2.5 Accelerating Convergence



Example. The Black-Scholes formula — A problem has
“complicated” derivative

The Black-Scholes formula for a European call option is given by:

C = S()N(dl) — Ke_TtN(dz).

C is the call price, S, is the price of the underlying assetat t =

0, K is the strike price at the maturity, r is the risk-free interest

rate, N(d) is the cumulative distribution function gf the
In(22)+(r+Z )¢

standard normal probability distribution, d; = (K)JSE 2) ,

and d, = d{ — o+/t. g is the variability in the marked price
known as the volatility.

Q: Given a target price C*, what is the corresponding volatility
0,°

Solution: Find the root of f(0) = SuN(d;) — Ke ™ "*N(d,)—C".

On+1 — On — C(f(O'n)
Where « is a small value.



Aitken’s A% Method

e Assume {p,}. -, is a linearly convergent sequence
with limit p.

Pn+1—D ~ Pn+2—DP

Pn —D Pn+1—P
e Solving for p yields:

Pn+2Pn — p%+1

p =~
Pn+2 — 2pn+1 + Pn
A little algebraic manipulation gives:

(pn+1 — Pn )2
Pn+2 — 2pn+1 + Pn
(Pn+1—Pn )2

Pn+2—2Pn+11Pn
Remark: The new sequence {p,}r—, converges to p faster.

 Further assume when n is large

P = Pn —

 Definep,, = p,



Definition 2.13
The forward difference Ap,, is defined by

Ap, = Dn4+1 — Pn - High powers of A are defined recursively by
Akp, = A(A*1p,,).

Remark: p,, can also be rewritten as

. (Apy)?

Theorem 2.14:

Suppose that {p, }.,—o converges linearly to the limit p
and that lim 221°2 < 1. Then the Aitken’s A?

n—-oco pPn—P
sequence {P, },=o converges to p faster than {p,, },,—¢ in

ﬁ?l_pzo

the sense that lim
n—oo Pn—>»



Example. Consider the sequence {p,, };,—, generated
by the fixed point iteration p,,.; = cos(p,,),ps = O.

ite ration_

Pn

P

el
MO OOO~NOO W = O

0.000000000000000
1.000000000000000
0.540302305868140
0.857553215846393
0.654289790497779
0.7 93480358742566
0.701368773622757
0.7 63959682900654
0.7 22102425026708
0.750417761763761
0.73 1404042422510
0.7 44237354900557
0.735604740436347

0.685073357326045
0.728010361467617
0.73 3665164585231
0.73 6906294340474
0.73 8050421371664
0.73 8636006881655
0.73 8876582817136
0.73 8992243027034
0.739042511328159
0.7390 65949599941
0.7390 76383318956
0.73908 1177259563"
0.73908 3333909684~



Steffensen’s Method

e Steffensen’s Method combines fixed-point iteration and the Aitken’s

A? method: . o
Step 0. Suppose we have a fixed point iteration:

Po, p1 = g(Po), p2 = g(p1)
Once we have we have pg, p; and p,, we can compute

(1) (p1 — Po)?

Po = Po—
° ° (p2—2p1 +po)
Step 1. Then we “restart” the fixed point iteration with

p =g(p), P =g (p)
and compute:

SR G )

Po =P -
0 0 (p§1)_2p§1)+p(()1))

Step 2. We “restart” the fixed point iteration with
(2) _ (2) (2) _ 2)
P1 —H(Po )» P> —g(P1 )

and compute:
@ _ . @)
@) _ . @ _ (pl Po )

Po =D .
0 0 (pgz) . 2p§2) n péz))




Example. Compare fixed-point iteration, Newton’s
method and Steffensen’s method for solving:

f(x) =x3+4x*—-10 = 0.
Solution: x3 4+ 4x% =10

x*(x +4) =10
, 10
x —
X+ 4
. . . . 10
Fixed point iteration: p,,41 = g(py) = —

Pn g(pPn)

1.50000 1.34840
1.34840 1.36738
1.36738 1.36496
1.36496 1.3652
1.36526 1.36523
1.36523 1.36523

W= O~




2. Newton’s method

xn f'[:In:]
1.50000 1.51600e-01
1.264405 -3.11226e-04
1.36523 -1.35587e-09

Pl =t D] ==

3. Steffensen’s method

0 0 0 1 0 0 1

Py Py Py o’ ={a3®;) Iy — Pyl
1.50000 1.34840 1.36738 1.36527 3.96903e-05
1 1 2 1 1 2

Py Py e ={aBw)  Ipy’ —pp |

1.36523 1.36523 1.36523 2.80531e-12
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