
3.4 Hermite Interpolation 
3.5 Cubic Spline Interpolation
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Illustration. Consider to interpolate tanh(𝑥𝑥) using Lagrange polynomial 
and nodes 𝑥𝑥0 = −1.5, 𝑥𝑥1 = 0, 𝑥𝑥2 = 1.5.

2

Now interpolate tanh(𝑥𝑥)
using nodes 𝑥𝑥0 = −1.5, 𝑥𝑥1 =
0, 𝑥𝑥2 = 1.5. Moreover, Let 1st

derivative of interpolating 
polynomial agree with 
derivative of tanh(𝑥𝑥) at these 
nodes.
Remark:This is called Hermite
interpolating polynomial. 



Hermite Polynomial

Definition. Suppose 𝑓𝑓 ∈ 𝐶𝐶1[𝑎𝑎, 𝑏𝑏]. Let 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛 be 
distinct numbers in [𝑎𝑎, 𝑏𝑏], the Hermite polynomial 
𝑃𝑃(𝑥𝑥) approximating 𝑓𝑓 is that:
1. 𝑃𝑃 𝑥𝑥𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖 , for 𝑖𝑖 = 0, … ,𝑛𝑛

2. 𝑑𝑑𝑃𝑃 𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑 𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

, for 𝑖𝑖 = 0, … ,𝑛𝑛

Remark: 𝑃𝑃(𝑥𝑥) and 𝑓𝑓(𝑥𝑥) agree not only function values but 
also 1st derivative values at 𝑥𝑥𝑖𝑖, 𝑖𝑖 = 0, … ,𝑛𝑛.
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Osculating Polynomials

Definition 3.8  Let 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛 be distinct numbers in 𝑎𝑎, 𝑏𝑏
and for 𝑖𝑖 = 0, … ,𝑛𝑛, let 𝑚𝑚𝑖𝑖 be a nonnegative integer. 
Suppose that 𝑓𝑓 ∈ 𝐶𝐶𝑚𝑚 𝑎𝑎, 𝑏𝑏 , where 𝑚𝑚 = max

0≤𝑖𝑖≤𝑛𝑛
𝑚𝑚𝑖𝑖. The 

osculating polynomial approximating 𝑓𝑓 is the polynomial 

𝑃𝑃(𝑥𝑥) of least degree such that 𝑑𝑑
𝑘𝑘𝑃𝑃 𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑𝑘𝑘

= 𝑑𝑑𝑘𝑘𝑓𝑓 𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑𝑘𝑘

for each 
𝑖𝑖 = 0, … ,𝑛𝑛 and k= 0, … ,𝑚𝑚𝑖𝑖 .

Remark: the degree of 𝑃𝑃(𝑥𝑥) is at most 𝑀𝑀 = ∑𝑖𝑖=0𝑛𝑛 𝑚𝑚𝑖𝑖 + 𝑛𝑛.
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Theorem 3.9 If 𝑓𝑓 ∈ 𝐶𝐶1 𝑎𝑎, 𝑏𝑏 and 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛 ∈ 𝑎𝑎, 𝑏𝑏 distinct 
numbers, the Hermite polynomial of degree at most 2𝑛𝑛 + 1 is:

𝐻𝐻2𝑛𝑛+1 𝑥𝑥 = �
𝑗𝑗=0

𝑛𝑛

𝑓𝑓 𝑥𝑥𝑗𝑗 𝐻𝐻𝑛𝑛,𝑗𝑗(𝑥𝑥) + �
𝑗𝑗=0

𝑛𝑛

𝑓𝑓′ 𝑥𝑥𝑗𝑗 �𝐻𝐻𝑛𝑛,𝑗𝑗(𝑥𝑥)

Where 
𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥 = [1 − 2(𝑥𝑥 − 𝑥𝑥𝑗𝑗)𝐿𝐿′𝑛𝑛,𝑗𝑗(𝑥𝑥𝑗𝑗)]𝐿𝐿𝑛𝑛,𝑗𝑗

