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Consistency and Convergence 
 
Definition 5.18 A one-step difference equation with local truncation error 
𝜏𝜏𝑖𝑖(ℎ) is said to be consistent if 

lim
ℎ→0

max
1≤𝑖𝑖≤𝑁𝑁

|𝜏𝜏𝑖𝑖(ℎ)| = 0 
 

Remark: A method is consistent implies that the difference equation 
approaches the differential equation as ℎ → 0. 
 
Definition 5.19 A one-step difference equation is said to be convergent if  

lim
ℎ→0

max
1≤𝑖𝑖≤𝑁𝑁

|𝑤𝑤𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| = 0 

where  𝑦𝑦(𝑡𝑡𝑖𝑖) is the exact solution and 𝑤𝑤𝑖𝑖 is the approximate solution.  
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Example 1. Consider to solve 𝑦𝑦′ = 𝑓𝑓(𝑡𝑡, 𝑦𝑦),      𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏,   𝑦𝑦(𝑎𝑎) =  𝛼𝛼 . 
Let |𝑦𝑦′′(𝑡𝑡)| ≤ 𝑀𝑀, an  𝑓𝑓(𝑡𝑡, 𝑦𝑦)  be continuous and satisfy a Lipschitz 
condition with Lipschitz constant 𝐿𝐿 . Show that Euler’s method is 
consistent and convergent.  
Solution: 

  |𝜏𝜏𝑖𝑖+1(ℎ)| = | ℎ
2
𝑦𝑦′′(𝜉𝜉𝑖𝑖)| ≤ ℎ

2
𝑀𝑀 

lim
ℎ→0

max
1≤𝑖𝑖≤𝑁𝑁

|𝜏𝜏𝑖𝑖(ℎ)| ≤ lim
ℎ→0

ℎ
2
𝑀𝑀 = 0 

Thus Euler’s method is consistent. 
By Theorem 5.9,  

max
1≤𝑖𝑖≤𝑁𝑁

|𝑤𝑤𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| ≤
𝑀𝑀ℎ
2𝐿𝐿

[𝑒𝑒𝐿𝐿(𝑏𝑏−𝑎𝑎) − 1] 

lim
ℎ→0

max
1≤𝑖𝑖≤𝑁𝑁

|𝑤𝑤𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| ≤ lim
ℎ→0

𝑀𝑀ℎ
2𝐿𝐿

�𝑒𝑒𝐿𝐿(𝑏𝑏−𝑎𝑎) − 1� = 0 

Thus Euler’s method is convergent.  
The rate of convergence of Euler’s method is 𝑂𝑂(ℎ). 
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Stability: small changes in the initial conditions produce correspondingly 
small changes in the subsequent approximations. The one-step method is 
stable if there is a constant 𝐾𝐾  and a step size ℎ0 > 0  such that the 
difference between two solutions 𝑤𝑤𝑖𝑖  and 𝑤𝑤�𝑖𝑖  with initial values 𝛼𝛼  and 𝛼𝛼� 
respectively, satisfies |𝑤𝑤𝑖𝑖 − 𝑤𝑤�𝑖𝑖| < 𝐾𝐾|𝛼𝛼 − 𝛼𝛼�| whenever ℎ < ℎ0  
and 𝑛𝑛ℎ ≤ 𝑏𝑏 − 𝑎𝑎. 
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Theorem 5.20 Suppose the IVP 𝑦𝑦′ = 𝑓𝑓(𝑡𝑡, 𝑦𝑦),      𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏,   𝑦𝑦(𝑎𝑎) =  𝛼𝛼 
is approximated by a one-step difference method in the form  

𝑤𝑤0 = 𝛼𝛼,                                                                                 
𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖 + ℎ𝜙𝜙(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖, ℎ)          where 𝑖𝑖 = 0, 2 , …𝑁𝑁. 

