The number of measured variables varies from 1000 to 2000.
Reported results are averaged over 100 experiments and are
shown in Figure 7. We observe that the real CRLB is able
to track the actual RMSE on estimation parameter correctly
and they both decrease approximately as 1

N when the number
of measured variable increases. Similarly, we carry out the
experiment to evaluate the performance of asymptotic CRLB.
We keep the experimental configuration the same as above,
but set the number of sources to be 150. Results are shown in
Figure 8. We observe that the asymptotic CRLB also follows
closely on the actual RMSE of the estimation parameter and
they reduce approximately as 1

N when the number of measured
variable increases.

C. Sensitivity to Changing the Number of Sources
In this subsection, we evaluate the robustness (or sensitivity)

of the estimation performance and the derived CRLBs when

the number of sources changes under different source relia-
bility distributions. The key characteristic that determines the
resilience of a network is the network topology. The social
sensing topology is characterized by the link connections be-
tween sources and two sets of measured variables (i.e., true and
false). The link connection skew is mainly determined by the
source reliability distribution. We consider two representative
network topologies: scale-free and exponential topologies in
our evaluation. For scale-free topology, sources have diverse
reliability and nodes with high reliability form the “hubs” of
the network. For exponential topology, sources have similar
reliability and nodes with higher reliability are exponentially
less probable. Our experiments were done by source removal
(i.e., sources are randomly selected and removed from the
system). This represents the scenario where random sources
decide to quit the sensing application or their sensing devices
fail. However, it is equivalent to reversing the steps and
investigating the addition of sources.

In the first experiment, we evaluate the estimation perfor-
mance and the derived CRLBs of the scale-free network topol-
ogy. To generate the scale-free network topology, we let the
source reliability follow a uniform distribution on its definition
range. We first evaluate the performance of the real CRLB
compared to the actual RMSE on the estimation parameter.
We fix both the number of true and false measured variables
to 1000. The average number of observations per source is set
to 100. We start with 25 sources and gradually remove sources
from the system. Figure 9 shows the real CRLB and actual
RMSE of the estimation parameter. Observe that the estimation
performance (i.e., actual RMSE) degrades gracefully and the
real CRLB tracks the actual RMSE reasonably well as the
number of removed sources increases. Also note that the real
CRLB deviates slightly from the RMSE when majority of
sources are removed from the system. We then repeat similar
experiments for the asymptotic CRLB as well. We start with
150 sources and gradually remove the sources from the system.
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(a) Real CRLB of ai

(b) Real CRLB of bi

Fig. 9. Real CRLB of ai and bi
versus Source Removal of Scale-free
Topology

(a) Asymptotic CRLB of ai

(b) Asymptotic CRLB of bi

Fig. 10. Asymptotic CRLB of ai and
bi versus Source Removal of Scale-
free Topology

(a) Real CRLB of ai

(b) Real CRLB of bi

Fig. 11. Real CRLB of ai and bi
versus Source Removal of Exponential
Topology

(a) Asymptotic CRLB of ai

(b) Asymptotic CRLB of bi

Fig. 12. Asymptotic CRLB of ai and
bi versus Source Removal of Expo-
nential Topology

Results are shown in Figure 10. The results for asymptotic
CRLB are similar to real CRLB.

In the second experiment, we evaluate the estimation per-
formance and the derived CRLBs of the exponential network
topology. To generate the exponential network topology, we let
the source reliability follow a norm distribution (with the mean
value as the mean of its definition range and a reasonably small
variance). As we did before, we first evaluate the performance
of the real CRLB compared to the actual RMSE on the
estimation parameter. The standard deviation of the norm
distribution of source reliability is set to 0.02, other settings
are kept the same as the first experiment. Figure 11 shows
the real CRLB and actual RMSE of the estimation parameter.
Observe that actual RMSE increases gradually as the number
of removed sources grows and the real CRLB tracks the
actual RMSE well. We then repeat similar experiments for
the asymptotic CRLB as well. The experimental settings are
kept the same as the first experiment. Results are shown in
Figure 12. Similar results as we have for the real CRLB are
observed for the asymptotic CRLB.

