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On Scalable and Robust Truth Discovery in Big
Data Social Media Sensing Applications

Daniel (Yue) Zhang, Dong Wang, Nathan Vance, Yang Zhang, and Steven Mike

Abstract—Identifying trustworthy information in the presence of noisy data contributed by numerous unvetted sources from online
social media (e.g., Twitter, Facebook, and Instagram) has been a crucial task in the era of big data. This task, referred to as truth
discovery, targets at identifying the reliability of the sources and the truthfulness of claims they make without knowing either a priori. In
this work, we identified three important challenges that have not been well addressed in the current truth discovery literature. The first
one is “misinformation spread” where a significant number of sources are contributing to false claims, making the identification of
truthful claims difficult. For example, on Twitter, rumors, scams, and influence bots are common examples of sources colluding, either
intentionally or unintentionally, to spread misinformation and obscure the truth. The second challenge is “data sparsity” or the “long-tail
phenomenon” where a majority of sources only contribute a small number of claims, providing insufficient evidence to determine those
sources’ trustworthiness. For example, in the Twitter datasets that we collected during real-world events, more than 90% of sources
only contributed to a single claim. Third, many current solutions are not scalable to large-scale social sensing events because of the
centralized nature of their truth discovery algorithms. In this paper, we develop a Scalable and Robust Truth Discovery (SRTD) scheme
to address the above three challenges. In particular, the SRTD scheme jointly quantifies both the reliability of sources and the
credibility of claims using a principled approach. We further develop a distributed framework to implement the proposed truth discovery
scheme using Work Queue in an HTCondor system. The evaluation results on three real-world datasets show that the SRTD scheme
significantly outperforms the state-of-the-art truth discovery methods in terms of both effectiveness and efficiency.
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1 INTRODUCTION

THIS paper presents a new scalable and robust approach
to solve the truth discovery problem in big data so-

cial media sensing applications. Online social media (e.g.,
Twitter, Facebook, and Instagram) provides a new sensing
paradigm in the big data era where people act as ubiquitous,
inexpensive, and versatile sensors to spontaneously report
their observations (often called claims) about the physi-
cal world. This paradigm is motivated by the increasing
popularity of portable data collection devices (e.g., smart-
phones) and the massive data dissemination opportunities
enabled by online social media [31]. Examples of social me-
dia sensing include real-time situation awareness services
in disaster or emergency response [37], intelligent trans-
portation system applications using location-based social
network services [35], and urban sensing applications using
common citizens [49]. A critical challenge that exists in
social media sensing is truth discovery where the goal is
to identify reliable sources and truthful claims from massive
noisy, unfiltered, and even conflicting social media data. The
truth discovery problem stays in the heart of the veracity
challenge of big data social media sensing applications.

To solve the truth discovery problem, a rich set of prin-
cipled approaches have been proposed in machine learning,
data mining, and network sensing communities [6], [7],
[17], [22], [37], [51]. However, three important challenges
have yet to be well addressed by existing truth discovery
solutions in social media sensing applications.
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First, current truth discovery solutions do not fully ad-
dress the “misinformation spread” problem where a signif-
icant number of sources are spreading false information on
social media. For example, a piece of misinformation on
Twitter saying that an 8-year-old girl was killed while run-
ning during the Boston Marathon has been so widely spread
that the misinformation to debunking ratio was 44:1 [26].
In examples like this, the widely spread false information
appears much more prominently than the truthful informa-
tion, making truth discovery a challenging task. Our eval-
uation results on three real-world events demonstrate that
current truth discovery solutions perform poorly in identi-
fying truth when misinformation is widely spread. Second,
many current truth discovery algorithms depend heavily on
the accurate estimation of the reliability of sources, which
often requires a reasonably dense dataset. However, “data
sparsity” or the “long-tail phenomenon” [44] is commonly
observed in real-world applications. For example, due to
the spontaneous nature of social media sensing, sources
might lack the motivation and incentives to continuously
contribute data to the application [50]. Alternatively, sources
might choose to ignore topics or events that they are not
interested in and only contribute data to the topics or events
that match their interests. In fact, in the real-world Twitter
datasets we collected, over 90% of users only contribute
a single tweet. In such a scenario where a vast majority
of sources contribute only a small number of claims, there
exists insufficient evidence for accurate estimation of source
reliability. Li et al. and Xiao et al. have explicitly discussed
the problem of data sparsity and demonstrated that many
existing truth discovery algorithms fail to provide good esti-
mations for source reliability when the dataset is sparse [7].
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For example, in an extreme case where a user only posts one
tweet, current truth discovery schemes will only be able to
identify binary values of reliability (either 0 or 1), resulting
in poor estimates of actual source reliability [44]. Third,
existing truth discovery solutions did not fully explore the
scalability aspect of the truth discovery problem [12]. Social
sensing applications often generate large amounts of data
during important events (e.g., disasters, sports, unrests) [23].
For example, during the 2016 Super Bowl, 3.8 million people
generated a total of 16.9 million tweets with a peak rate
of over 152,000 tweets per minute [19]. Current centralized
truth discovery solutions are incapable of handling such
a large volume of social sensing data due to the resource
limitation of a single computing device. A few distributed
solutions have been developed to address the scalability
issue of the truth discovery problem [20]. However, they
suffer from problems such as long startup times and igno-
rance of the heterogeneity of computational resources.

In this paper, we develop a Scalable and Robust Truth
Discovery (SRTD) scheme to address the misinformation
spread, data sparsity, and scalability challenges in big data
social media sensing applications. To address the misin-
formation spread challenge, the SRTD scheme explicitly
models various behaviors that sources exhibit such as copy-
ing/forwarding, self-correction, and spamming. To address
data sparsity, the SRTD scheme employs a novel algorithm
that estimates claim truthfulness from both the credibil-
ity analysis on the content of the claim and the histori-
cal contributions of sources who contribute to the claim.
To address the scalability challenge, we develop a light-
weight distributed framework using Work Queue [4] and
HTCondor [27], which form a system that is shown to
be both scalable and efficient in solving the truth discovery
problem. We evaluate our SRTD scheme in comparison
with state-of-the-art baselines on three real-world datasets
collected from Twitter during recent events (Dallas Shooting
in 2016, Charlie Hebdo Attack in 2015, and Boston Bombing
in 2013). The evaluation results show that our SRTD scheme
outperforms the state-of-the-art truth discovery schemes
by accurately identifying the truthful information in the
presence of widespread misinformation and sparse data,
and significantly improving the computational efficiency.

We summarize our contributions as follows:

• We address three important challenges (i.e., misin-
formation spread, data sparsity, and scalability) in
solving the truth discovery problem in big data social
media sensing applications.

• We develop a novel Scalable Robust Truth Discov-
ery (SRTD) scheme that explicitly considers various
source behaviors, content analysis of claims, and
historical contributions of sources in a holistic truth
discovery solution.

