# **Section 4.1 Numerical Differentiation**

#### Motivation.

- Consider to solve Black-Scholes equation  $\frac{\partial f}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} + rS \frac{\partial f}{\partial S} rf = 0$ . Here f is the price of a derivative security, t is time, S is the varying price of the underlying asset, r is the risk-free interest rate, and  $\sigma$  is the market volatility.
- The heat equation of a plate:  $\frac{\partial u}{\partial t} = k \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$ . Here k is the heat-diffusivity coefficient.

Goal: Compute accurate approximation to the derivative(s) of a function.

The derivative of 
$$f$$
 at  $x_0$  is:  $f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}$ .

Obviously, when h is small,  $\frac{f(x_0+h)-f(x_0)}{h}$  is a "good" approximation to  $f'(x_0)$ .

What is the error of approximation?

# Big idea:

Build an interpolating polynomial to approximate f(x), then use the derivative of the interpolating polynomial as the approximation of the  $f'(x_0)$ .

**Example:** Consider to approximate  $f'(x_0)$  using two points  $x_0$  and  $x_0 + h$ .

**Example 4.4.1** Use forward difference formula with h = 0.1 to approximate the derivative of  $f(x) = \ln(x)$  at  $x_0 = 1.8$ . Determine the bound of the approximation error.

Forward-difference: 
$$f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$$
 when  $h > 0$ .

**Backward-difference**: 
$$f'(x_0) \approx \frac{f(x_0+h)-f(x_0)}{h}$$
 when  $h < 0$ .

#### 1<sup>st</sup> derivative approximation (obtained by Lagrange interpolation)

The interpolation points are given as:



$$(x_0, f(x_0))$$

$$(x_1, f(x_1))$$

$$(x_2, f(x_2))$$

. . .

$$(x_N, f(x_N))$$

By Lagrange Interpolation Theorem (**Thm 3.3**):

$$f(x) = \sum_{k=0}^{n} f(x_k) L_{N,k}(x) + \frac{(x - x_0) \cdots (x - x_N)}{(N+1)!} f^{(N+1)}(\xi(x))$$
 (1)

Take 1<sup>st</sup> derivative for Eq. (1):

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_{N,k}(x) + \frac{(x - x_0) \cdots (x - x_N)}{(N+1)!} \left( \frac{d \left( f^{(N+1)} (\xi(x)) \right)}{dx} \right) + \frac{1}{(N+1)!} \left( \frac{d \left( (x - x_0) \cdots (x - x_N) \right)}{dx} \right) f^{(N+1)} (\xi(x))$$

Set  $x = x_j$ , with  $x_j$  being x-coordinate of one of interpolation nodes. j = 0, ..., N.

$$f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_{N,k}(x_j) + \frac{f^{(N+1)}(\xi(x_j))}{(N+1)!} \prod_{\substack{k=0; \\ k \neq j}}^{N} (x_j - x_k)$$

---- (N+1)-point formula with error to approximate  $f'(x_i)$  (4.2)

The error of (N+1)-point formula is  $\frac{f^{(N+1)}(\xi(x_j))}{(N+1)!}\prod_{\substack{k=0;\\k\neq j}}^{N}(x_j-x_k).$ 

**Remark:**  $f'(x_j) \approx \sum_{k=0}^n f(x_k) L'_{N,k}(x_j)$ 

**Example.** Derive the three-point formula with error to approximate  $f'(x_j)$ . Let interpolation nodes be  $(x_0, f(x_0)), (x_1, f(x_1))$  and  $(x_2, f(x_2))$ .

$$f'(x_j) = f(x_0) \left[ \frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[ \frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[ \frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{f^{(3)}(\xi(x_j))}{6} \prod_{\substack{k=0; \\ k \neq j}}^{2} (x_j - x_k)$$

## Mostly used three-point formula (see Figure 1)

Let  $x_0$ ,  $x_1$ , and  $x_2$  be equally spaced and the grid spacing be h.