For both the scale-free and exponential topology of social
sensing, the above results show that the estimation perfor-
mance is relatively robust (or insensitive) to changes in the
number of sources in the network. Both real and asymptotic
CRLBs are able to track the estimation performance as long
as a limited number of sources stay in the system.

VI. LIMITATIONS AND FUTURE WORK

This paper studies the scalability and robustness limita-
tions of the confidence bounds to characterize the estimation
performance on source reliability in social sensing. Several
simplifying assumptions were made that offer opportunities
for future work.

Sources were assumed to be independent. In reality, sources
could be influenced by each other (i.e., copy observations,
forward rumor, and etc.) or even collude to misrepresent the

truth. Recent work has proposed techniques to detect the de-
pendency and copying relationship between sources [7]. Other
methods are proposed to mitigate the source collusion attack
by analyzing the network or interaction pattern of colluding
sources [11]. The above techniques can be used together
with our quantification scheme to handle source dependency.
Moreover, authors are also working on extending the current
model to handle non-independent sources. For example, one
could cluster dependent sources into approximately indepen-
dent ones according to some source similarity metric and
run our scheme on top of the clustered sources. Additionally,
sources are sometimes experts in specific domains. It would
be interesting to assess the estimation performance on source
reliability by taking source expertise into consideration. One
possibility is to weight observations differently depending on
the source’s expertise in the confidence calculation.

No dependencies were assumed among different measured
variables. There may be cases, however, observations on
one measured variable could imply observations on another
(e.g., “flooding” at city B may imply “raining” at city A).
The background knowledge of the observation dependency
can thus be integrated with our scheme to pre-process the
observation matrix (e.g., add or remove links) based on the
reported observations and their relationship. Moreover, all
observations are treated equally in our model. It is interesting
to extend the model to handle the hardness of different
observations. In other words, the source reliability and confi-
dence estimation will be computed not only based on whether
those observations from the source are true or not but also
based on whether such observations are trivial to make. This
extension prevents sources from obtaining high reliability and
confidence in estimation by simply making many trivially true
observations. There are techniques that analyze the hardness
of observations, which is possible to be integrated with our
scheme [8]. In this paper, sources are assumed to report
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positive states of measured variables (e.g., litter found) only
and ignore the negative states. This is a reasonable assumption
for some typical social sensing applications (e.g., geotagging).
However, sources can also make contradicting observations in
other types of applications (e.g., on-line review system). Our
model can be extended to handle contradicting observations
by expanding the estimation parameter vector that covers
only positive states to both positive and negative states and
rebuilding the likelihood function. The general outline of the
proof still holds true in this scenario.

Having the fundamental estimation error analysis and con-
fidence quantification theory in place, we can relax the above
assumptions and accommodate the mentioned extensions in
future work. The authors are currently working on the above
extensions.

VII. CONCLUSION

This paper presents new confidence bounds on source
reliability in social sensing applications that allow the appli-
cations to accurately assess the quality of data contributed
by human participants to a desired confidence level. The
confidence bounds are computed based on the Cramer-Rao
lower bound (CRLB) of the maximum likelihood estimation of
source reliability. The real and asymptotic CRLBs are derived
and their scalability limitations are examined. The estimation
performance and accuracy of the derived CRLBs are shown
to be robust to changes in the number of sources for different
sensing network topologies.

