
1.2 Round-off Errors and
Computer Arithmetic

1

• In a computer model, a memory storage unit – word is
used to store a number.

• A word has only a finite number of bits.
• These facts imply:

1. Only a small set of real numbers (rational numbers) can be
accurately represented on computers.

2. (Rounding) errors are inevitable when computer memory
is used to represent real, infinite precision numbers.

3. Small rounding errors can be amplified with careless
treatment.

So, do not be surprised that (9.4)10= (1001.0110)2 can not
be represented exactly on computers.
• Round-off error: error that is produced when a

computer is used to perform real number calculations.
2

Binary numbers and decimal numbers
• Binary number system:

A method of representing numbers that has 2 as its base and
uses only the digits 0 and 1. Each successive digit represents
a power of 2.

(…𝑏𝑏3𝑏𝑏2𝑏𝑏1𝑏𝑏0. 𝑏𝑏−1𝑏𝑏−2𝑏𝑏−3 …)2
where 0 ≤ 𝑏𝑏𝑖𝑖≤ 1, for each 𝑖𝑖 = ⋯2,1,0, −1,−2 …

• Binary to decimal:
(…𝑏𝑏3𝑏𝑏2𝑏𝑏1𝑏𝑏0. 𝑏𝑏−1𝑏𝑏−2𝑏𝑏−3 …)2

= (…𝑏𝑏323 + 𝑏𝑏2 22 + 𝑏𝑏121 + 𝑏𝑏020

+𝑏𝑏−12−1 + 𝑏𝑏−22−2 + 𝑏𝑏−32−3 …)10

3

Binary machine numbers
• IEEE (Institute for Electrical and Electronic Engineers)

– Standards for binary and decimal floating point numbers

• For example, “double” type in the “C” programming
language uses a 64-bit (binary digit) representation
– 1 sign bit (s),
– 11 exponent bits – characteristic (c),
– 52 binary fraction bits – mantissa (f)

1. 0 ≤ 𝑐𝑐 ≤ 211 − 1 = 2047
4

This 64-bit binary number gives a decimal floating-point
number (Normalized IEEE floating point number):

−1 𝑠𝑠2𝑐𝑐−1023(1 + 𝑓𝑓)
where 1023 is called exponent bias.

• Smallest normalized positive number on machine has 𝑠𝑠 =
0, 𝑐𝑐 = 1, 𝑓𝑓 = 0: 2−1022 � (1 + 0) ≈ 0.22251 × 10−307

• Largest normalized positive number on machine has 𝑠𝑠 =
0, 𝑐𝑐 = 2046, 𝑓𝑓 = 1 − 2−52: 21023 � (1 + 1 − 2−52) ≈
0.17977 × 10309

• Underflow: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 < 2−1022 � (1 + 0)
• Overflow: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 21023 � (2 − 2−52)
• Machine epsilon 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2−52: this is the difference

between 1 and the smallest machine floating point number
greater than 1.

5

• Positive zero: 𝑠𝑠 = 0, 𝑐𝑐 = 0, 𝑓𝑓 = 0.
• Negative zero: 𝑠𝑠 = 1, 𝑐𝑐 = 0, 𝑓𝑓 = 0.
• Inf: 𝑠𝑠 = 0, 𝑐𝑐 = 2047, 𝑓𝑓 = 0
• NaN: 𝑠𝑠 = 0, 𝑐𝑐 = 2047, 𝑓𝑓 ≠ 0
• Machine epsilon 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2−52.

– Difference between 1 and the smallest floating
point number greater than 1.

6

Example a. Convert the following binary machine
number (P)2 to decimal number.

Example b. What’s the next largest machine number
of (P)2 ?

7

𝑃𝑃 2 = 0 10000000011 10111001000100 … 0

Decimal machine numbers
• Normalized decimal floating-point form:

±0. 𝑑𝑑1𝑑𝑑2𝑑𝑑3 …𝑑𝑑𝑘𝑘 × 10𝑛𝑛

where 1 ≤ 𝑏𝑏1≤ 9 and 0 ≤ 𝑏𝑏𝑖𝑖≤ 9, for each 𝑖𝑖 = 2 …𝑘𝑘.
A. Chopping arithmetic:

1. Represent a positive number 𝑦𝑦 as
0. 𝑑𝑑1𝑑𝑑2𝑑𝑑3 …𝑑𝑑𝑘𝑘𝑑𝑑𝑘𝑘+1𝑑𝑑𝑘𝑘+2 … × 10𝑛𝑛

2. chop off digits 𝑑𝑑𝑘𝑘+1𝑑𝑑𝑘𝑘+2 … . This gives:
𝑓𝑓𝑓𝑓 𝑦𝑦 = 0. 𝑑𝑑1𝑑𝑑2𝑑𝑑3 …𝑑𝑑𝑘𝑘 × 10𝑛𝑛