Thus  $x_1 = x_0 + h$ ; and  $x_2 = x_0 + 2h$ .



$$1.f'(x_0) = \frac{1}{2h} \left[ -3f(x_0) + 4f(x_1) - f(x_2) \right] + \frac{h^2}{3} f^{(3)} \left( \xi(x_0) \right)$$
 (three-point endpoint formula with error) (4.4)

2. 
$$f'(x_1) = \frac{1}{2h} \left[ -f(x_0) + f(x_2) \right] + \frac{h^2}{6} f^{(3)} (\xi(x_1))$$
 (three-point midpoint formula with error) (4.5)

$$3.f'(x_2) = \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)] + \frac{h^2}{3} f^{(3)}(\xi(x_2))$$
(three-point endpoint formula with error) (4.4.1)

**Remark:** Eq. (4.4) in textbook is:

$$f'(x_0) = \frac{1}{2h} \left[ -3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)} \left( \xi(x_0) \right)$$

h can be both positive and negative

### Mostly used five-point formula

1. Five-point midpoint formula

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(\xi)$$
(4.6)

2. Five-point endpoint formula

$$f'(x_0) = \frac{1}{12h} \left[ -25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\xi)$$
(4.7)

**Example 4.1.2** Values for  $f(x) = xe^x$  are given in the following table. Use all applicable 3-point and 5-point formulas to approximate f'(2.0).

| $\chi$ | 1.8       | 1.9       | 2.0       | 2.1       | 2.2       |
|--------|-----------|-----------|-----------|-----------|-----------|
| f(x)   | 10.889365 | 12.703199 | 14.778112 | 17.148957 | 19.855030 |

### 2<sup>nd</sup> derivative approximation (obtained by Taylor polynomial)



Approximate  $f(x_0 + h)$  by expansion about  $x_0$ :

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$
(3)

Approximate  $f(x_0 - h)$  by expansion about  $x_0$ :

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_2)h^4$$
(4)

Add Eqns. (3) and (4): 
$$f(x_0 - h) + f(x_0 + h) = 2f(x_0) + f''(x_0)h^2 + \left[\frac{1}{24}f^{(4)}(\xi_1)h^4 + \frac{1}{24}f^{(4)}(\xi_2)h^4\right]$$

Thus

#### Second derivative midpoint formula

$$f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi)$$

**Example 3**. Values for  $f(x) = xe^x$  are given in the following table. Use second derivative approximation formula to approximate f''(2.0).

| х    | 1.8       | 1.9       | 2.0       | 2.1       | 2.2       |
|------|-----------|-----------|-----------|-----------|-----------|
| f(x) | 10.889365 | 12.703199 | 14.778112 | 17.148957 | 19.855030 |

**Solution:** 
$$f''(2.0) \approx \frac{1}{(0.1)^2} [f(1.9) - 2f(2.0) + f(2.1)] =$$

Or

$$f''(2.0) \approx \frac{1}{(0.2)^2} [f(1.8) - 2f(2.0) + f(2.2)] =$$

### **Round-Off Error Instability**

Let the round-off errors associated with  $f(x_0 + h)$  and  $f(x_0 - h)$  be  $e(x_0 + h)$  and  $e(x_0 - h)$ , respectively.

Then 
$$f(x_0 + h) = \tilde{f}(x_0 + h) + e(x_0 + h);$$

$$f(x_0 - h) = \tilde{f}(x_0 - h) + e(x_0 - h).$$

Here  $\tilde{f}(x_0 + h)$  and  $\tilde{f}(x_0 - h)$  are actual values used by computer.

# The total error of approximation using three-point midpoint formula:

$$f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} = \frac{e(x_0 + h) - e(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Assume round-off errors are bounded by  $\varepsilon \ge 0$ ,  $|f^{(3)}(\xi_1)| \le M$ .

#### Then:

$$\left|f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h}\right| \le \frac{\varepsilon}{h} + \frac{h^2}{6}M.$$

#### **Remark:**

- 1. As h reduces,  $\frac{\varepsilon}{h}$  grows;
- 2.In practice, it's rare to let *h* be too small;
- 3. Let the total error be  $\frac{\varepsilon}{h} + \frac{h^2}{6}M$ , a minimum of the total error occurs at

$$h = \left(\frac{3\varepsilon}{M}\right)^{\frac{1}{3}}.$$