2 (𝑥𝑥)
�𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥𝑗𝑗 𝐿𝐿𝑛𝑛,𝑗𝑗

2 𝑥𝑥
Moreover, if 𝑓𝑓 ∈ 𝐶𝐶2𝑛𝑛+2 𝑎𝑎, 𝑏𝑏 , then 

𝑓𝑓 𝑥𝑥 = 𝐻𝐻2𝑛𝑛+1 𝑥𝑥 +
𝑥𝑥 − 𝑥𝑥0

2
… 𝑥𝑥 − 𝑥𝑥𝑛𝑛

2

2𝑛𝑛 + 2 !
𝑓𝑓 2𝑛𝑛+2 (𝜉𝜉(𝑥𝑥))

for some 𝜉𝜉 𝑥𝑥 ∈ 𝑎𝑎, 𝑏𝑏 .
Remark: 
1. 𝐻𝐻2𝑛𝑛+1 𝑥𝑥 is a polynomial of degree at most 2𝑛𝑛 + 1.
2. 𝐿𝐿𝑛𝑛,𝑗𝑗(𝑥𝑥) is jth Lagrange basis polynomial of degree 𝑛𝑛.

3.
𝑥𝑥−𝑥𝑥0

2
… 𝑥𝑥−𝑥𝑥𝑛𝑛

2

2𝑛𝑛+2 !
𝑓𝑓 2𝑛𝑛+2 (𝜉𝜉(𝑥𝑥)) is the error term. 
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Remark:

1. When 𝑖𝑖 ≠ 𝑗𝑗: 𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥𝑖𝑖 = 0; �𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥𝑖𝑖 = 0.
2. When 𝑖𝑖 = 𝑗𝑗:

�
𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥𝑗𝑗 = 1 − 2 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗 𝐿𝐿′𝑛𝑛,𝑗𝑗 𝑥𝑥𝑗𝑗 𝐿𝐿𝑛𝑛,𝑗𝑗

2 𝑥𝑥𝑗𝑗 = 1
�𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗 𝐿𝐿𝑛𝑛,𝑗𝑗

2 𝑥𝑥𝑗𝑗 = 0

⟹𝐻𝐻2𝑛𝑛+1 𝑥𝑥𝑗𝑗 = 𝑓𝑓(𝑥𝑥𝑗𝑗).

3. 𝐻𝐻𝐻𝑛𝑛,𝑗𝑗 𝑥𝑥 = 𝐿𝐿𝑛𝑛,𝑗𝑗 𝑥𝑥 −2𝐿𝐿𝑛𝑛,𝑗𝑗
′ 𝑥𝑥𝑗𝑗 𝐿𝐿𝑛𝑛,𝑗𝑗 𝑥𝑥 + 1 − 2 𝑥𝑥 − 𝑥𝑥𝑗𝑗 𝐿𝐿𝑛𝑛,𝑗𝑗

′ 𝑥𝑥𝑗𝑗 2𝐿𝐿𝑛𝑛,𝑗𝑗
′ 𝑥𝑥

⟹ When 𝑖𝑖 ≠ 𝑗𝑗:𝐻𝐻′
𝑛𝑛,𝑗𝑗 𝑥𝑥𝑖𝑖 = 0; When 𝑖𝑖 = 𝑗𝑗:𝐻𝐻′

𝑛𝑛,𝑗𝑗 𝑥𝑥𝑗𝑗 = 0.

4. �𝐻𝐻′𝑛𝑛,𝑗𝑗 𝑥𝑥 = 𝐿𝐿𝑛𝑛,𝑗𝑗
2 𝑥𝑥 + 2 𝑥𝑥 − 𝑥𝑥𝑗𝑗 𝐿𝐿𝑛𝑛,𝑗𝑗(𝑥𝑥)𝐿𝐿′𝑛𝑛,𝑗𝑗 𝑥𝑥

⟹ When 𝑖𝑖 ≠ 𝑗𝑗: �𝐻𝐻′𝑛𝑛,𝑗𝑗 𝑥𝑥𝑖𝑖 = 0; When 𝑖𝑖 = 𝑗𝑗: �𝐻𝐻′𝑛𝑛,𝑗𝑗 𝑥𝑥𝑗𝑗 = 1.