• We develop a light-weight distributed framework
based on Work Queue and HTCondor to implement
the SRTD scheme and improve computational effi-
ciency.

• We compare the performance of the SRTD scheme to
a set of representative truth discovery solutions using
three large-scale real-world datasets. The evaluation
results demonstrate that the SRTD scheme achieves

significant performance gains in terms of both effec-
tiveness and efficiency compared to the baselines.

A preliminary version of this work has been published
in [44]. We refer to the scheme developed in the previous
work as the Reliable Truth Discovery (RTD) scheme. The
current paper is a significant extension of the previous
work in the following aspects. First, we extend our pre-
vious model by deriving the contribution score of sources
using a more fine-grained and principled approach (Sec-
tion 3). Specifically, we introduce the notion of Attitude
Score, Uncertainty Score, and Independent Score to quantify
the contributions from a source to the claim. The SRTD
scheme is shown to be more accurate than the previous
RTD scheme (Section 6). Second, we address the scalability
challenge of the truth discovery solutions by developing
a new distributed framework using Work Queue and HT-
Condor. We also implement a control system to optimize
system performance (Section 4). Third, we add a new and
more recent real-world dataset (i.e., Dallas Shooting in
2016) to further evaluate the performance and robustness of
our proposed scheme in an additional real-world scenario
(Section 6). Fourth, we compare our scheme with state-of-
the-art baselines from recent truth discovery literature and
demonstrate the performance improvements achieved by
the SRTD scheme (Section 6). Finally, we extend the related
work by reviewing recent works on the distributed truth
discovery solutions (Section 2).

2 RELATED WORK

2.1 Social Media Sensing
Social media sensing is an emerging sensing paradigm

where social sensors (i.e. social media users) voluntarily re-
port their observations of the physical world [38]. Combined
with social media analysis techniques, social media sensing
enables a great variety of applications. Examples include
urban abnormality detection [5], social event summarization
[3], user trajectory prediction [47], emergency response [39],
and resource management [45]. This work focuses on the
truth discovery problem where the goal is to jointly estimate
the truthfulness of claims on social media and the reliability
of social media users. The solution to this problem can
benefit social media sensing applications by addressing the
data veracity challenge in a noisy social media environment.

2.2 Truth Discovery
Truth discovery has received a significant amount of at-

tention in recent years, and previous studies have developed
various models to address this important challenge in big
data applications. The truth discovery problem was first
formally defined by Yin et al. [42], in which a Bayesian-based
heuristic algorithm, Truth Finder, was proposed. Pasternack
et al. extended this model by incorporating prior knowledge
of constraints into truth discovery solutions and developed
several solutions (AvgLog, PooledInvest) [22]. Dong et al.
explicitly considered the source dependency in truth discov-
ery problems [6]. A semi-supervised graph learning scheme
was proposed to model the propagation of information
truthfulness from the known ground truths [43]. Wang et
al. proposed a scheme that offered a joint estimation on
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source reliability and claim correctness using maximum-
likelihood estimation approach [37]. Zhang et al. developed
a constraint-aware truth discovery model to incorporate
physical constraints into detecting dynamically evolving
truth [46]. However, there exists a significant knowledge gap
in existing truth discovery solutions in terms of identifying
truthful claims among widely spread misinformation, which
is both a challenging and critical task in truth discovery. In
our work, we propose a new truth discovery scheme that
is robust against misinformation spread and is able to find
truthful claims even if the majority of sources are providing
misinformation.

2.3 Data Sparsity
Data sparsity or the “long-tail phenomenon” is an im-

portant challenge in many big data research areas [9], [18].
However, very few truth discovery schemes have explicitly
considered this challenge even though sparse data is ubiq-
uitous in real-world social media sensing applications. Li et
al. proposed a Confidence-Aware Truth Discovery scheme
(CATD) based on the observation that a point estimator
for source reliability is not reliable when sources contribute
very few claims. The CATD method derives a confidence
interval to quantify the accuracy of source reliability esti-
mation. Xiao et al. further extended the CATD model to
explicitly consider the confidence interval of the truthful-
ness of the claims. They argued that when a claim has
few sources contributing to it, the estimation score for the
truthfulness of the claim becomes less meaningful. They
proposed a new truth discovery scheme called Estimating
Truth and Confidence Interval via Bootstrapping (ETCI-
BooT) that was able to construct claims’ confidence intervals
as well as identifying the truth [7]. Although both of these
works considered data sparsity, they did not evaluate their
performance on detecting widespread misinformation. In
fact, our evaluation results have suggested that the above
solutions are not robust against widespread misinformation
in social media sensing applications.

2.4 Distributed Systems for Social Sensing
Our work also bears some resemblance to a few dis-

tributed system implementations for social sensing appli-
cations. For example, Ouyang et al. developed a parallel
algorithm for quantitative truth discovery applications to
efficiently handle big streaming data by using the MapRe-
duce framework in Hadoop [20]. Yerva et al. developed a
cloud-serving system for fusing the social and sensor data
to deal with massive data streams [41]. Xue et al. introduced
a cloud-based system for large-scale social network analysis
using the Hadoop framework [40]. A limitation of these
approaches is that Hadoop is designed for dealing with
large datasets and is too heavy-weight for time-critical ap-
plications that require fast response times in the presence
of both small and large datasets [20]. In this work, we
develop a light-weight distributed framework using Work
Queue and HTCondor to improve the efficiency of our truth
discovery scheme. This framework is ideal for time-critical
systems because i) HTCondor is a high throughput dis-
tributed computing system that allows parallel computation
of thousands of tasks, thus significantly reducing the overall

processing time [48]; ii) the flexible priority scheduling al-
lows critical tasks to be processed faster to meet the deadline
requirements [28]; iii) the initialization time of HTCondor
jobs compared to Hadoop is much smaller, making it more
suitable to handle streaming data.

3 PROBLEM FORMULATION

In this section, we formulate our robust truth discovery
problem in big data social media sensing. In particular,
consider a social media sensing application where a group
of M sources S = (S1, S2, ..., SM ) reports a set of N claims,
namely, C = (C1, C2, ..., CN ). Let Si denote the ith source
andCj denote the jth claim. We defineRP t

i,j to be the report
made by source Si on claim Cj at time t.

Take Twitter as an example; a source refers to a user ac-
count and a claim is a statement of an event, object, or topic
that is derived from the source’s tweet. For example, a tweet
“Not much of the comment about the Dallas shooting has
focused on the fact the sniper was a veteran.” is associated
with a claim “Dallas shooting sniper was a veteran”. The
tweet itself is considered as the report. We observe that the
social media sensing data is often sparse (i.e., the majority
of sources only contribute to a limited number of claims in
an event).

We further define Cj = T and Cj = F to represent
that a claim is true or false, respectively. Each claim is also
associated with a ground truth label {x∗j} such that xj = 1
when Cj is true and xj = 0 otherwise.

