3.4 Hermite Interpolation
3.5 Cubic Spline Interpolation



Illustration. Consider to interpolate tanh(x) usmg Lagrange polynomlal

and nodes x, = —1.5,x; = 0,x, = 1.5.

Now interpolate tanh(x)
using nodes x, = —1.5,x; =
0,x, = 1.5. Moreover, Let 1%

derivative of interpolating
polynomial agree with

derivative of tanh(x) at these ™
nodes. |
Remark:This is called Hermite ™|
interpolating polynomial. |

{Mews Interpolating polynnmial-.:--.....__
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Hermite Polynomial

Definition. Suppose f € C1[a, b]. Let x,, ..., x,, be
distinct numbers in [a, b], the Hermite polynomial
P(x) approximating f is that:

1. P(x;) = f(x;), fori=0,..,n

dP(x;) _ df(x;)
dx  dx

2.

, fori=0,...,n

Remark: P(x) and f(x) agree not only function values but
also 1%t derivative values at x;, i = 0, ..., n.



Osculating Polynomials

Definition 3.8 Let x, ..., x,, be distinct numbers in [a, b]
and fori =0, ..., n, let m; be a nonnegative integer.

Suppose that f € C™|a, b|, where m = max m;. The
SIsN

osculating polynomial approximating f is the polynomial
d*p(x;)  dRf(x

K dxkl) for each

P(x) of least degree such that
[ =0,..,nand k=0, ...,m;.

Remark: the degree of P(x) isat most M = ),;_,m; + n.



Theorem 3.9 If f € C[a, b] and xy, ..., x,, € [a, b] distinct
numbers, the Hermite polynomial of degree at most 2n + 1 is:

Hons1 () = ) £()Hn ;0 + ) f'(3) Bl 1 6)
j=0 j=0

Where
Hn,j (x) — [1 _ Z(X R xj)L,n,j(xj)]L?z,j (x)
Hy j(x) = (x — xj)L%,j(x)
Moreover, if f € C?"*2[q, b], then
2 2
(x—2x9 ) o (x—2x,)

(2n + 2)!

f(x) = Hapy1(x) + fEA (€ ()

for some &(x) € (a, b).

Remark:

1. Hy,.+1(x) is a polynomial of degree at most 2n + 1.
2. Ly j(x) is jth Lagrange basis polynomial of degree n.
(x—xo )2...(x—xn )2

(2n+2)!

3. f£@n+2) (& (x)) is the error term.




Remark:
1. Wheni #j: Hp;(x;) =0; ﬁn,j(xi) = 0.
2. Wheni =j:
( /
Hp (%) = [1 = 2(x; — ;) L' (%) | L7, 5 (%) = 1
\Hn,j(xj) = (% — x;)L7,;(x;) = 0
= Honir (%) = f(x)).
3. Hpj(x)=Ly;x) [—ZL'n,j(xj)Ln,j(x) + (1 — Z(x — xj)L;Lj(xj)) 2L’n’j(x)]
= Wheni # j: H';, j(x;) = 0; When i =j:H’n,j(xj) = 0.
4. ﬁ’nj(x) =12 () + 2(x — xj)Lnj(x)L’nj(x)
= Wheni # j: Hn](x)—O Wheni = j: Hn]( )—1

\




Example 3.4.1 Use Hermite polynomial that agrees
with the data in the table to find an approximation

of f(1.5)

707 13 0.6200860 —0.5220232
BN 16 0.4554022 —0.5698959
72" 1.9 0.2818186 —0.5811571



39 Degree Hermite Polynomial

 Given distinct x, x; and values of f and f" at these
numbers.

H3(x)
_ (4 Zx—xo X1 — X 2
- (122 (25 roo

X —x\°
+(x—x0)( —xo) f'(x0)

X1
X1 — X Xg— X °
+11+4+2 f(xq)
X1 — X0/ \Xo — X1

X0 —x \°
+(x—x1)( —x1) f(x1)

X0




Hermite Polynomial by Divided Differences

Suppose X, ..., X, and f, f' are given at these numbers. Define

Z0y 1 Z2n+1 by
Zoi = Zpiy1 = Xi, fori =0,...,n

Construct divided difference table, but use
fi(xo) fr(x1), -, f(xn)
to set the following undefined divided difference:
flzo, 211, f 22, 23], ..., [ Z2n) Zon+1].
Namely, fzg,z1] = f'(x0), fl22, 23] = f'(x1), ...
f{ZZn:ZZn+1]::.f,(xn)-