Example 3.4.1 Use Hermite polynomial that agrees 
with the data in the table to find an approximation 
of 𝑓𝑓 1.5
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𝑘𝑘 𝑥𝑥𝑘𝑘 𝑓𝑓(𝑥𝑥𝑘𝑘) 𝑓𝑓𝑓(𝑥𝑥𝑘𝑘)
0 1.3 0.6200860 −0.5220232
1 1.6 0.4554022 −0.5698959
2 1.9 0.2818186 −0.5811571



3rd Degree Hermite Polynomial 
• Given distinct 𝑥𝑥0, 𝑥𝑥1 and values of 𝑓𝑓 and 𝑓𝑓𝑓 at these 

numbers. 
𝐻𝐻3 𝑥𝑥

= 1 + 2
𝑥𝑥 − 𝑥𝑥0
𝑥𝑥1 − 𝑥𝑥0

𝑥𝑥1 − 𝑥𝑥
𝑥𝑥1 − 𝑥𝑥0

2

𝑓𝑓 𝑥𝑥0

+ 𝑥𝑥 − 𝑥𝑥0
𝑥𝑥1 − 𝑥𝑥
𝑥𝑥1 − 𝑥𝑥0

2

𝑓𝑓′ 𝑥𝑥0

+ 1 + 2
𝑥𝑥1 − 𝑥𝑥
𝑥𝑥1 − 𝑥𝑥0

𝑥𝑥0 − 𝑥𝑥
𝑥𝑥0 − 𝑥𝑥1

2

𝑓𝑓 𝑥𝑥1

+ 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥0 − 𝑥𝑥
𝑥𝑥0 − 𝑥𝑥1

2

𝑓𝑓′ 𝑥𝑥1
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Hermite Polynomial by Divided Differences

Suppose 𝑥𝑥0, … , 𝑥𝑥𝑛𝑛 and 𝑓𝑓, 𝑓𝑓′ are given at these numbers. Define 
𝑧𝑧0, … , 𝑧𝑧2𝑛𝑛+1 by 

𝑧𝑧2𝑖𝑖 = 𝑧𝑧2𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 , for 𝑖𝑖 = 0, … ,𝑛𝑛

Construct divided difference table, but use 
𝑓𝑓′ 𝑥𝑥0 ,𝑓𝑓′ 𝑥𝑥1 , . . ,𝑓𝑓′ 𝑥𝑥𝑛𝑛

to set the following undefined divided difference: 
𝑓𝑓 𝑧𝑧0, 𝑧𝑧1 ,𝑓𝑓 𝑧𝑧2, 𝑧𝑧3 , … , 𝑓𝑓 𝑧𝑧2𝑛𝑛, 𝑧𝑧2𝑛𝑛+1 .

Namely, 𝑓𝑓 𝑧𝑧0, 𝑧𝑧1 = 𝑓𝑓′ 𝑥𝑥0 , 𝑓𝑓 𝑧𝑧2, 𝑧𝑧3 = 𝑓𝑓′ 𝑥𝑥1 , …
𝑓𝑓 𝑧𝑧2𝑛𝑛, 𝑧𝑧2𝑛𝑛+1 = 𝑓𝑓′ 𝑥𝑥𝑛𝑛 .