The goal of the truth discovery task is to jointly estimate
the truthfulness of each claim and the reliability of each
source, which is defined as follows:
DEFINITION 1. Claim Truthfulness Dj for claim Cj : The

likelihood of a claim to be true. The higher Dj is, the
more likely the claim Cj is true. Formally we define Dj

to estimate:
Pr(Cj = T ) (1)

DEFINITION 2. Source ReliabilityRi for source Si: A score
represents how trustworthy a source is. The higher Ri

is, the more likely the source Si will provide credible
and trustworthy information. Formally we define Ri to
estimate:

Pr(Cj = T |SCi,j = T ) (2)

where SCi,j = T denotes that source Si reports claim
Cj to be true.

Since sources are often unvetted in social media sensing
applications and may not always report truthful claims,
we need to explicitly model the reliability of data sources
in our problem formulation. However, it is challenging to
accurately estimate the reliability of sources when the social
media sensing data is sparse [34]. Fortunately, the reports
themselves often contain extra evidence and information to
infer the truthfulness of a claim. In the Twitter example, the
text, pictures, URL links, and geotags contained in the tweet
can all be considered as extra evidence of the report. To
leverage such evidence in our model, we define a credibility
score for each report to represent how much the report
contributes to the truthfulness of a claim.
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We first define the following terms related to the cred-
ibility score of a report made by source Si on claim Cj at
time k.
DEFINITION 3. Attitude Score (ρki,j) : Whether a source

believes the claim is true, false or does not provide any
report. We use 1, -1 and 0 to represent these attitudes
respectively.

DEFINITION 4. Uncertainty Score (κki,j): A score in the
range of (0,1) that measures the uncertainty of a report. A
higher score is assigned to a report that expresses more
uncertainty.

DEFINITION 5. Independent Score: (ηki,j): A score in the
range of (0,1) that measures whether the report Ri,u is
made independently or copied from other sources. A
higher score is assigned to a report that is more likely
to be made independently.

Combining the above terms, we formally define the
Credibility Score of a report from source Si on claim Cj at
time k as:

SLSk
i,j = ρki,j × (1− κki,j)× ηki,j (3)

In Equation (3), we make the assumption that the credi-
bility of a report depends on a set of semantic scores related
with the report, namely, attitude score, uncertainty score,
and independence score. Using the above definition, we can
clearly differentiate the reports on a claim in the following
dimensions: i) a report that agrees or disagrees with the
claim; ii) a report made with high or low confidence on the
claim; iii) an original, copied, or forwarded report on the
claim. All these factors are shown to be important in iden-
tifying truthful claims from widely spread misinformation
[44].

Our model also explicitly considers a source’s historical
reports on the same claim. For example, spammers on Twit-
ter can keep posting the exact same tweets over and over,
which in most cases contain either irrelevant or misleading
claims. On the other hand, a reliable source such as a
police department or a responsible news outlet may proac-
tively correct its previous reports that carry misinformation.
Therefore, we define a time-series matrix to explicitly model
the historical contributions of a source on its claims.

Given M sources and N claims, we define a Time-series
Source Claim (TSC) matrix TSCM×N where each element
{SLSk

i,j} represents the historical credibility score of a re-
port from source Si on claim Cj at the time instance k.

TSCij = {SLS1
i,j , SLS

2
i,j , · · ·SLSk

i,j , · · · } (4)

The defined parameters and variables are summarized
in Table 1. Using the above definitions, we can formally
define the robust truth discovery problem in big data social
media sensing applications as follows: given the Time-
series Source-Claim Matrix TSC generated from the social
media sensing data as input, the objective is to estimate the
truthfulness Dj of each claim as the output. Specifically, we
compute:

∀j, 1 ≤ j ≤ N : Pr(Cj = T |TSC) (5)

Table 1
Definition and Notation

Si The ith source
Cj The jth claim
Ri The reliability of the ith source
Dj The truthfulness of the jth claim

SLSk
i,j The kth credibility score of the report from Si on Cj

x∗
j The ground truth label of the jth claim.

x̂∗
j Estimated label of the jth claim.

4 SOLUTION

In this section, we present the Scalable Robust Truth Dis-
covery (SRTD) scheme to solve the truth discovery problem
in big data social media sensing applications formulated
in the previous section. We first outline a few observations
relevant to our model. We then discuss the design intuition
and present the SRTD scheme.

4.1 Observations
We find the following observations to be relevant to our

model:

• Observation 1: Sources often spread false informa-
tion by simply copying or forwarding information
from others without independent verification (e.g.,
retweets on Twitter).

• Observation 2: False claims are often controversial
and sources tend to disagree with each other and
have intensive debates on those claims.

• Observation 3: If a source debunks its previous claim,
it’s very likely the previous claim is false because
people are generally prone to be self-consistent.

4.2 Algorithm Design
Before delving into the details of the proposed SRTD

scheme, we briefly review the current landscape of the truth
discovery solutions in social media sensing. The current
truth discovery solutions can be mainly classified into two
categories: (i) principled solutions where explicit objective
functions are defined and specific optimization techniques
are used to find the convergence points at the local/global
optimum of the objective functions (e.g., MLE, MAP based
solutions [33], [34], [36], [37], [51]); (ii) data-driven solutions
where heuristic based techniques (e.g., HITS, TruthFinder,
AvgLog [14], [22], [42]) are adopted to address some prac-
tical data driven challenges (e.g., data sparsity) that are not
well addressed by the principled solutions.

We observe that the principled solutions often work well
on relatively dense datasets (e.g., the number of claims
reported per source is high) but fail in the sparse data sce-
narios. The main reason is that the results of the principled
solutions primarily depend on the accuracy of a potentially
large set of estimation parameters (e.g., the parameters re-
lated to the source reliability and claim truthfulness), which
are sensitive to the density of the observed data [9], [18]. In
contrast, the data-driven solutions are often more heuristic
by nature and explore the content of the sensing data to
compensate for the data sparsity problem [22], [44].
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Our SRTD scheme in this paper belongs to the category
of data-driven solutions. It follows the intuition of our
previous work [44] where the semantics of the tweets are
found to be crucial in determining the claim truthfulness
when the source reliability is hard to estimate given the
sparse data. We compared SRTD with a few state-of-the-art
principled truth discovery schemes (e.g., EM-SD [36], EM-
Conflict [34]) in our evaluations (Section 6) and found that
SRTD significantly outperformed those baselines when the
data is sparse. Finally, we also discuss the future work of
developing principled and robust truth discovery solutions
for sparse social media sensing in Section 7.

4.3 Contribution Score (CS) of Sources
In the SRTD scheme, we first introduce the concept of

a Contribution Score (CS) to quantify the actual contribution
of a source on a claim. Using the TSC matrix defined in the
previous section, we aggregate the credibility scores of all
historic reports made by a source and define the Contribution
Score of the source as follows:
DEFINITION 6. Contribution Score CSij : The source Si’s

aggregated contribution to claim Cj , which is a function
of the source reliability and the credibility scores of all
historical reports made by the source.

