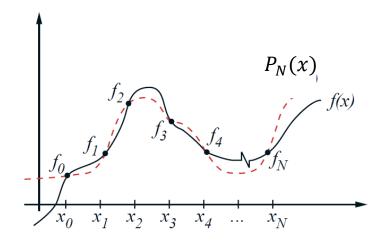
Section 4.3 Numerical Integration

Numerical quadrature: $\int_a^b f(x)dx \approx \sum_{i=0}^n f(x_i)a_i$.

The interpolation points are given as:



$$(x_0, f(x_0))$$

$$(x_1, f(x_1))$$

$$(x_2, f(x_2))$$

. . .

$$(x_N, f(x_N))$$

Here $a = x_0$; $b = x_N$. By Lagrange Interpolation Theorem (Thm 3.3):

$$f(x) = \sum_{i=0}^{n} f(x_i) L_{N,i}(x) + \frac{(x - x_0) \cdots (x - x_N)}{(N+1)!} f^{(N+1)}(\xi(x))$$

$$\int_{a}^{b} f(x)dx$$

$$= \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) L_{N,i}(x) dx$$

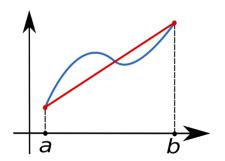
$$+ \frac{1}{(N+1)!} \int_{a}^{b} (x - x_{0}) \cdots (x - x_{N}) f^{(N+1)}(\xi(x)) dx$$

Quadrature formula: $\int_a^b f(x)dx \approx \sum_{i=0}^n a_i f(x_i)$

with
$$a_i = \int_a^b L_{N,i}(x) dx$$
.

Error:
$$E(f) = \frac{1}{(N+1)!} \int_a^b (x - x_0) \cdots (x - x_N) f^{(N+1)}(\xi(x)) dx$$

The Trapezoidal Quadrature Rule (obtained by first degree Lagrange interpolating polynomial)



Let $x_0 = a$; $x_1 = b$; and h = b - a. (see Figure 1)

Figure 1 Trapezoidal Rule

$$\int_{a}^{b} f(x)dx = \int_{x_{0}}^{x_{1}} \left[f(x_{0}) \frac{x - x_{1}}{(x_{0} - x_{1})} + f(x_{1}) \frac{x - x_{0}}{(x_{1} - x_{0})} \right] dx + \frac{1}{2} \int_{x_{0}}^{x_{1}} (x - x_{0})(x - x_{1}) f^{(2)}(\xi(x)) dx$$

Thus

$$\int_{a}^{b} f(x)dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f^{(2)}(\xi)$$

Error term

Trapezoidal rule: $\int_a^b f(x)dx \approx \frac{h}{2}[f(x_0) + f(x_1)]$ with h = b - a.

The Simpson's (1/3) Quadrature Rule (Deriving formula by third Taylor polynomial)

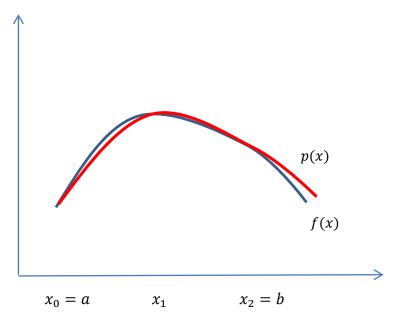


Figure 2 Simpson's Rule

Let
$$x_0 = a$$
; $x_1 = \frac{a+b}{2}$; $x_2 = b$; and $h = \frac{b-a}{2}$. (see Figure 2)
$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\xi)}{24}(x - x_1)^4$$

$$\int_{a}^{b} f(x)dx$$

$$= \int_{a}^{b} \left(f(x_{1}) + f'(x_{1})(x - x_{1}) + \frac{f''(x_{1})}{2}(x - x_{1})^{2} + \frac{f'''(x_{1})}{6}(x - x_{1})^{3} + \frac{f^{(4)}(\xi(x))}{24}(x - x_{1})^{4} \right) dx$$

$$= 2hf(x_{1}) + \frac{h^{3}}{3}f''(x_{1}) + \frac{f^{(4)}(\xi_{1})}{60}h^{5}$$

Now approximate $f''(x_1) = \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi_2)$

Thus

$$\int_{a}^{b} f(x)dx = \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2)) - \frac{h^5}{90} f^{(4)}(\xi)$$
Error term

Simpson's rule:
$$\int_a^b f(x)dx \approx \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$
 with $h = \frac{b-a}{2}$.