The Hermite polynomial is 

𝐻𝐻2𝑛𝑛+1 𝑥𝑥 = 𝑓𝑓 𝑧𝑧0 + �
𝑘𝑘=1

2𝑛𝑛+1

𝑓𝑓 𝑧𝑧0, … , 𝑧𝑧𝑘𝑘 𝑥𝑥 − 𝑧𝑧0 … (𝑥𝑥 − 𝑧𝑧𝑘𝑘−1)
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Example 3.4.2 Use divided difference method to 
determine the Hermite polynomial that agrees with 
the data in the table to find an approximation of 
𝑓𝑓 1.5
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𝑘𝑘 𝑥𝑥𝑘𝑘 𝑓𝑓(𝑥𝑥𝑘𝑘) 𝑓𝑓𝑓(𝑥𝑥𝑘𝑘)
0 1.3 0.6200860 −0.5220232
1 1.6 0.4554022 −0.5698959
2 1.9 0.2818186 −0.5811571



Divided Difference Notation for Hermite
Interpolation

• Divided difference notation for Hermite
polynomial interpolating 2 nodes: 𝑥𝑥0, 𝑥𝑥1.

𝐻𝐻3 𝑥𝑥
= 𝑓𝑓 𝑥𝑥0 + 𝑓𝑓′ 𝑥𝑥0 𝑥𝑥 − 𝑥𝑥0 + 𝑓𝑓 𝑥𝑥0, 𝑥𝑥0, 𝑥𝑥1 𝑥𝑥 − 𝑥𝑥0 2

+ 𝑓𝑓[𝑥𝑥0, 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥1] 𝑥𝑥 − 𝑥𝑥0 2(𝑥𝑥 − 𝑥𝑥1)
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Problems with High Order Polynomial Interpolation

• 21 equal-spaced numbers to interpolate 
𝑓𝑓 𝑥𝑥 = 1

1+25𝑥𝑥2
. The interpolating polynomial 

oscillates between interpolation points. 
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3.5 Cubic Splines
• Idea: Use piecewise polynomial interpolation, i.e, 

divide the interval into smaller sub-intervals, and 
construct different low degree polynomial 
approximations (with small oscillations) on the sub-
intervals.

Example. Piecewise-linear interpolation
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• Challenge: If 𝑓𝑓𝑓(𝑥𝑥𝑖𝑖) are not known, can we still 
generate interpolating polynomial with continuous 
derivatives? 

• Spline:  A spline consists of a long strip of wood (a lath) 
fixed in position at a number of points. The lath will 
take the shape which minimizes the energy required for 
bending it between the fixed points, and thus adopt the 
smoothest possible shape.
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• In mathematics, a spline is a function that is 
piecewise-defined by polynomial functions, and 
which possesses a high degree of smoothness at 
the places where the polynomial pieces connect.

• Example. Irwin-Hall distribution. Nodes are -2, -1, 0, 
1, 2. 

𝑓𝑓 𝑥𝑥 =

1
4
𝑥𝑥 + 2 3 − 2 ≤ 𝑥𝑥 ≤ −1

1
4

3 𝑥𝑥 3 − 6𝑥𝑥2 + 4 − 1 ≤ 𝑥𝑥 ≤ 1
1
4

2 − 𝑥𝑥 3 1 ≤ 𝑥𝑥 ≤ 2

Notice: 𝑓𝑓′ −1 = 3
4

, 𝑓𝑓′ 1 = −3
4

,𝑓𝑓′′ −1 = 6
4

,𝑓𝑓′′ 1 = 6
4

.
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• Piecewise-polynomial approximation using cubic polynomials 
between each successive pair of nodes is called cubic spline 
interpolation.