APPENDIX A

When j 6= q, plugging the expressions of Zj and Zq , we
can prove the expectation term in Equation (10) is zero:

E
[ (2Xkj − 1)Zj(2Xlq − 1)Zq

a
Xkj

k (1− ak)(1−Xkj)a
Xlq

l (1− al)(1−Xlq)

]
=∑

x∈X
(2Xkj − 1)(2Xlq − 1)×

( M∏
i=1
i 6=k

a
Xij

i (1− ai)(1−Xij) × d
M∏
i=1
i 6=l

a
Xiq

i (1− ai)(1−Xiq) × d
)

×

(
N∏
j
′
=1

j
′
6=j or q

{
M∏
i=1

a
X

ij
′

i (1− ai)
(1−X

ij
′ ) × d

+

M∏
i=1

b
X

ij
′

i (1− bi)
(1−X

ij
′ ) × (1− d)

})
=

∑
x∈X j×Xq

(2Xkj − 1)(2Xlq − 1)×

( M∏
i=1
i 6=k

a
Xij

i (1− ai)(1−Xij) × d
M∏
i=1
i 6=l

a
Xiq

i (1− ai)(1−Xiq) × d
)

=

1∑
Xkj=0

1∑
Xlq=0

(2Xkj − 1)(2Xlq − 1) = 0 j 6= q (24)

ACKNOWLEDGEMENTS

Research reported in this paper was sponsored by the Army
Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-09-2-0053. This work was par-
tially supported by the LCCC and eLLIIT centers at Lund
University, Sweden. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] C. Aggarwal and T. Abdelzaher. Integrating sensors and social networks.
Social Network Data Analytics, Springer, 2011.

[2] L. Berti-Equille, A. D. Sarma, X. Dong, A. Marian, and D. Srivastava.
Sailing the information ocean with awareness of currents: Discovery and
application of source dependence. In CIDR’09, 2009.

[3] G. Casella and R. Berger. Statistical Inference. Duxbury Press, 2002.
[4] H. Cramer. Mathematical Methods of Statistics. Princeton Univ. Press.,

1946.
[5] X. Dong, L. Berti-Equille, Y. Hu, and D. Srivastava. Global detection

of complex copying relationships between sources. PVLDB, 3(1):1358–
1369, 2010.

[6] X. Dong, L. Berti-Equille, and D. Srivastava. Truth discovery and
copying detection in a dynamic world. VLDB, 2(1):562–573, 2009.

[7] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating conflicting
data: the role of source dependence. Proc. VLDB Endow., 2:550–561,
August 2009.

[8] A. Galland, S. Abiteboul, A. Marian, and P. Senellart. Corroborating
information from disagreeing views. In WSDM, pages 131–140, 2010.

[9] R. V. Hogg and A. T. Craig. Introduction to mathematical statistics.
Prentice Hall, 1995.

[10] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

[11] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An
empirical study of collusion behavior in the maze p2p file-sharing
system. In Proceedings of the 27th International Conference on
Distributed Computing Systems, ICDCS ’07, pages 56–, Washington,
DC, USA, 2007. IEEE Computer Society.

[12] J. Pasternack and D. Roth. Knowing what to believe (when you already
know something). In International Conference on Computational
Linguistics (COLING), 2010.

[13] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous
information networks with star network schema. In 15th SIGKDD
international conference on Knowledge discovery and data mining
(KDD’09), pages 797–806, 2009.

[14] D. Wang, T. Abdelzaher, H. Ahmadi, J. Pasternack, D. Roth, M. Gupta,
J. Han, O. Fatemieh, and H. Le. On bayesian interpretation of fact-
finding in information networks. In 14th International Conference on
Information Fusion (Fusion 2011), 2011.

[15] D. Wang, T. Abdelzaher, L. Kaplan, and C. C. Aggarwal. On quantifying
the accuracy of maximum likelihood estimation of participant reliability
in social sensing. In DMSN11: 8th International Workshop on Data
Management for Sensor Networks, August 2011.

[16] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher. On truth discovery in
social sensing: A maximum likelihood estimation approach. In The 11th
ACM/IEEE Conference on Information Processing in Sensor Networks
(IPSN 12), April 2012.

[17] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple conflicting
information providers on the web. IEEE Trans. on Knowl. and Data
Eng., 20:796–808, June 2008.

[18] X. Yin and W. Tan. Semi-supervised truth discovery. In WWW, New
York, NY, USA, 2011. ACM.