In particular, the contribution score is calculated using
the following rubrics:

• A more reliable source should be assigned a higher
contribution score.

• Original reports of a claim should be assigned higher
contribution scores than simply copying and for-
warding reports.

• Reports with more assertion (i.e., less uncertainty)
should be assigned higher contribution scores than
those that express uncertainty or guesses.

• The self-correction behavior represents the reflection
ability of the source which should be honored by
assigning a higher contribution score to the source.

• Spamming behavior (i.e. a source keeps on forward-
ing the same claim) should be punished by decreas-
ing the contribution score.

More specifically, the contribution score of source Si on
claim Cj is denoted as CSij and it is formally calculated as:

CSij = sgn(SLSK
i,j)

K∑
k=1

RK+1−k
i |SLSk

i,j | (6)

whereRi denotes the reliability of source Si, SLSk
i,j denotes

Si’s historical credibility score of a report made at time k on
claim Cj , sgn(SLSK

i,j) represents the sign of SLSK
i,j , and K

denotes the size of SLSi,j sequence. Since the sign of the
formula only depends on the latest report, we honor the
“self-correction” behavior by treating only the source’s last
report as its actual attitude towards the claim. We use term
RK+1−k

i as a “damping factor” to assign higher weights
to “fresher” reports. The benefits are twofold: i) we reduce
the effect of spamming behavior: if a user keeps tweeting
the same thing over time, the old spamming reports will
have little effect on the global contribution score of the user;
ii) we assign the highest weight to the latest report from

a source that debunks its own previous claims to alleviate
the influence of their previous “mistakes”. The definition of
credibility scores also allows us to punish copying behaviors
and unsure conjectures by assigning them lower scores as
explained in the previous section.

4.4 SRTD Algorithm
The SRTD algorithm is an iterative algorithm that jointly

computes the claim truthfulness and source reliability by
explicitly considering the contribution scores of the sources.
We initialize the model with uniform claim truthfulness
scores and uniform source reliability scores. In each itera-
tion, we first update the reliability score of each source using
the truthfulness scores of claims reported by the source
as well as the contribution score of the source itself. In
particular, we compute the source reliability Ri of Si as
follows:

Ri =

∑
j∈F (i) |CSij |(χ(CSij)Dj + (1− χ(CSij))(1−Dj))∑

j∈F (i) |CSij |

χ(a) =

{
1, a > 0

0, a ≤ 0
(7)

where F (i) is the set of the claims reported by source Si. The
above equation follows the intuition that the reliability of a
source is proportional to the percentage of truthful claims
it has provided. In particular, we consider the source’s
actual contribution to a claim by exploring its credibility
score, which represents the source’s attitude, uncertainty,
and independence.

The next step of the iteration is to update the claim
truthfulness score based on the newly computed source
reliability. In particular, the truthfulness Dj of a claim Cj

is calculated as:

TCj =
∑

i∈K(j)

CSij

=
∑

i∈K(j)

sgn(SLSK
i,j)

K∑
k=1

RK+1−k
i |SLSk

i,j | (8)

Dj =
1

1 + exp(−TCj)
(9)

where K(j) denotes all the sources who contributed to
claim Cj . The above equation follows the intuition that
a claim is more likely to be true if many reliable sources
provide independent statements that assert the claim to be
true. Unlike the previous models that only consider source
reliability in the computation of the claim truthfulness [22],
[42], our model explicitly incorporates both the historical
contributions of a source and the credibility scores of reports
made by the source.

In order to make the algorithm scalable, we first di-
vide the input matrix TSC into a set of Z submatrices
TSC1, TSC2, ..., TSCZ where each submatrix contains a
subset of the sources in S and all of the claims that are
reported by that subset of sources. In particular, we divide
the TSC matrix such that all resulting submatrices contain
a similar number of sources, and the size of each submatrix
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can easily fit into the memory of a single machine. It is
worth noting that we do not require the submatrices to be
of exactly the same size in the implementation. We designed
and implemented a dynamic tuning scheme to effectively
allocate submatrices to nodes in a cluster (discussed in
details in the next section). We also observe that it makes
sense to split the data into subsets of similar sizes in the first
place in order to avoid unnecessary system tuning overhead
that may occur later.

For each submatrix, we derive the source reliability and
claim truthfulness scores independently, and then aggregate
the results before the next iteration. Figure 1 shows a simple
illustrative example of the algorithm. In this example, we
have 6 sources and 5 claims. The algorithm first divides
the data into three submatrices with 2 sources in each
submatrix. For each iteration, we first compute the source
reliability scores within each submatrix, which is an in-
dependent operation because it contains all claims made
by its sources. Meanwhile, we compute the partial claim
truthfulness scores (namely < TCz

1 , TC
z
2 ...TC

z
5 >) of all

claims from the reliability scores of sources within each
submatrix. The partial truthfulness scores of claims are
then aggregated across the submatrices to obtain the final
claim truthfulness scores. We use a sigmoid function to
normalize the claim truthfulness scores. We finally update
the contribution scores based on Ri and Dj before entering
the next iteration of the SRTD algorithm. We note that the
aggregation step requires exchanging the results of each
submatrix in order to calculate the truthfulness scores of the
claims. In our implementation, we use a shared directory to
store, share, and update intermediate results in the SRTD
scheme. The details of our implementation are discussed in
the next section.

Figure 1. Dividing TSC Matrix Example with M = 6, N = 5, Z=3

Since each submatrix contains all of the claims that its
sources contributed to, the source reliability scores can be
calculated using the truthfulness of claims contributed by
the source within the submatrix based on Equation (7). To
calculate the truthfulness of the jth claim Dj , we first sum
over contribution scores from all the sources who contribute
to Cj within each submatrix TSCz , denoted as TCz

j . In
particular, we calculate:

TCz
j =

∑
i∈K(j,z)

CSij (10)

where K(j, z) is the set of the sources who contribute to the
jth claim in the z-th submatrix. We then derive the claim
truthfulness scores as follows.

TCj =
∑

1≤z≤Z
TCz

j (11)

Dj =
1

1 + exp(−TCj)
(12)

The pseudocode of the SRTD scheme is summarized in
Algorithm 1.

Algorithm 1 Scalable Robust Truth Discovery (SRTD)
Input: TSC matrix
Output: claim truthfulness x̂∗

j , ∀1 ≤ j ≤ N
Initialize Ri = 0.5, ∀i ≤ M ; set the values of credibility scores;
initialize max iteration = 100
Split Original TSC matrix into Z submatrices, let S(z) denote the
number of sources in the z-th submatrix
while {Dj} do not converge or reach max iteration do

for all z, 1 ≤ z ≤ Z do
for all i, 1 ≤ i ≤ S(z) do

for all j, 1 ≤ j ≤ N do
if TSCij exists then

compute CSij based on Equation (6)
end if

end for
end for
for all i, 1 ≤ i ≤ S(z) do

estimate Ri based on Equation (7)
end for
for all j, 1 ≤ j ≤ N do

compute TCz
j based on Equation (10)

end for
estimate Dj based on Equations (11) and (12)

end for
end while
for all j, 1 ≤ j ≤ N do

if Dj ≥ threshold then
output x̂∗

j = 1
else

output x̂∗
j = 0

end if
end for

Initially, the algorithm has little information about the
reliability of sources and the truthfulness of claims. In each
iteration, SRTD improves its knowledge by jointly updating
reliability scores and truthfulness scores until stopping cri-
teria are met. The algorithm stops when it converges (i.e.
the inter-iteration difference of claim truthfulness score is
negligible) or a maximum number of iterations is reached.