Definition 3.10 Given a function 𝑓𝑓 on [𝑎𝑎, 𝑏𝑏] and nodes 𝑎𝑎 = 𝑥𝑥0 <
⋯ < 𝑥𝑥𝑛𝑛 = 𝑏𝑏, a cubic spline interpolant 𝑆𝑆 for 𝑓𝑓 satisfies:
(a) 𝑆𝑆(𝑥𝑥) is a cubic polynomial 𝑆𝑆𝑗𝑗(𝑥𝑥) on [𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1] with: 

𝑆𝑆𝑗𝑗 𝑥𝑥 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗 𝑥𝑥 − 𝑥𝑥𝑗𝑗 + 𝑐𝑐𝑗𝑗 𝑥𝑥 − 𝑥𝑥𝑗𝑗
2 + 𝑑𝑑𝑗𝑗 𝑥𝑥 − 𝑥𝑥𝑗𝑗

3

∀𝑗𝑗 = 0,1, … ,𝑛𝑛 − 1.
(b) 𝑆𝑆𝑗𝑗 𝑥𝑥𝑗𝑗 = 𝑓𝑓(𝑥𝑥𝑗𝑗) and  𝑆𝑆𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑓𝑓 𝑥𝑥𝑗𝑗+1 , ∀𝑗𝑗 = 0,1, … ,𝑛𝑛 − 1.
(c) 𝑆𝑆𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑆𝑆𝑗𝑗+1 𝑥𝑥𝑗𝑗+1 , ∀𝑗𝑗 = 0,1, … ,𝑛𝑛 − 2.

Remark: (c) is derived from (b).
(d) 𝑆𝑆′𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑆𝑆′𝑗𝑗+1 𝑥𝑥𝑗𝑗+1 , ∀𝑗𝑗 = 0,1, … ,𝑛𝑛 − 2.
(e) 𝑆𝑆′′𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑆𝑆′′𝑗𝑗+1 𝑥𝑥𝑗𝑗+1 , ∀𝑗𝑗 = 0,1, … ,𝑛𝑛 − 2.
(f) One of the following boundary conditions:

(i) 𝑆𝑆′′ 𝑥𝑥0 = 𝑆𝑆′′ 𝑥𝑥𝑛𝑛 = 0 (called free or natural boundary)
(ii) 𝑆𝑆′ 𝑥𝑥0 = 𝑓𝑓𝑓(𝑥𝑥0) and 𝑆𝑆′ 𝑥𝑥𝑛𝑛 = 𝑓𝑓𝑓(𝑥𝑥𝑛𝑛) (called clamped boundary) 
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The spline segment 𝑆𝑆𝑗𝑗(𝑥𝑥) is on 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑗𝑗+1 . The spline 
segment 𝑆𝑆𝑗𝑗+1(𝑥𝑥) is on 𝑥𝑥𝑗𝑗+1, 𝑥𝑥𝑗𝑗+2 . Things to match at 
interior point 𝑥𝑥𝑗𝑗+1:
• Their function values: 𝑆𝑆𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑆𝑆𝑗𝑗+1 𝑥𝑥𝑗𝑗+1 =
𝑓𝑓 𝑥𝑥𝑗𝑗+1

• First derivative values: 𝑆𝑆′𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑆𝑆′𝑗𝑗+1 𝑥𝑥𝑗𝑗+1
• Second derivative values: 𝑆𝑆′′𝑗𝑗 𝑥𝑥𝑗𝑗+1 = 𝑆𝑆′′𝑗𝑗+1 𝑥𝑥𝑗𝑗+1
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Example 3.5.1 Construct a natural spline 𝑆𝑆 𝑥𝑥
through (1,2), (2,3) and (3.5). 
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Building Cubic Splines
• Define: 𝑆𝑆𝑗𝑗 𝑥𝑥 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗 𝑥𝑥 − 𝑥𝑥𝑗𝑗 + 𝑐𝑐𝑗𝑗(𝑥𝑥 − 𝑥𝑥𝑗𝑗)2+𝑑𝑑𝑗𝑗(𝑥𝑥 − 𝑥𝑥𝑗𝑗)3

