4.4 Composite Numerical Integration



Motivation: 1) on large interval, use low order Newton-Cotes formulas
are not accurate.

2) on large interval, interpolation using high degree polynomial is
unsuitable because of oscillatory nature of high degree polynomials.

Main idea: divide integration interval [a, b] Iinto subintervals and use
simple integration rule for each subinterval.



Example 1. a) Use Simpson’s rule to approximate f04exdx. The exact
value is 53.59819. b) Divide [0,4] into [0,1] + [1,2] + [2,3] + [3,4]. Use
Simpson’s rule to approximate fol e*dx, flz e*dx, f23 e*dx and f:exdx.
Then approximate f04exdx by adding approximations for fol e*dx ,
[ e*dx, f; e*dx and f: e*dx. Compare with accurate value.

1
Solution:

a)h = 47‘0 [ e*dx ~ %(eo + 4e? + e*) = 56.76958.
Error=153.59819 -56.76958| = 3.17143

b) f04exdx = fol e*dx + flz e*dx + f; e*dx + f:exdx ~ %5(80 +
4€°5 + e1) + 22 (e + 4e'S + e2) + 2> (€2 + 425 + %) +
0?'5((33 + 4e35 + e%) = 53.61622
Error=|53.59819 -53.61622| = 0.01807

b) is much more accurate than a).



Composite Trapezoidal rule

Figure 1 Composite Trapezoidal Rule

Let f € C%[a,b],h = bn;a, andx; = a+ jhforj=0,--,n

On each subinterval [x;_q, x;|, for for j = 1,---,n, apply Trapezoidal rule:
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Theorem 4.5 Let f € C?[a,b],h = b%a, and x; = a + jh for each j =

0,:--,n. There exists a u € (a, b) for which Composite Trapezoidal rule
with its error term is
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Composite Simpson’s rule
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Figure 2 Composite Simpson's rule

] b— .
Let f € C%[a,b], n be an even integer, h = Ta and x; = a+ jh

forj=0,--,n.
On each consecutive pair of subintervals (for example [xg, x5 ], [x5, x4],
and x5, x,;]) foreachj =1,--+,n/2, apply a Simpson’s rule:
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Theorem 4.4 Let f € C*[a,b],n be even integer, h = b%a, and x; =

a+ jh for each j=0,---,n. There exists a u € (a,b) for which
Composite Simpson’s rule with its error term is
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Composite Midpoint rule

open interval

Figure 3 Composite Midpoint rule

Theorem 4.6 Let f € C%[a, b],n be even ,h = %, and x; =a+ ( +

1)h for eachj = —1,0,---,n,n+ 1. There exists a u € (a, b) for which
Composite Midpoint rule with its error term is
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Exercise 13. Determine the values of n and h required to approximate

fozﬁdx to within 10> and compute the approximation. Use

a. Composite Trapezoidal rule.
b. Composite Simpson’s rule.

c. Composite Midpoint rule.