Remark: When the second degree Lagrange interpolating polynomial is used to derive the Simpson's (1/3) quadrature rule, we do not reveal the most accurate information about error of approximation.

Example 1. Compare the Trapezoidal rule and Simpson's rule approximations to $\int_0^2 f(x)dx$ when f(x) is:

(a) x^2 ; (b) $(x + 1)^{-1}$; and (c) $\sin(x)$.

Precision

Definition: The **degree of accuracy** or **precision** of a quadrature formula is the largest positive integer n such that the formula is exact for x^k , for each $k = 0, 1, \dots, n$.

Trapezoidal rule has degree of accuracy one.

$$\int_{a}^{b} x^{0} dx = b - a; \int_{a}^{b} x^{0} dx = \frac{b - a}{2} [1 + 1] = b - a.$$

 \rightarrow Trapezoidal rule is exact for 1 (or x^0).

$$\int_{a}^{b} x dx = \frac{x^{2}}{2} \Big|_{a}^{b} = \frac{b^{2} - a^{2}}{2}; \int_{a}^{b} x dx = \frac{b - a}{2} [a + b] = \frac{b^{2} - a^{2}}{2}.$$

 \rightarrow Trapezoidal rule is exact for x.

$$\int_a^b x^2 dx = \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3}; \ \int_a^b x^2 dx = \frac{b - a}{2} [a^2 + b^2] \neq \frac{b^3 - a^3}{3}.$$

 \rightarrow Trapezoidal rule is **NOT** exact for x^2 .

Remark:

- (1) Simpson's rule has degree of accuracy three.
- (2) The **degree of precision** of a quadrature formula is n **if and only if the error is zero** for all polynomials of degree $k = 0, 1, \dots, n$, but is **NOT zero** for some polynomial of degree n + 1.

Exercise 20. Let $h = \frac{b-a}{3}$, $x_0 = a$, $x_1 = a + h$, $x_2 = b$. Find degree of precision of quadrature formula $\int_a^b f(x) dx = \frac{9}{4} h f(x_1) + \frac{3}{4} h f(x_2)$.

f_{2} f_{3} f_{4} f_{N} f_{N} f_{N}

Closed Newton-Cotes Formulas

Let
$$a = x_0$$
; $b = x_n$; and $h = \frac{b-a}{n}$.
 $x_i = x_0 + ih$, for $i = 0, 1, \dots, n$.

Figure 3 Closed Newton-Cotes Formulas

The formula: $\int_a^b f(x)dx \approx \sum_{i=0}^n a_i f(x_i)$

with $a_i = \int_a^b L_{n,i}(x) dx$ is called **Closed Newton-Cotes Formula.** Here $L_{n,i}(x)$ is the ith Lagrange base polynomial of degree n.

Theorem 4.2 Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ is the (n+1)-point closed Newton-Cotes formula with $a = x_0$; $b = x_n$; and $h = \frac{b-a}{n}$. There exists $\xi \in (a,b)$ for which

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+3}f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t^{2}(t-1)\cdots(t-n)dt,$$
if *n* is **even** and $f \in C^{n+2}[a,b],$

and

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!} \int_{0}^{n} t^{2}(t-1)\cdots(t-n)dt$$

if n is odd and $f \in C^{n+1}[a, b]$.

Remark: Number of nodes n is **even**, **degree of precision** is n + 1; n is **odd**, **degree of precision** is n.