and  ℎ𝑗𝑗 = 𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗, ∀𝑗𝑗 = 0,1, … , (𝑛𝑛 − 1).
• Also define 𝑎𝑎𝑛𝑛 = 𝑓𝑓 𝑥𝑥𝑛𝑛 ; 𝑏𝑏𝑛𝑛 = 𝑆𝑆′ 𝑥𝑥𝑛𝑛 ; 𝑐𝑐𝑛𝑛 = 𝑆𝑆′′(𝑥𝑥𝑛𝑛)/2.
From Definition 3.10:
1) 𝑆𝑆𝑗𝑗 𝑥𝑥𝑗𝑗 = 𝑎𝑎𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑗𝑗 for 𝑗𝑗 = 0,1, … , (𝑛𝑛 − 1).
2) 𝑆𝑆𝑗𝑗+1 𝑥𝑥𝑗𝑗+1 = 𝑎𝑎𝑗𝑗+1 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗ℎ𝑗𝑗 + 𝑐𝑐𝑗𝑗(ℎ𝑗𝑗 )2+𝑑𝑑𝑗𝑗(ℎ𝑗𝑗 )3

for 𝑗𝑗 = 0,1, … , (𝑛𝑛 − 1).
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁: 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 𝑏𝑏𝑛𝑛−1ℎ𝑛𝑛−1 + 𝑐𝑐𝑛𝑛−1(ℎ𝑛𝑛−1)2+𝑑𝑑𝑛𝑛−1(ℎ𝑛𝑛−1)3

3) 𝑆𝑆′𝑗𝑗 𝑥𝑥𝑗𝑗 = 𝑏𝑏𝑗𝑗, also 𝑏𝑏𝑗𝑗+1 = 𝑏𝑏𝑗𝑗 + 2𝑐𝑐𝑗𝑗ℎ𝑗𝑗 + 3𝑑𝑑𝑗𝑗(ℎ𝑗𝑗 )2
for 𝑗𝑗 = 0,1, … , (𝑛𝑛 − 1).

4) 𝑆𝑆′′𝑗𝑗 𝑥𝑥𝑗𝑗 = 2𝑐𝑐𝑗𝑗, also 𝑐𝑐𝑗𝑗+1 = 𝑐𝑐𝑗𝑗 + 3𝑑𝑑𝑗𝑗ℎ𝑗𝑗
for 𝑗𝑗 = 0,1, … , 𝑛𝑛 − 1 .

5) Natural or clamped boundary conditions
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Solve 𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 , 𝑐𝑐𝑗𝑗 ,𝑑𝑑𝑗𝑗 by substitution:
1. Solve Eq. 4) for 𝑑𝑑𝑗𝑗 =

𝑐𝑐𝑗𝑗+1−𝑐𝑐𝑗𝑗
3ℎ𝑗𝑗

, and substitute into Eqs. 2) and 3) to 
get:

2. 𝑎𝑎𝑗𝑗+1 = 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗ℎ𝑗𝑗 +
ℎ𝑗𝑗
2

3
2𝑐𝑐𝑗𝑗 + 𝑐𝑐𝑗𝑗+1 ; (3.18)

𝑏𝑏𝑗𝑗+1 = 𝑏𝑏𝑗𝑗 + ℎ𝑗𝑗 𝑐𝑐𝑗𝑗 + 𝑐𝑐𝑗𝑗+1 . (3.19)
3. Solve for 𝑏𝑏𝑗𝑗 in Eq. (3.18) to get:

𝑏𝑏𝑗𝑗 = 1
ℎ𝑗𝑗

𝑎𝑎𝑗𝑗+1 − 𝑎𝑎𝑗𝑗 −
ℎ𝑗𝑗
3

2𝑐𝑐𝑗𝑗 + 𝑐𝑐𝑗𝑗+1 . (3.20)
Reduce the index by 1 to get:

𝑏𝑏𝑗𝑗−1 = 1
ℎ𝑗𝑗−1

𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑗𝑗−1 −
ℎ𝑗𝑗−1
3

2𝑐𝑐𝑗𝑗−1 + 𝑐𝑐𝑗𝑗 .