The Hermite polynomial is
2n+1

Hyni1(x) = flzo] + 2 flzo, o zil(x — z) ... (x — Zg—1)
k=1



Example 3.4.2 Use divided difference method to
determine the Hermite polynomial that agrees with
the data in the table to find an approximation of

f(1.5)
ko flw) flla)

707 13 0.6200860 —0.5220232
BN 16 0.4554022 —0.5698959
72" 1.9 0.2818186 —0.5811571
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Divided Difference Notation for Hermite
Interpolation

e Divided difference notation for Hermite
polynomial interpolating 2 nodes: xq, x1.

H;(x)

= f(x0) + f'(x0) (x — x0) + fx0, X0, x1](x — x¢)*

+ fx0, X0, %1, 1] (x — %)% (x — x1)



Problems with High Order Polynomial Interpolation

e 21 equal- spaced numbers to interpolate

f()_1+ 5x2

oscillates between interpolation points.

The interpolating polynomial



3.5 Cubic Splines

* |dea: Use piecewise polynomial interpolation, i.e,
divide the interval into smaller sub-intervals, and
construct different low degree polynomial
approximations (with small oscillations) on the sub-
intervals.

Example. Piecewise-linear interpolation

0.05 015
|

-0.05

-0.15
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e Challenge: If f'(x;) are not known, can we still
generate interpolating polynomial with continuous
derivatives?

e Spline: A spline consists of a long strip of wood (a lath)
fixed in position at a number of points. The lath will
take the shape which minimizes the energy required for
bending it between the fixed points, and thus adopt the
smoothest possible shape.

RENAULT FLUENCE | Copyright (C) 2005 BZYKU |



* |[n mathematics, a spline is a function that is
piecewise-defined by polynomial functions, and
which possesses a high degree of smoothness at
the places where the polynomial pieces connect.

 Example. Irwin-Hall distribution. Nodes are -2, -1, O,

1, 2.
(1
Z(x+2)3 —2<x<-1
1
f(x)=<z(3|x|3—6x2+4) —1<x<1
L2 - 2y l<x<2
L X < X <

Notice: f'(—=1) =, f'(D) = =1, f"(-1) =,f"(D) =7.
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 Piecewise-polynomial approximation using cubic polynomials
between each successive pair of nodes is called cubic spline
interpolation.

Definition 3.10 Given a function f on [a, b] and nodes a = xy <
.+ < X, = b, a cubic spline interpolant S for f satisfies:

(a) S(x)is a cubic polynomial S;(x) on [x}, xj,1] with:
2 3
Si(x) =a; + bi(x —x) +¢i(x —x)" + dj(x — x;)
vi=0,1,..,n—1.
(b) S](X]) — f(x]) and Sj(Xj+1) — f(Xj+1), Vj — 0,1, e, L — 1.
(C) Sj(Xj+1) — Sj+1(Xj+1), Vj — 0,1, e, N — 2.
Remark: (c) is derived from (b).
(d) S,j(Xj+1) — S’j+1(Xj+1), Vj — 0,1, ey, L — 2.

(E) S”j(Xj_|_1) — S”j_|_1(Xj+1), Vj — 0,1, e, N — 2.
(f) One of the following boundary conditions:
(i) S"(xg) = S"(x,) = 0 (called free or natural boundary)
(if) S'(xy) = f'(xp) and S'(x,) = f'(x,) (called clamped boundary)
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The spline segment S;(x) is on [xj, xj+1]. The spline

segment ;.4 (x) is on [xj+1,xj+2]. Things to match at
interior point x;, 1:

e Their function values: Sj(xj+1) = Sj+1(xj+1) —
f(%41)
* First derivative values: S’j(xj+1) = 5'j+1(xj+1)

e Second derivative values: S”j(xj+1) = S”j+1(xj+1)



Example 3.5.1 Construct a natural spline S(x)
through (1,2), (2,3) and (3.5).