Suppose also that ℎ0 > 0  exists and 𝜙𝜙(𝑡𝑡, 𝑤𝑤, ℎ)  is continuous with a 
Lipschitz condition in 𝑤𝑤 with constant 𝐿𝐿 on 𝐷𝐷,  
𝐷𝐷 = {(𝑡𝑡, 𝑤𝑤, ℎ)|  𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏, −∞ < 𝑤𝑤 < ∞, 0 ≤ ℎ ≤ ℎ0}. Then: 

(1) The method is stable; 
(2)  The method is convergent if and only if it is consistent, which is 

equivalent to 
𝜙𝜙(𝑡𝑡, 𝑦𝑦, 0) = 𝑓𝑓(𝑡𝑡, 𝑦𝑦),         for all 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏 

(3)  If a function 𝜏𝜏 exists s.t. |𝜏𝜏𝑖𝑖(ℎ)| ≤ 𝜏𝜏(ℎ) when 0 ≤ ℎ ≤ ℎ0, then  

|𝑤𝑤𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| ≤
𝜏𝜏(ℎ)
𝐿𝐿

𝑒𝑒𝐿𝐿(𝑡𝑡𝑖𝑖−𝑎𝑎). 
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Example 2. Show modified Euler method  
𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖 + ℎ

2
�𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + 𝑓𝑓(𝑡𝑡𝑖𝑖+1, 𝑤𝑤𝑖𝑖 + ℎ𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖))�  is stable and 

convergent. Suppose 𝑓𝑓(𝑡𝑡, 𝑦𝑦) satisfied a Lipschitz condition on {(𝑡𝑡, 𝑤𝑤) |𝑎𝑎 ≤
𝑡𝑡 ≤ 𝑏𝑏, and −∞ < 𝑤𝑤 < ∞}  for 𝑦𝑦   variable with Lipschitz constant 𝐿𝐿 , 
𝑓𝑓(𝑡𝑡, 𝑦𝑦) is also continuous.  
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Multi-Step Methods 
Definition. The local truncation error 𝜏𝜏𝑖𝑖+1(ℎ) of a m-step method of the 
form: 

𝑤𝑤0 = 𝛼𝛼,𝑤𝑤1 = 𝛼𝛼1, … ,𝑤𝑤𝑚𝑚−1 = 𝛼𝛼𝑚𝑚−1 
𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+ 𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚

+ℎ[𝑏𝑏𝑚𝑚𝑓𝑓(𝑡𝑡𝑖𝑖+1, 𝑤𝑤𝑖𝑖+1) + 𝑏𝑏𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖)
+⋯+ 𝑏𝑏0𝑓𝑓(𝑡𝑡𝑖𝑖+1−𝑚𝑚,𝑤𝑤𝑖𝑖+1−𝑚𝑚)]

 

is: 𝜏𝜏𝑖𝑖+1(ℎ) = 𝑦𝑦(𝑡𝑡𝑖𝑖+1)−𝑎𝑎𝑚𝑚−1𝑦𝑦(𝑡𝑡𝑖𝑖)−𝑎𝑎𝑚𝑚−2𝑦𝑦(𝑡𝑡𝑖𝑖−1)−⋯−𝑎𝑎0𝑦𝑦(𝑡𝑡𝑖𝑖+1−𝑚𝑚)
ℎ

−[𝑏𝑏𝑚𝑚𝑓𝑓(𝑡𝑡𝑖𝑖+1, 𝑦𝑦𝑖𝑖+1) + 𝑏𝑏𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑦𝑦𝑖𝑖) + ⋯+ 𝑏𝑏0𝑓𝑓(𝑡𝑡𝑖𝑖+1−𝑚𝑚, 𝑦𝑦𝑖𝑖+1−𝑚𝑚)]
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Definition.  A m-step multistep is consistent if   lim
ℎ→0

|𝜏𝜏𝑖𝑖(ℎ)| = 0,   for all 
𝑖𝑖 = 𝑚𝑚,𝑚𝑚 + 1, … ,𝑁𝑁 and  
lim
ℎ→0

|𝛼𝛼𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| = 0,   for all 𝑖𝑖 = 1,2, … ,𝑚𝑚 − 1.  {𝛼𝛼𝑖𝑖}  are the starting 
values computed by some one-step method.  
 