4.5 Convergence and Complexity Analysis

Our algorithm adopts an iterative estimation method
similar to TruthFinder [42], AverageLog [22], and RTD [44].
The results from previous works show quick conver-
gence and meaningful results obtained by this iterative
method [44]. In our work, we explicitly study the effec-
tiveness and convergence of the SRTD scheme in Sections
6.2.4 and 6.2.6, respectively. The results show effective truth
discovery results and quick convergence of the proposed
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scheme over real-world social sensing data traces. The over-
all complexity of the SRTD scheme is O(MNK) where M
is the number of sources, N is the number of claims, and K
is the number of iterations. In particular, the complexity of
computing contribution scores CSi,j , reliability scores (Ri),
and truthfulness scores (Dj) is O(MN), O(N), and O(N)
respectively. Given the quick convergence of the SRTD
scheme (i.e., Figure 10 of Section 6.2.6), K is often a small
constant. Therefore, the overall complexity of the algorithm
can be further simplified as O(MN). Additionally, SRTD is
a distributed solution that spreads the computation tasks
over multiple nodes running in parallel, further improving
the efficiency compared to centralized solutions (see Table 3
in Section 6.2.5 for details).

5 IMPLEMENTATION

In this section, we present a distributed implementation
of the SRTD system using HTCondor and Work Queue.
We first introduce the HTCondor system and Work Queue
framework. Then, we present the implementation of the
SRTD scheme, focusing on the allocation, management, and
control of the distributed truth discovery tasks.

5.1 HTCondor and Work Queue
5.1.1 HTCondor

We use HTCondor at the University of Notre Dame as
the underlying distributed system for the implementation
of our SRTD scheme. The system consists of over 1,900
machines and over 14,700 cores at the time of writing.
HTCondor has been used by hundreds of organizations in
industry, government, and academia to manage computing
clusters ranging from a handful to many thousands of work-
station cores [16]. The HTCondor system at the University of
Notre Dame is deployed to library desktops, server clusters,
and other available machines which would otherwise be left
unused 90% of the day. Users can submit their computation
tasks to the HTCondor system, and the system allocates
the tasks to run on idle machines that are connected to the
system.

5.1.2 Work Queue
Work Queue is a lightweight framework for implement-

ing large-scale distributed systems [4]. This framework al-
lows the master process to define a set of tasks (i.e., Task
Pool), submit them to the queue, and wait for completion.
Work Queue maintains an elastic worker pool that allows
users to scale the number of workers up or down as required
by their applications. A worker is defined as a process that
performs specific computational functions described by the
tasks. Once running, each worker calls back to the master
process, arranges for data transfers, and executes the tasks.
We use Work Queue on top of the HTCondor system to take
advantage of its dynamic resource allocation mechanism for
task allocations.

5.2 Overview of SRTD Architecture
The architecture of the implemented SRTD system is

shown in Figure 2. A key component is the Dynamic Task
Manager (DTM), which is implemented as a master Work

Queue process that initializes a Worker Pool and dynam-
ically spawns new tasks into the Task Pool. The DTM
first divides the original TSC matrix into submatrices as
described in the previous section. Then, it spawns a set of
tasks to process all submatrices in parallel on the HTCondor
system. A feedback control system is integrated with the
SRTD scheme to monitor the current execution speed of
each Truth Discovery (TD) task and estimate its expected
finish time. The feedback control system informs the DTM
of control signals based on system performance, and it
dynamically adjusts the task priority and resource allocation
to optimize the overall system performance.

Figure 2. SRTD System Overview

5.3 Distributed Task Allocation
To make SRTD a scalable scheme, we divide the input

data into multiple subsets and process them in parallel. In
particular, we first divide the TSC matrix into Z submatrices
TSC1, TSC2, ..., TSCZ . The DTM then kicks off a TD task
for each submatrix. The TD task performs the following
operations:

1) Compute the source reliability based on equation (7)
2) Compute partial claim truthfulness TCz

j based on
equation (10)

3) Wait for all other TD tasks related to Cj to finish,
and compute Dj by aggregating all partial claim
truthfulnesses of Cj based on equations (11) and
(12)

4) Update the Contribution Scores of sources based on
equation (6)

5) Repeat the above steps until SRTD converges

Note that the third step requires sharing information
among different TD tasks. We achieve this by sharing a com-
mon directory between TD tasks in the HTCondor system 1.
After computing the partial claim truthfulness and source
reliability scores, each TD task records the intermediate
results (i.e. TCz

j and Ri) into a file in the shared directory.
Before the end of each iteration, the DTM aggregates the

1. The HTCondor system does not provide a direct way to share
information between different tasks.
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results from files and updates the submatrices for each TD
task. We note that this sharing mechanism introduces I/O
overhead to the performance of the SRTD scheme. How-
ever, we found that this I/O overhead is relatively small
compared to the total execution time of the truth discovery
algorithm, which is shown in the evaluation results in the
next section.

5.4 Dynamic Task Management and Feedback Control
System

In this subsection, we discuss the implementation details
of the Dynamic Task Manager (DTM). The DTM is designed
to dynamically manage the tasks and resources to optimize
the system performance. SRTD is essentially an iterative
algorithm and has to wait for all of the TD tasks in the
current iteration to finish before starting the next. Therefore,
it is crucial to ensure that each TD task is synchronized and
runs at the approximately same speed. We designed and
implemented a feedback control system that allows us to
monitor and dynamically control the speed of TD tasks.

The architecture of the dynamic feedback control system
is shown in Figure 3. It consists of three key components:
a Feedback Controller, Local Control Knobs (LCK), and
a Global Control Knob (GCK). A LCK refers to a local
control variable that is used to tune the performance of
a particular TD task. In the SRTD scheme, a LCK is the
subtask spawning of each TD task. Specifically, the LCK
can split one TD task into multiple sub-tasks that run in
parallel to improve the execution time of the TD task. The
GCK refers to a global control variable that is used to tune
the performance of all TD tasks in the system. In the SRTD
scheme, we use the total number of workers in the Worker
Pool as the GCK. In particular, we can change the resources
that are assigned to all TD tasks by scaling up or down the
number of workers in the pool.

