1.3 Algorithms and Convergence

Algorithm & Pseudocode

- An **algorithm** is an ordered sequence of unambiguous and well-defined instructions that performs some tasks.
- **Pseudocode** is an artificial and informal high-level language that describes the operating principle of a computer program or algorithm.
 - Pseudocode allows ones to focus on the logic of the algorithm without being distracted by details of language syntax.
 - The pseudo-code is a "text-based" detail (algorithmic) design tool and is complete. It describes the entire logic of the algorithm so that implementation is a task of translating line by line into source code.
 - Pseudocode also uses structured programming design.

- Rules of pseudocode
 - 1. Three categories of algorithmic operations
 - a) sequential operations (Sequence) instructions are executed in order.
 - Example: "variable" = "expression".
 - b) conditional operations (If-Then-Else) a control structure that asks a true/false question and then selects the next instruction based on the answer.
 - Example:

if "condition" then

(subordinate) statement 1

else

(subordinate) statement 2

- c) iterative (loop) operations (While) a control structure that repeats the execution of a block of instructions
 - Example:

while "condition"

(subordinate) statement 1

(subordinate) statement 2

- 2. All statements showing "dependency" are to be indented.
- 3. A period (.) indicates the termination of a step.
- 4. A semicolon (;) separates tasks within a step.

Pseudocode Structure

- **INPUT**:
- OUTPUT:
- Step1:
- Step2:
- *etc...*

Pseudocode

Example. Compute $\sum_{i=1}^{N} x_i$ INPUT N, x_1, x_2, \dots, x_N . OUTPUT $SUM = \sum_{i=1}^{N} x_i$

Step 1 Set SUM = 0. // Initialize accumulator Step 2 For i = 1, 2, ... N doset $SUM = SUM + x_i$. // add next term Step 3 OUTPUT(SUM); STOP.

Characterizing Algorithms

Error Growth

Suppose $E_0 > 0$ denotes an initial error, and E_n is the error after n subsequent operations.

- 1. If $E_n \approx CnE_0$, where *C* is a const. independent of *n*: the growth of error is **linear**.
- 2. If $E_n \approx C^n E_0$, where C > 1: the growth of error is **exponential.**

Remark: linear growth is unavoidable; exponential growth must be avoided.

Stability

- Stable algorithm: small changes in the initial data produce small changes in the final result
- Unstable or conditionally stable algorithm: small changes in all or some initial data produce large errors

Example a. For any c_1 and c_2 , $p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$ is the solution to the recursive equation

$$p_n = \frac{10}{3} p_{n-1} - p_{n-2}$$
, for $n = 2,3,...$

Suppose $p_0 = 1$ and $p_1 = \frac{1}{3}$. Use 5-digit rounding arithmetic to compute $\{p_n\}$. Is the procedure stable?

Definition 1.18 Rate of convergence for sequences

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence converging to 0, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K |\beta_n|,$$
 for large n ,

then $\{\alpha_n\}_{n=1}^{\infty}$ is said to converges to α with rate of convergence $O(\beta_n)$, indicated by $\alpha_n = \alpha + O(\beta_n)$.

Typical
$$\{\beta_n\}_{n=1}^{\infty}$$
:
 $\beta_n = \frac{1}{n^p}$ for some $p > 0$

Example 2. Suppose that, for $n \ge 1$, $\alpha_n = \frac{n+1}{n^2}$ and

 $\widehat{\alpha}_n = \frac{n+3}{n^3}$. Determine rates of convergence for these two sequences.

Definition 1.19 Rate of convergence for functions

Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$.

If a positive constant K exists with

 $|F(h) - L| \le K|G(h)|$, for sufficiently small h,

then F(h) = L + O(G(h)).

Typical G(h): $G(h) = h^{P}$ for some p > 0 **Example 3**. Use the third Taylor polynomial about h = 0 to show that $\cosh h = \frac{1}{2}h^2 = 1 + O(h^4)$.