4. Substitute 𝑏𝑏𝑗𝑗 and 𝑏𝑏𝑗𝑗−1 into Eq. (3.19):
ℎ𝑗𝑗−1𝑐𝑐𝑗𝑗−1 + 2 ℎ𝑗𝑗−1 + ℎ𝑗𝑗 𝑐𝑐𝑗𝑗 + ℎ𝑗𝑗𝑐𝑐𝑗𝑗+1 = (3.21)

3
ℎ𝑗𝑗

𝑎𝑎𝑗𝑗+1 − 𝑎𝑎𝑗𝑗 −
3

ℎ𝑗𝑗−1
(𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑗𝑗−1)

for 𝑗𝑗 = 1,2, … , 𝑛𝑛 − 1 .
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Solving the Resulting Equations
∀𝑗𝑗 = 1,2, … , (𝑛𝑛 − 1)

ℎ𝑗𝑗−1𝑐𝑐𝑗𝑗−1 + 2 ℎ𝑗𝑗−1 + ℎ𝑗𝑗 𝑐𝑐𝑗𝑗 + ℎ𝑗𝑗𝑐𝑐𝑗𝑗+1

=
3
ℎ𝑗𝑗

𝑎𝑎𝑗𝑗+1 − 𝑎𝑎𝑗𝑗 −
3

ℎ𝑗𝑗−1
𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑗𝑗−1 (3.21)

Remark: (n-1) equations for (n+1) unknowns {𝑐𝑐𝑗𝑗}𝑗𝑗=0𝑛𝑛 . Eq. 
(3.21) is solved with boundary conditions. 
• Once compute 𝑐𝑐𝑗𝑗, we then compute:

𝑏𝑏𝑗𝑗 = 𝑎𝑎𝑗𝑗+1−𝑎𝑎𝑗𝑗
ℎ𝑗𝑗

− ℎ𝑗𝑗 2𝑐𝑐𝑗𝑗+𝑐𝑐𝑗𝑗+1
3

(3.20) 

and        

𝑑𝑑𝑗𝑗 = 𝑐𝑐𝑗𝑗+1−𝑐𝑐𝑗𝑗
3ℎ𝑗𝑗

(3.17)  for 𝑗𝑗 = 0,1,2, … , (𝑛𝑛 − 1)
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Building Natural Cubic Spline 
• Natural boundary condition: 

1. 0 = 𝑆𝑆′′0 𝑥𝑥0 = 2𝑐𝑐0 → 𝑐𝑐0 = 0
2. 0 = 𝑆𝑆′′𝑛𝑛 𝑥𝑥𝑛𝑛 = 2𝑐𝑐𝑛𝑛 → 𝑐𝑐𝑛𝑛 = 0

Step 1. Solve Eq. (3.21) together with 𝑐𝑐0 = 0 and 
𝑐𝑐𝑛𝑛 = 0 to obtain {𝑐𝑐𝑗𝑗}𝑗𝑗=0𝑛𝑛 .

Step 2. Solve Eq. (3.20) to obtain {𝑏𝑏𝑗𝑗}𝑗𝑗=0𝑛𝑛−1.

Step 3. Solve Eq. (3.17) to obtain {𝑑𝑑𝑗𝑗}𝑗𝑗=0𝑛𝑛−1.
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Building Clamped Cubic Spline
• Clamped boundary condition: 

a) 𝑆𝑆′0 𝑥𝑥0 = 𝑏𝑏0 = 𝑓𝑓𝑓(𝑥𝑥0)
b) 𝑆𝑆′𝑛𝑛−1 𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑛𝑛 = 𝑏𝑏𝑛𝑛−1 + ℎ𝑛𝑛−1(𝑐𝑐𝑛𝑛−1 + 𝑐𝑐𝑛𝑛) = 𝑓𝑓𝑓(𝑥𝑥𝑛𝑛)
Remark: a) and b) gives additional equations:
2ℎ0𝑐𝑐0 + ℎ0𝑐𝑐1 = 3

ℎ0
𝑎𝑎1 − 𝑎𝑎0 − 3𝑓𝑓′ 𝑥𝑥0 (𝑎𝑎)