Figure 3. Dynamic Feedback Control System

The feedback control mechanism is designed to identify
the lagging TD tasks. In particular, we monitor the execution
time for each TD task at each iteration. The control signal
is generated for a task that runs significantly slower than
others and the signal is sent to DTM. After each iteration, the
DTM tunes the control knobs using the following rubrics:

• LCK Tuning: If the i-th TD task is significantly slower
than other tasks, the DTM splits the TSCi into two
submatrices with a similar number of sources. The
DTM then spawns two sub-TD tasks for each matrix.
The original TD task is removed from the task pool.

• GCK Tuning: If the execution times of all TD tasks are
similar, and the execution time of the slowest task is
lower than a certain threshold, we scale up the total
number of workers by a factor of α.

• Otherwise, we enter the next iteration without sys-
tem tuning.

6 EVALUATION

In this section, we evaluate the SRTD scheme in com-
parison with the state-of-the-art truth discovery schemes
on three real-world datasets collected from Twitter in re-
cent events. The results demonstrate that the SRTD scheme
significantly outperforms all of the compared baselines in
terms of both accuracy and efficiency in big data social
media sensing applications.

6.1 Experimental Setups

6.1.1 Baseline Methods
We chose 9 representative truth discovery solutions as

the baselines in the evaluation: AvgLog, Invest, TruthFinder,
2-Estimates, CATD, ETBoot, EM-SD, EM-Conflict, and RTD.

• AvgLog: AvgLog is a basic truth discovery algorithm
that jointly estimates the source reliability and claim
truthfulness using a simple average-log function [22].

• Invest: The invest algorithm “invests” a source’s
reliability score among its claims. The truthfulness
of each claim can be obtained using a nonlinear
function [22].

• TruthFinder: TruthFinder identities trustworthy data
sources and true facts by utilizing the interdepen-
dence between source trustworthiness and fact con-
fidence [42].

• 2-Estimates: 2-Estimates algorithm identifies the
truthfulness of each claim by estimating the two
defined parameters in their models related to source
reliability and claim truthfulness [10].

• CATD, ETBoot: These two methods provide interval
estimators for source reliability in a sparse dataset
where most sources make one or two claims [7].

• EM-SD, EM-Conflict: These two methods both use
a maximum likelihood estimation approach for truth
discovery with social sensing data. EM-SD explicitly
considers the retweeting behavior of Twitter users
and uses that to build a source dependent model [36].
EM-Conflict explicitly considers conflicting claims
from different sources [34].

• RTD: RTD is a robust truth discovery solution we
developed in our previous conference paper. It lever-
ages the semantic scores of tweets to identify the
misinformation spread in social media sensing ap-
plications [44].

6.1.2 Parameter Tuning
Our scheme only has two parameters, the initial source

reliability scores - Ri and the output threshold as described
in Algorithm 1. We set them both to 0.5. For a fair compari-
son, we chose the parameter assignment that yields the best
result for baselines that have a tunable parameter.
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6.2 Experiment on Real World Data
6.2.1 Data Collection

In this paper, we evaluate our proposed scheme on
three real-world data traces collected from Twitter in the
aftermath of recent emergency and disaster events 2. The
first one is the Dallas Shooting that happened on July 7,
2016. A heavily armed army veteran ambushed a group
of police officers in Dallas, killing five officers and injuring
nine others. The shooting was believed to be the deadliest
incident for U.S. law enforcement since the 9/11 attacks.
The second trace is the Paris Charlie Hebdo Attack which
happened on Jan. 1, 2015. Several gunmen attacked the
offices of a French satirical news magazine in Paris, killing
12 people including employees and two police officers. The
third data trace is the Boston Bombing that happened on
April 15, 2013, when two bombs were detonated near the
finish line of the annual Boston Marathon, causing three
deaths and injuring several hundred others.

We developed a data crawler based on the Twitter open
search API to collect these data traces by specifying query
terms and the geographic regions related to the events. The
statistics of the three data traces are summarized in Table 2.
We noted that all three datasets are very sparse. In the Dallas
Shooting dataset, only 1.4% of sources contribute more than
two claims while 91.5% of sources contribute only one claim.
Similarly, in the Charlie Hebdo dataset, 90.8% of sources
make a single claim and only 2.3% of sources provide more
than two claims. In the Boston dataset, 94.9% of sources only
make a single claim and only 1.1% of sources contribute
more than two claims.

Our empirical results have shown that a large portion
of tweets is related to misinformation. In particular, in
our dataset, we found the proportions that are related to
misinformation (the number of tweets that contribute to
false claims) are 24.17%, 22.16% and 31.34% for the Dallas
Shooting, Charlie Hebdo Shooting and Boston Bombing, re-
spectively. Also, a vast majority of these misinformation re-
lated tweets (79.15%, 82.33%, 81.40% for the Dallas Shooting,
Charlie Hebdo Shooting and Boston Bombing, respectively)
are simply retweets or copies.

6.2.2 Data Preprocessing
We conducted the following data preprocessing steps to

prepare the datasets for the experiment: (i) cluster similar
tweets into the same cluster to generate claims; (ii) derive
semantic link scores; (iii) generate the TSC Matrix; and (iv)
generate ground truth labels. The details of these steps are
summarized below.

Clustering: we first grouped similar tweets into the
same cluster using a variant of K-means algorithm that
can effectively handle streaming Twitter data [13] and the
Jaccard distance to calculate the “distance” (i.e., similarity)
between tweets [29]. This metric is very commonly used
in clustering microblog posts (e.g., tweets) and has been
shown to be effective in identifying similar tweets in truth
discovery solutions [25], [44]. For each generated cluster, we
picked a representative statement as the claim and we take
each Twitter user as the source for our model described in
Section 3.

2. http://apollo.cse.nd.edu/datasets.html

Computing Credibility Score: To compute the Credi-
bility Score of a report (i.e., tweet), we first calculated the
Attitude Score of a source by performing a combination of
sentiment analysis and keyword matching. Specifically, we
performed Polarity Analysis to detect tweets that express
strong negative sentiment (with negativity value ≤ 0.6) as
“disagree” using the Python NLTK toolkit 3. We further
captured disagreeing tweets based on whether it contains
certain keywords such as “fake”, “false”, “debunked”, “ru-
mor”, “wrong”, and “not true”. We assigned a score of
“1” and “-1” for non-disagreeing and disagreeing tweets
respectively. We then calculated the Uncertainty Score by
implementing a simple text classifier using skit-learn and
trained it with the data provided by CoNLL-2010 Shared
Task [8]. To compute the Independent Score, we implemented
a script to automatically label a tweet as “dependent” if it
is i) a retweet; or ii) significantly similar to other tweets
(i.e., with a Jaccard distance less than 0.1) that were posted
with earlier timestamps. We assigned a relatively low score
to these dependent tweets. To evaluate the effectiveness of
the above methods, we randomly picked 200 labeled tweets
and manually checked the derived scores. The classification
accuracy for Attitude Score, Uncertainty Score and Independent
Score are 82.1%, 78.6%, and 90.3% respectively.