Building Cubic Splines
* Define: S;(x) = a;j + b;(x — x;) + ¢;(x — x;)?+d;(x — x)*
and hj =Xj+1— X, Vj =01, .., (n—1).
* Alsodefine a, = f(x,); b =S (x,); ¢, = S (x) /2.
From Definition 3.10:
1) Sj(xj) =aq; = f(xj) forj =0,1,..,(n—1).
2) Siv1(xj41) = aj11 = a; + bjh; + ¢;(h; )2 +d;(h; )3
forj =0,1,..,(n—1).
Note: e O e bn—lhn—l + Cn—l(hn—1)2+dn—1(hn—1)3
3) S'i(x;) = bj, also bj 1 = b; + 2c;h; + 3d;(h; )?
forj=0,1,..,(n—1).
4) S”j(xj) = 2¢j,also¢cjy1 = ¢j + 3d;h;
forj=0,1,..,(n—1).
5) Natural or clamped boundary conditions
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Solve aj, b;, ¢j, d; by substitution:
1. SolveEq.4)ford; = % , and substitute into Eqgs. 2) and 3) to
]
get:

h?
2. Clj_|_1 — Clj + b]h] + ?](ZC] + Cj+1); (318)

bj+1 — b] + h](C] + Cj_|_1). (319)
3. Solve for b- in Eq. (3.18) to get:
b; = (a]+1 a]) j(ZCj + cj+1). (3.20)

Reduce the index by 1 to get
_ 1 ] 1
bj_1 = E(aj aj-1) — (2¢j-1 + ¢)-

4. Substitute b; and b;_, into Eq. (3.19).

hj—lcj—l + Z(h]_l + h)C] + h'Cj+1 = (321)
—(a-+1 a)——(a — aj_1)
hj ] ] h]_ ] ]~

forj=12,..,(n —1).
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Solving the Resulting Equations

vi=12..,(n—1)
hj—lcj—l + Z(h]_l + h])C] + hjCj+1

3 3
= (g1 —a) —— (g -a1) (321
b, Ry

Remark: (n-1) equations for (n+1) unknowns {cj}}lzo. Eq.
(3.21) is solved with boundary conditions.

* Once compute ¢;, we then compute:

b, — (aj+1—aj) . hj(ZCj+Cj+1)

; 3 (3.20)

and

d; = (Cf;jlfcf) (3.17) forj = 0,1,2,...,(n — 1)
J



Building Natural Cubic Spline

 Natural boundary condition:

1. 0=S8"7(xg) =2cy = co=0

2. 0=5"(x,) =2c,—>c,=0
Step 1. Solve Eq. (3.21) together with ¢y = 0 and
¢, = 0 to obtain {¢;};¢.

Step 2. Solve Eq. (3.20) to obtain {b;}7Z,.
Step 3. Solve Eq. (3.17) to obtain {dj}?;(}.
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Building Clamped Cubic Spline

Clamped boundary condition:
a) S'o(xg) = by = f'(x0)
b) S'h-1(xpn) =by =bp_g + hy_1(cn_1 +cp) = f,(xn)
Remark: a) and b) gives additional equations:
2hoco + hoy =5 (a1 = a0) = 3f"(xp) (@)
3

hp_1Cp—1 + 2hy_1cp = — ho_ (a, —an—1) +3f'(x,) (b)
n—

Step 1. Solve Eq. (3.21) together with Egs. (a) and (b) to
obtain {c;}j_,.

Step 2. Solve Eq. (3.20) to obtain {bj}?;(}.
Step 3. Solve Eq. (3.17) to obtain {dj}?;(}.



Example 3.5.4 Let (xq, f (%)) =
(0,1), (x1, f(x1)) = (1,€), (x2, f(x2)) = (2, €%),

(x3, f(x3)) = (3,€%). And f'(x) = e, f'*3) = €3,
Determine the clamped spline S(x).



Theorem 3.11 If f is defined at the nodes: a =
Xog < -+ < X, = b, then f has a unique natural
spline interpolant S on the nodes; that is a spline

interpolant that satisfied the natural boundary
conditions S (a) = 0,S"(b) = 0.

Theorem 3.12 If f is defined at the nodes: a =
xXg < -+ < X, = b and differentiable at a and b,
then f has a unique clamped spline interpolant S
on the nodes; that is a spline interpolant that
satisfied the clamped boundary conditions

§'(a) = f(a),S"(b) = f'(b).



Error Bound

Theorem 3.13 If f € C*[a, b], let M =

max |f*(x)|. If S is the unique clamped cubic
as<x<b

spline interpolant to f with respect to the nodes:
a=xy<- <x,=Db,then with

b= o, (e = %)

S5Mh*
— <
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