Definition. A m-step multistep is convergent if  
lim
ℎ→0

max
1≤𝑖𝑖≤𝑁𝑁

|𝑤𝑤𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| = 0 
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Theorem 5.21  Suppose the IVP 𝑦𝑦′ = 𝑓𝑓(𝑡𝑡, 𝑦𝑦), 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏, 𝑦𝑦(𝑎𝑎) = 𝛼𝛼  is 
approximated by an explicit Adams predictor-corrector method with an m-
step Adams-Bashforth predictor equation  
𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖 + ℎ[𝑏𝑏𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + ⋯+ 𝑏𝑏0𝑓𝑓(𝑡𝑡𝑖𝑖+1−𝑚𝑚,𝑤𝑤𝑖𝑖+1−𝑚𝑚)] with local 
truncation error  𝜏𝜏𝑖𝑖+1(ℎ)  and an (m-1)-step implicit Adams-Moulton 
corrector equation 
𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖 + ℎ[𝑏𝑏�𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + ⋯+ 𝑏𝑏�0𝑓𝑓(𝑡𝑡𝑖𝑖+2−𝑚𝑚,𝑤𝑤𝑖𝑖+2−𝑚𝑚)]  with local 
truncation error  𝜏̃𝜏𝑖𝑖+1(ℎ). In addition, suppose that 𝑓𝑓(𝑡𝑡, 𝑦𝑦) and 𝑓𝑓𝑦𝑦(𝑡𝑡, 𝑦𝑦) are 
continuous on {(𝑡𝑡, 𝑦𝑦) |𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏, and −∞ < 𝑦𝑦 < ∞} and that 𝑓𝑓𝑦𝑦(𝑡𝑡, 𝑦𝑦) is 
bounded. Then the local truncation error 𝜎𝜎𝑖𝑖+1(ℎ) of the predictor-corrector 
method is 𝜎𝜎𝑖𝑖+1(ℎ) = 𝜏̃𝜏𝑖𝑖+1(ℎ) + 𝜏𝜏𝑖𝑖+1(ℎ)𝑏𝑏�𝑚𝑚−1𝑓𝑓𝑦𝑦(𝑡𝑡𝑖𝑖+1, 𝜃𝜃𝑖𝑖+1) 
where 𝜃𝜃𝑖𝑖+1 is a number between zero and ℎ𝜏𝜏𝑖𝑖+1(ℎ). 
Moreover, there exist constant 𝑘𝑘1 and 𝑘𝑘2 such that  

|𝑤𝑤𝑖𝑖 − 𝑦𝑦(𝑡𝑡𝑖𝑖)| ≤ � max
0≤𝑗𝑗≤𝑚𝑚−1

�𝑤𝑤𝑗𝑗 − 𝑦𝑦�𝑡𝑡𝑗𝑗�� + 𝑘𝑘1𝜎𝜎(ℎ)� 𝑒𝑒𝑘𝑘2(𝑡𝑡𝑖𝑖−𝑎𝑎) 

where 𝜎𝜎(ℎ) = max
𝑚𝑚≤𝑗𝑗≤𝑁𝑁

�𝜎𝜎𝑗𝑗(ℎ)�. 
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Example. Consider the IVP 𝑦𝑦′ = 0,      0 ≤ 𝑡𝑡 ≤ 10,   𝑦𝑦(0) =  1, which is 
solved by 𝑤𝑤𝑖𝑖+1 = −4𝑤𝑤𝑖𝑖 + 5𝑤𝑤𝑖𝑖−1 + ℎ(4𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + 2𝑓𝑓(𝑡𝑡𝑖𝑖−1, 𝑤𝑤𝑖𝑖−1)). If in 
each step, there is a round-off error 𝜀𝜀, and 𝑤𝑤1 = 1 + 𝜀𝜀. Find out how error 
propagates with respect to time. 
Solution:  𝑤𝑤2 = −4(1 + 𝜀𝜀) + 5(1) = 1 − 4𝜀𝜀 
            𝑤𝑤3 = −4(1 − 𝜀𝜀) + 5(1 + 𝜀𝜀) = 1 + 21𝜀𝜀 
             𝑤𝑤4 = −4(1 + 21𝜀𝜀) + 5(1 − 4𝜀𝜀) = 1 − 104𝜀𝜀. 
 