Generating the Time-series Source-Claim Matrix: We
generated the TSC matrix as follows: for source Si, we
recorded all of its reports (i.e., tweets) that were related
to Cj based on the clustering results. We sorted the tweets
in chronological order and for each tweet, we derived the
credibility score based on equation (3). The resulting time-
series vector {SLS1

i,j , SLS
2
i,j , · · ·SLSk

i,j} was stored as the
element TSCij in the matrix.

Labeling Ground Truth: We first manually checked if a
claim was a Factual Claim or an Unconfirmed Claim based
on the following rubric:

• Factual Claims: Claims that are statements of a physi-
cal or social event related to the selected topic (i.e.,
Dallas Shooting, Charlie Hebdo Attack, or Boston
Bombing) and observable by multiple independent
observers.

• Unconfirmed Claims: Claims that do not meet the
above criteria. Examples include the tweets that
represent personal feelings, shout-outs, quotes from
lyrics or books, etc.

After the above label processing, we discarded the un-
confirmed claims (since they cannot be independently ver-
ified) and manually verified the truthfulness of the factual
claims based on historical facts from credible sources exter-
nal to Twitter (e.g., mainstream news media).

6.2.3 Evaluation Metrics
After labeling the ground truth of the claims, we noticed

that our evaluation datasets are imbalanced: there were
many more true claims than false claims. For example, only
19% of the claims in the Dallas Shooting data trace, 14%
in the Charlie Hebdo Attack data trace, and 23% in the
Boston Bombing data trace are false. However, this does
not necessarily indicate that our truth discovery problem

3. http://text-processing.com/demo/sentiment/
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Table 2
Data Trace Statistics

Data Trace Dallas Shooting Charlie Hebdo Attack Boston Bombing
Start Date July 7 2016 January 1 2015 April 15 2013

Time Duration 8 days 3 days 4 days
Location Dallas, USA Paris, France Boston, USA

Search Keywords Dallas, Shooting, Police, Sniper Paris, Shooting, Charlie Hebdo Bombing, Marathon, Attack
# of Tweets (Original Set) 128,483 253,536 513,609

# of Tweets (Evaluation Set) 48,197 60,559 73,331
# of Tweets per User 1.17 1.09 1.14

% of Tweets Related To Misinformation 24.17% 22.86% 31.34%

on these data traces is simple; the false claims share many
similar features as the true claims in the evaluation datasets
(e.g., they have a similar number of supporting tweets,
they are reported by similar sets of sources, etc.). Mis-
classifying a false claim as true can lead to significant
negative impact in emergent events like disasters. To handle
the data imbalance, we chose Specificity (SPC), Matthews
Correlation Coefficient (MCC), and Cohen’s Kappa (Kappa) [44]
for imbalanced classification to evaluate the effectiveness of
all compared schemes.

6.2.4 Evaluation Results - Truth Discovery Effectiveness
In the first set of experiments, we evaluate the effective-

ness of truth discovery using above-mentioned metrics (i.e.
SPC, MCC and Kappa). The results of the Dallas Shooting
dataset are shown in Figure 4. We can observe that the
SRTD scheme outperforms all of the compared baselines.
Compared to the best-performed baseline (i.e. RTD), the
performance gains achieved by SRTD scheme on SPC, MCC,
and Kappa are 10.5%, 7.1% and 2.0%, respectively. Fig-
ure 4 also shows that both SRTD and the original RTD
significantly outperform all other baselines. This is due to
the fact that both algorithms are designed to be robust
against misinformation spread. In particular, both schemes
are able to identify a vast majority of the false rumors in
the dataset while other baselines misclassify many popular
rumors as truthful information. It is also observed that SRTD
outperforms the original RTD scheme, especially in terms of
specificity. This is because the fine-grained credibility scores
of reports introduced by SRTD allow identification of more
false claims than the RTD scheme when data is sparse. This
enhancement of the SRTD scheme results in a higher true
negative rate and a lower false positive rate.

The evaluation results of the Charlie Hebdo Attack data
trace are shown in Figure 5. We observe that SRTD continues
to outperform all baselines on all three evaluation metrics.
In particular, the performance gain achieved by SRTD com-
pared to the best-performing baseline (i.e. RTD) on SPC,
MCC, and Kappa is 9.3%, 2.1%, and 8.1%, respectively. The
MCC scores for SRTD and RTD are similar because both
schemes can identify most false rumors from this data trace.

The results of the Boston Bombing data trace are shown
in Figure 6. We observe that the SRTD scheme performs the
best among all compared schemes. Compared to RTD (the
best-performing baseline), the performance gains achieved
by SRTD scheme on SPC, MCC, and Kappa are 7.5%, 3.0%
and 7.4% respectively. We also observe that TruthFinder
achieves a similar performance to the SRTD scheme on
specificity on this dataset. This is because the TruthFinder

Figure 4. Dallas Shooting Data Trace

Figure 5. Charlie Hebdo Attack Data Trace

is prone to output more negative outputs, which lead to a
smaller false positive and a large false negative result.

6.2.5 Evaluation Results - Scalability and Efficiency

Next, we evaluate the efficiency of the SRTD scheme.
We run SRTD on the Notre Dame HTCondor cluster with a
ten worker maximum. We run all other baselines on a single
node with 4 processors and 8G of RAM. We use such a small
number of workers (i.e., 10 as compared to a total of over
14,700 cores available in the HTCondor system) in order to
favor other centralized baselines that are not designed to
run in a cluster. This demonstrates the performance gain
of our scheme with a very limited amount of resources
(i.e., our scheme only needs 10 workers to outperform other
baselines). The execution time of all compared schemes on
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Figure 6. Boston Bombing Data Trace

Table 3
Running Time (Seconds)

Method Dallas Charlie Hebdo Boston
SRTD 4.762 4.169 7.845
RTD 10.863 11.023 21.376

CATD 32.763 34.846 40.434
TruthFinder 57.519 40.213 82.957
2-Estimates 143.234 152.707 311.941

Invest 76.971 83.827 127.369
AverageLog 21.133 17.922 35.697

ETBOOT 46.223 81.170 54.412
EM-SD 55.772 52.793 62.457

EM-Conflict 62.597 56.214 75.923

the three data traces are shown in Table 3. The results show
that our SRTD scheme outperforms all other baselines by
having a shorter execution time to finish the truth discovery
task.

We further evaluate the scalability of the SRTD scheme
by extending each of the data traces by adding “synthetic”
tweets. In particular, we use the entire original data trace
that contains many more tweets than our evaluation set
(e.g., tweets contribute to unconfirmed or irrelevant claims,
or tweets are in other languages rather English). The size of
each data trace for scalability analysis is listed in Table 2.
The results are shown in Figure 7-9. We observe that the
SRTD scheme is the fastest of all compared schemes as the
data size increases. We also observe that the performance
gain achieved by SRTD becomes more significant when
data size becomes larger. These results demonstrate the
scalability of our scheme on large data traces in social media
sensing applications. We envision that the performance gain
of SRTD over other baselines would be much larger if we ran
it with more nodes.

