4.4 Composite Numerical Integration

Motivation: 1) on large interval, use low order Newton-Cotes formulas are not accurate.

2) on large interval, interpolation using high degree polynomial is unsuitable because of oscillatory nature of high degree polynomials.

Main idea: divide integration interval [a, b] into subintervals and use simple integration rule for each subinterval.

Example 1. a) Use Simpson's rule to approximate $\int_0^4 e^x dx$. The exact value is 53.59819. b) Divide [0,4] into [0,1]+[1,2]+[2,3]+[3,4]. Use Simpson's rule to approximate $\int_0^1 e^x dx$, $\int_1^2 e^x dx$, $\int_2^3 e^x dx$ and $\int_3^4 e^x dx$. Then approximate $\int_0^4 e^x dx$ by adding approximations for $\int_0^1 e^x dx$, $\int_1^2 e^x dx$, $\int_2^3 e^x dx$ and $\int_3^4 e^x dx$. Compare with accurate value.

Solution:

a)
$$h = \frac{4-0}{2}$$
. $\int_0^4 e^x dx \approx \frac{2}{3} (e^0 + 4e^2 + e^4) = 56.76958$.
Error= $|53.59819 - 56.76958| = 3.17143$

b)
$$\int_0^4 e^x dx = \int_0^1 e^x dx + \int_1^2 e^x dx + \int_2^3 e^x dx + \int_3^4 e^x dx \approx \frac{0.5}{3} (e^0 + 4e^{0.5} + e^1) + \frac{0.5}{3} (e^1 + 4e^{1.5} + e^2) + \frac{0.5}{3} (e^2 + 4e^{2.5} + e^3) + \frac{0.5}{3} (e^3 + 4e^{3.5} + e^4) = 53.61622$$

Error=|53.59819 -53.61622| = 0.01807

b) is much more accurate than **a**).

Composite Trapezoidal rule

Figure 1 Composite Trapezoidal Rule

Let $f \in C^2[a,b]$, $h = \frac{b-a}{n}$, and $x_j = a + jh$ for $j = 0, \dots, n$. On each subinterval $\left[x_{j-1}, x_j\right]$, for for $j = 1, \dots, n$, apply Trapezoidal rule:

$$\int_{a}^{b} f(x)dx$$

$$= \left[\frac{h}{2}(f(x_{0}) + f(x_{1})) - \frac{h^{3}}{12}f''(\xi_{1})\right]$$
Error, which can be simplified
$$+ \left[\frac{h}{2}(f(x_{1}) + f(x_{2})) - \frac{h^{3}}{12}f''(\xi_{2})\right] + \cdots$$

$$+ \left[\frac{h}{2}(f(x_{n-1}) + f(x_{n})) - \frac{h^{3}}{12}f''(\xi_{n})\right]$$

$$= \frac{h}{2} \left[f(a) + 2\sum_{j=1}^{n-1} f(x_{j}) + f(b)\right] - \frac{h^{3}}{12}\sum_{j=1}^{n} f''(\xi_{j})$$

$$= \frac{h}{2} \left[f(a) + 2\sum_{j=1}^{n-1} f(x_{j}) + f(b)\right] - \frac{b-a}{12}h^{2}f''(\mu)$$

Theorem 4.5 Let $f \in C^2[a,b]$, $h = \frac{b-a}{n}$, and $x_j = a + jh$ for each $j = 0, \dots, n$. There exists a $\mu \in (a,b)$ for which **Composite Trapezoidal rule** with its error term is

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(a) + 2 \sum_{j=1}^{n-1} f(x_j) + f(b) \right] - \frac{b-a}{12} h^2 f''(\mu)$$
Error term

Composite Simpson's rule

Figure 2 Composite Simpson's rule

Let $f \in C^2[a,b]$, n be an even integer, $h = \frac{b-a}{n}$, and $x_j = a + jh$ for $j = 0, \dots, n$.

On **each consecutive pair** of subintervals (for example $[x_0, x_2]$, $[x_2, x_4]$, and $[x_{2j-2}, x_{2j}]$) for each $j = 1, \dots, n/2$, apply a Simpson's rule:

$$\int_{a}^{b} f(x)dx = \sum_{j=1}^{n/2} \int_{x_{2j-2}}^{x_{2j}} f(x)dx$$

$$= \sum_{j=1}^{n/2} \frac{h}{3} \left(f(x_{2j-2}) + 4f(x_{2j-1}) + f(x_{2j}) - \frac{h^{5}}{90} f^{(4)}(\xi_{j}) \right)$$

$$= \frac{h}{3} \left(f(x_{0}) + 2 \sum_{j=1}^{\left(\frac{n}{2}\right) - 1} f(x_{2j}) + 4 \sum_{j=1}^{\left(\frac{n}{2}\right)} f(x_{2j-1}) + f(x_{n}) \right)$$

$$- \frac{h^{5}}{90} \sum_{j=1}^{\left(\frac{n}{2}\right)} f^{(4)}(\xi_{j})$$

Error, which can be simplified

Theorem 4.4 Let $f \in C^4[a,b]$, n be **even integer**, $h = \frac{b-a}{n}$, and $x_j = a + jh$ for each $j = 0, \dots, n$. There exists a $\mu \in (a,b)$ for which **Composite Simpson's rule** with its error term is

$$\int_{a}^{b} f(x)dx$$

$$= \frac{h}{3} \left[f(a) + 2 \sum_{j=1}^{\left(\frac{n}{2}\right) - 1} f(x_{2j}) + 4 \sum_{j=1}^{\left(\frac{n}{2}\right)} f(x_{2j-1}) + f(b) \right]$$

$$- \frac{b - a}{180} h^{4} f^{(4)}(\mu)$$
Error Term

Composite Midpoint rule

Theorem 4.6 Let $f \in C^2[a,b]$, n be **even**, $h = \frac{b-a}{n+2}$, and $x_j = a + (j+1)h$ for each $j = -1, 0, \dots, n, n+1$. There exists a $\mu \in (a,b)$ for which **Composite Midpoint rule** with its error term is

$$\int_{a}^{b} f(x)dx = 2h \sum_{j=0}^{\left(\frac{n}{2}\right)} f(x_{2j}) + \frac{b-a}{6} h^{2} f''(\mu)$$

Exercise 13. Determine the values of n and h required to approximate $\int_0^2 \frac{1}{x+4} dx$ to within 10^{-5} and compute the approximation. Use

- a. Composite Trapezoidal rule.
- b. Composite Simpson's rule.
- c. Composite Midpoint rule.