B. Rounding arithmetic:
1. Add 5 × 10𝑛𝑛−(𝑘𝑘+1) to 𝑦𝑦
2. Chop off digits 𝑑𝑑𝑘𝑘+1𝑑𝑑𝑘𝑘+2 … .

• Remark. 𝑓𝑓𝑓𝑓 𝑦𝑦 represents normalized decimal
machine number. 8

Example 1.2.1. Compute 5-digit (a) chopping and (b)
rounding values of 𝜋𝜋 = 3.14159265359 …

• Definition. Suppose 𝑝𝑝∗ is an approximation to 𝑝𝑝.
The actual error is 𝑝𝑝 − 𝑝𝑝∗. The absolute error is
𝑝𝑝 − 𝑝𝑝∗ . The relative error is 𝑝𝑝−𝑝𝑝

∗

𝑝𝑝
, provided that

𝑝𝑝 ≠ 0.
– Remark. Relative error takes into consideration the size

of value.
• Definition. The number 𝑝𝑝∗ is said to approximate 𝑝𝑝

to 𝑡𝑡 significant digits if 𝑡𝑡 is the largest nonnegative
integer for which 𝑝𝑝−𝑝𝑝

∗

𝑝𝑝
≤ 5 × 10−𝑡𝑡.

9

Example 1.1.2. Find absolute and relative errors,
number of significant digits for:
(a) 𝑝𝑝 = 0.3000 × 101 and 𝑝𝑝∗ = 0.3100 × 101

(b) 𝑝𝑝 = 0.3000 × 10−3 and 𝑝𝑝∗ = 0.3100 × 10−3.

Example c. Find a bound of relative error for k-digit
chopping arithmetic.

10

Finite-Digit arithmetic

• Arithmetic in a computer is not exact.
• Let machine addition, subtraction, multiplication

and division be ⊕,⊖,⊗,⊘.
𝑥𝑥 ⊕ 𝑦𝑦 = 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑥𝑥 + 𝑓𝑓𝑓𝑓 𝑦𝑦
𝑥𝑥 ⊖ 𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑓𝑓𝑓𝑓 𝑥𝑥 − 𝑓𝑓𝑓𝑓(𝑦𝑦))
𝑥𝑥 ⊗ 𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑓𝑓𝑓𝑓 𝑥𝑥 × 𝑓𝑓𝑓𝑓(𝑦𝑦))
𝑥𝑥 ⊘ 𝑦𝑦 = 𝑓𝑓𝑓𝑓(𝑓𝑓𝑓𝑓 𝑥𝑥 ÷ 𝑓𝑓𝑓𝑓(𝑦𝑦))

Example 1.1.3. 𝑥𝑥 = 5
7

, 𝑦𝑦 = 1
3

, 𝑢𝑢 = 0.714251, 𝑣𝑣 =
98765.9. Use 5-digit chopping arithmetic to compute
𝑥𝑥 ⊕ 𝑦𝑦, 𝑥𝑥 ⊖ 𝑢𝑢, (𝑥𝑥 ⊖ 𝑢𝑢) ⊗ 𝑣𝑣. Compute relative error
for 𝑥𝑥 ⊖ 𝑢𝑢.

11

Calculations resulting in loss of accuracy

1. Subtracting nearly equal numbers gives fewer
significant digits.

2. Dividing by a number with small magnitude or
multiplying by a number with large magnitude will
enlarge the error.

Example d. Suppose 𝑧𝑧 is approximated by 𝑧𝑧 + 𝛿𝛿.
where error 𝛿𝛿 is introduced by previous calculation.
Let 𝜀𝜀 = 10−𝑛𝑛, 𝑛𝑛 > 0. Estimate the absolute error
of 𝑧𝑧 ⊘ 𝜀𝜀 .

12

Technique to reduce round-off error

• Reformulate the calculation.
Example e. Compute the most accurate
approximation to roots of 𝑥𝑥2 + 62.10𝑥𝑥 + 1 = 0 with
4-digit rounding arithmetic.

• Nested arithmetic
– Purpose is to reduce number of calculations.

Example 1.2.5. evaluate 𝑓𝑓 𝑥𝑥 = 𝑥𝑥3 − 6.1𝑥𝑥2 + 3.2𝑥𝑥 +
1.5 at 𝑥𝑥 = 4.71 using 3-digit chopping arithmetic.

13

	1.2 Round-off Errors and Computer Arithmetic
	Slide Number 2
	Binary numbers and decimal numbers
	Binary machine numbers
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Decimal machine numbers
	Slide Number 9
	Slide Number 10
	Finite-Digit arithmetic
	Calculations resulting in loss of accuracy
	Technique to reduce round-off error