6.2.6 Evaluation Results - Convergence

Finally, we perform the convergence analysis of the
SRTD scheme. The results are shown in Figure 10. The y-
axis is the difference of average claim truthfulness scores
between two consecutive iterations. We observe that the
SRTD scheme converges after only a couple of iterations on
all data traces.

Figure 7. Dallas Shooting Data Trace

Figure 8. Charlie Hebdo Attack Data Trace

Figure 9. Boston Bombing Data Trace

7 DISCUSSION AND FUTURE WORK

This section discusses some limitations we have identi-
fied in the current SRTD scheme as well as the future work
that we plan to carry out to address these limitations. First,
the SRTD scheme relies on a set of heuristically defined
scoring functions to solve the truth discovery problem in
social media sensing applications. In particular, the SRTD
scheme explores the semantic information of the reports to
address the data sparsity problem. However, it would also
be interesting to explore the possibility of developing robust
and principled truth discovery models that can address the
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Figure 10. Convergence of SRTD

data sparsity problem with rigorous objective functions and
optimized solutions [11]. Specifically, we plan to explore
principled statistical models that can explicitly handle the
sparse data. For example, a set of estimation theoretical
models can be extended to address the data sparsity issue
by using a sparse maximum likelihood estimation frame-
work [1]. Alternatively, data fusion techniques can be ap-
plied to incorporate external data sources (e.g., traditional
news media) to augment the sparse data obtained from so-
cial media [46]. Finally, the explicit or implicit dependencies
between claims can also be explored under a principled
analytical framework to mitigate the data sparsity issue in
principled truth discovery solutions [32]. The authors are
actively working in this direction.

Second, the proposed scheme does not consider the un-
confirmed claims that do not have ground truth or cannot be
independently verified by a trustworthy source external to
Twitter. However, unconfirmed claims are quite common in
real-world social media sensing applications. Compared to
the claims whose ground truth can be verified, many uncon-
firmed tweets simply express personal feelings or “shout-
outs”. In the future, we plan to address this limitation
by identifying and filtering out unconfirmed claims using
current sentiment analysis methods on social media [2],
[21]. Alternatively, we can also extend our SRTD scheme by
generalizing the categories of claims to include the uncon-
firmed ones. The challenge lies in defining credibility scores
of reports related to the unconfirmed claims and integrating
them into the new SRTD scheme.

Third, SRTD does not consider the dynamic truth prob-
lem where the truth of a claim changes over time (e.g.,
escape path of a suspect). There are two critical tasks in
addressing the dynamic truth challenge. The first is to
capture the transition of truth promptly, especially in a time
critical system, where we need to detect the updates of true
information frequently (e.g. the update of a terrorist attack,
the current stock price). The second one is to be robust
against noisy data that may lead to an incorrect detection
of the truth transition. Such a task can be challenging
especially in a social media sensing scenario where sources
can easily spread rumors. We plan to address this problem
by integrating a Hidden Markov Model (HMM) [24] with
our SRTD scheme to capture such dynamics based on the

observed crowd opinion as well as the previous states of
truth. In particular, we can treat the truthfulness of claims
as the hidden states and contribution scores of tweets as
observations. We can then leverage the HMM to explicitly
model the state transition probability of claim truthfulness
as well as the emission probability of crowd opinions. The
Viterbi algorithm [30] can be applied to decode the dynamic
truth of claims from the HMM model.

Fourth, a common limitation for our scheme and other
truth discovery techniques is that false claims can spread
from one domain to another domain without changing any
information, making it hard to identify truthful information
in real time. For example, during the Boston Bombing event,
CNN claimed that a bomber was arrested two days after the
event. This original message was retweeted more than 3,000
times until, half an hour later, it was debunked by the Boston
police department claiming that no arrest had been made.
Without any debates before the debunking, our scheme may
fail to detect that such a rumor is false. However, such
scenarios normally appear in the early stage of an event, and
eventually, debates and questions about the rumor will pop
out. In fact, in our datasets, all of the rumors have conflicting
opinions (debates) within the duration of the events, which
provides us with a solid basis to detect false claims. Also,
our scheme degrades the importance of non-original claims
(e.g., repeated or simply forwarded ones), which provides
robustness against misinformation spread.

Fifth, the current SRTD scheme assumes independence
between claims. There may be cases, however, when one
claim could be related to other claims (e.g., weather condi-
tions at city B may be related to weather conditions at city
A when A and B are close in distance). Claim dependency is
sometimes implicit and requires extra domain knowledge.
For example, the claims “OSU student shot and killed near
campus” and “a car w\2ppl rammed Watts Hall. 1 w\knife
1 w\gun.” are actually correlated given the fact that Watts
Hall is a building inside the OSU campus. However, without
such extra domain knowledge, it would be difficult or even
impossible to identify such dependencies between claims.
Incorporating such dependencies into the SRTD framework
can be an interesting topic for future research. In the future,
we plan to use a lexical database such as WordNet4 to
explicitly model the relationships between words on similar
concepts. We can also model the physical dependencies
between claims based on their geotagged locations using
location-based services such as Google Maps5.

Finally, we also plan to further enhance the robustness of
the SRTD scheme against collusion attacks where a group of
users may intentionally generate and propagate misinfor-
mation to mislead the crowd (e.g., to influence a political
election or to spam users). Unfortunately, this problem
has not been well addressed in current truth discovery
solutions. We plan to address this problem by explicitly
incorporating the dependencies among potentially colluded
sources into the SRTD scheme. Such dependencies can be
estimated based on similarities between tweets, frequency
and timing of tweets, and the following/followee relation-
ship between Twitter users. Social honey-pot techniques [15]

4. https://wordnet.princeton.edu/
5. https://developers.google.com/maps/
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can also be used to actively analyze the properties of the
attacker’s profiles by luring them to debut on some carefully
crafted claims. Such profile information could be further
incorporated into the source reliability computation of our
SRTD scheme.

8 CONCLUSION

In this paper, we proposed a Scalable Robust Truth
Discovery (SRTD) framework to address the data veracity
challenge in big data social media sensing applications. In
our solution, we explicitly considered the source reliabil-
ity, report credibility, and a source’s historical behaviors
to effectively address the misinformation spread and data
sparsity challenges in the truth discovery problem. We also
designed and implemented a distributed framework using
Work Queue and the HTCondor system to address the
scalability challenge of the problem. We evaluated the SRTD
scheme using three real-world data traces collected from
Twitter. The empirical results showed our solution achieved
significant performance gains on both truth discovery accu-
racy and computational efficiency compared to other state-
of-the-art baselines. The results of this paper are important
because they provide a scalable and robust approach to
solve the truth discovery problem in big data social media
sensing applications where data is noisy, unvetted, and
sparse.
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