Examples. degree of precision n=1 for Trapezoidal rule; degree of precision n=3 for Simpson's rule.

degree of precision n=3 for Simpson's Three-Eighths rule:

$$\int_{x_0}^{x_3} f(x)dx = \frac{3h}{8} \left(f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right) - \frac{3h^5}{80} f^{(4)}(\xi)$$
where $x_0 < \xi < x_3; h = \frac{x_3 - x_0}{3}$.

Open Newton-Cotes Formula

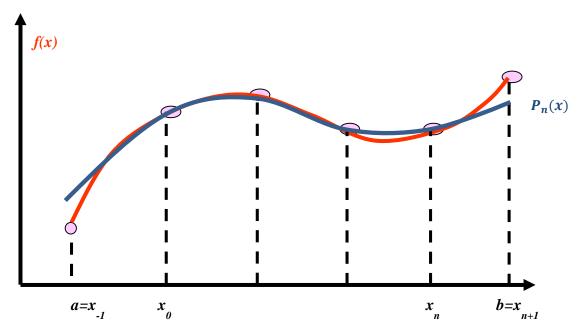


Figure 4 Open Newton-Cotes Formula

See Figure 4. Let $h = \frac{b-a}{n+2}$; and $x_0 = a+h$. $x_i = x_0+ih$, for $i=0,1,\cdots,n$. This implies $x_{-1}=a$; and $x_n=b-h$.

The formula: $\int_a^b f(x)dx \approx \sum_{i=0}^N a_i f(x_i)$

with $a_i = \int_{x_{-1}}^{x_{n+1}} L_{n,i}(x) dx$ is called **open Newton-Cotes Formula.** $L_{n,i}(x)$ is the ith Lagrange basis polynomial using nodes x_0, \dots, x_n .

Theorem 4.3 Suppose that $\sum_{i=0}^{n} a_i f(x_i)$ is the (n+1)-point open Newton-Cotes formula with $a = x_{-1}$; $b = x_{n+1}$; and $h = \frac{b-a}{n+2}$. There exists $\xi \in (a,b)$ for which $\int_a^b f(x) dx \approx \sum_{i=0}^n a_i f(x_i) + \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{-1}^{n+1} t^2 (t-1) \cdots (t-n) dt$,

if n is even and $f \in C^{n+2}[a,b]$, and

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} a_{i}f(x_{i}) + \frac{h^{n+2}f^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{n+1} t^{2}(t-1)\cdots(t-n)dt$$

if n is odd and $f \in C^{n+1}[a, b]$.

Examples of open Newton-Cotes formulas

f(x) $p_0(x)$ a=x a=x 0 b=x

n=0: Midpoint rule (Figure 5)

$$\int_{x_{-1}}^{x_1} f(x)dx = 2hf(x_0) + \frac{h^3}{3}f^{(2)}(\xi)$$
where $x_{-1} < \xi < x_1$. $h = \frac{b-a}{2}$

Figure 5 Midpoint rule

n=1:
$$\int_{x_{-1}}^{x_2} f(x) dx = \frac{3h}{2} [f(x_0) + f(x_1)] + \frac{3h^3}{4} f^{(2)}(\xi);$$
 where $x_{-1} < \xi < x_2$. $h = \frac{b-a}{3}$

n=2:
$$\int_{x_{-1}}^{x_3} f(x) dx = \frac{4h}{3} \left[2f(x_0) - f(x_1) + 2f(x_2) \right] + \frac{14h^5}{45} f^{(4)}(\xi); \text{ where }$$
$$x_{-1} < \xi < x_3. \ h = \frac{b-a}{4}.$$

n=3:
$$\int_{x_{-1}}^{x_4} f(x) dx = \frac{5h}{24} [11f(x_0) + f(x_1) + f(x_2) + 11f(x_3)] + \frac{95h^5}{144} f^{(4)}(\xi);$$
 where $x_{-1} < \xi < x_4$. $h = \frac{b-a}{5}$.

Example 2. Use closed and open Newton-Cotes with n=3 respectively to approximate $\int_0^{\frac{\pi}{4}} \sin(x) dx$ respectively, and compare abs. errors.