ℎ𝑛𝑛−1𝑐𝑐𝑛𝑛−1 + 2ℎ𝑛𝑛−1𝑐𝑐𝑛𝑛 = −
3

ℎ𝑛𝑛−1
𝑎𝑎𝑛𝑛 − 𝑎𝑎𝑛𝑛−1 + 3𝑓𝑓′ 𝑥𝑥𝑛𝑛 (𝑏𝑏)

Step 1. Solve Eq. (3.21) together with Eqs. (a) and (b) to 
obtain {𝑐𝑐𝑗𝑗}𝑗𝑗=0𝑛𝑛 .
Step 2. Solve Eq. (3.20) to obtain {𝑏𝑏𝑗𝑗}𝑗𝑗=0𝑛𝑛−1.
Step 3. Solve Eq. (3.17) to obtain {𝑑𝑑𝑗𝑗}𝑗𝑗=0𝑛𝑛−1.
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Example 3.5.4 Let (𝑥𝑥0,𝑓𝑓(𝑥𝑥0)) =
(0,1), (𝑥𝑥1, 𝑓𝑓(𝑥𝑥1)) = (1, 𝑒𝑒), (𝑥𝑥2, 𝑓𝑓(𝑥𝑥2)) = (2, 𝑒𝑒2),
(𝑥𝑥3, 𝑓𝑓(𝑥𝑥3)) = (3, 𝑒𝑒3). And 𝑓𝑓′ 𝑥𝑥0 = 𝑒𝑒, 𝑓𝑓′ 𝑥𝑥3 = 𝑒𝑒3.
Determine the clamped spline 𝑆𝑆 𝑥𝑥 .
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Theorem 3.11 If 𝑓𝑓 is defined at the nodes: 𝑎𝑎 =
𝑥𝑥0 < ⋯ < 𝑥𝑥𝑛𝑛 = 𝑏𝑏, then 𝑓𝑓 has a unique natural 
spline interpolant 𝑆𝑆 on the nodes; that is a spline 
interpolant that satisfied the natural boundary 
conditions 𝑆𝑆′′ 𝑎𝑎 = 0, 𝑆𝑆′′ 𝑏𝑏 = 0.

Theorem 3.12 If 𝑓𝑓 is defined at the nodes: 𝑎𝑎 =
𝑥𝑥0 < ⋯ < 𝑥𝑥𝑛𝑛 = 𝑏𝑏 and differentiable at 𝑎𝑎 and 𝑏𝑏, 
then 𝑓𝑓 has a unique clamped spline interpolant 𝑆𝑆
on the nodes; that is a spline interpolant that 
satisfied the clamped boundary conditions 
𝑆𝑆′ 𝑎𝑎 = 𝑓𝑓𝑓(𝑎𝑎), 𝑆𝑆′ 𝑏𝑏 = 𝑓𝑓𝑓(𝑏𝑏).
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Error Bound
Theorem 3.13 If 𝑓𝑓 ∈ 𝐶𝐶4[𝑎𝑎, 𝑏𝑏], let 𝑀𝑀 =
max
𝑎𝑎≤𝑥𝑥≤𝑏𝑏

|𝑓𝑓4(𝑥𝑥)|. If 𝑆𝑆 is the unique clamped cubic 
spline interpolant to 𝑓𝑓 with respect to the nodes: 
𝑎𝑎 = 𝑥𝑥0 < ⋯ < 𝑥𝑥𝑛𝑛 = 𝑏𝑏, then with 

ℎ = max
0≤𝑗𝑗≤𝑛𝑛−1

𝑥𝑥𝑗𝑗+1 − 𝑥𝑥𝑗𝑗

max
𝑎𝑎≤𝑥𝑥≤𝑏𝑏

|𝑓𝑓 𝑥𝑥 − 𝑆𝑆(𝑥𝑥)| ≤ 5𝑀𝑀ℎ4

384
.
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