 
 
 

Definition. Consider to solve the IVP: 𝑦𝑦′ = 𝑓𝑓(𝑡𝑡, 𝑦𝑦),      𝑎𝑎 ≤ 𝑡𝑡 ≤
𝑏𝑏,   𝑦𝑦(𝑎𝑎) =  𝛼𝛼. by an m-step multistep method 

𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+ 𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚
ℎ[𝑏𝑏𝑚𝑚𝑓𝑓(𝑡𝑡𝑖𝑖+1, 𝑤𝑤𝑖𝑖+1) + 𝑏𝑏𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + ⋯

+𝑏𝑏0𝑓𝑓(𝑡𝑡𝑖𝑖+1−𝑚𝑚, 𝑤𝑤𝑖𝑖+1−𝑚𝑚)],
 

The characteristic polynomial of the method is given by  
𝑃𝑃(𝜆𝜆) = 𝜆𝜆𝑚𝑚 − 𝑎𝑎𝑚𝑚−1𝜆𝜆𝑚𝑚−1 − 𝑎𝑎𝑚𝑚−2𝜆𝜆𝑚𝑚−2 − ⋯− 𝑎𝑎1𝜆𝜆 − 𝑎𝑎0. 
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Remark:  
(1) The characteristic polynomial can be viewed as derived by solving 
𝑦𝑦′ = 0, 𝑦𝑦(𝑎𝑎) =  𝛼𝛼 using the m-step multistep method. 
(2) If 𝜆𝜆 is a root of the characteristic polynomial, then 𝑤𝑤𝑖𝑖 = (𝜆𝜆)𝑖𝑖 for each 𝑖𝑖 
is a solution to 𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+ 𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚.  
This is because   𝜆𝜆𝑖𝑖+1 − 𝑎𝑎𝑚𝑚−1𝜆𝜆𝑖𝑖 − 𝑎𝑎𝑚𝑚−2𝜆𝜆𝑖𝑖−1 − ⋯− 𝑎𝑎0𝜆𝜆𝑖𝑖+1−𝑚𝑚 =
𝜆𝜆𝑖𝑖+1−𝑚𝑚(𝜆𝜆𝑚𝑚 − 𝑎𝑎𝑚𝑚−1𝜆𝜆𝑚𝑚−1 − 𝑎𝑎𝑚𝑚−2𝜆𝜆𝑚𝑚−2 − ⋯− 𝑎𝑎1𝜆𝜆 − 𝑎𝑎0) = 0 
(3) If 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, … , 𝜆𝜆𝑚𝑚 are distinct zeros of the characteristic polynomial, 
solution to 𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+ 𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚  can be 
represented by 𝑤𝑤𝑖𝑖 = ∑ 𝑐𝑐𝑗𝑗𝜆𝜆𝑗𝑗𝑖𝑖𝑚𝑚

𝑗𝑗=1  for some unique constants 𝑐𝑐1, … , 𝑐𝑐𝑚𝑚.  
(4) 𝑤𝑤𝑖𝑖 = 𝛼𝛼  is a solution to 𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+
𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚 , this is because 𝑦𝑦(𝑡𝑡) =  𝛼𝛼  is the exact solution to 𝑦𝑦′ = 0,
𝑦𝑦(𝑎𝑎) =  𝛼𝛼. 
(5) From (4),  0 = 𝛼𝛼 − 𝑎𝑎𝑚𝑚−1𝛼𝛼 − 𝑎𝑎𝑚𝑚−2𝛼𝛼 −⋯− 𝑎𝑎0𝛼𝛼 = 𝛼𝛼[1 − 𝑎𝑎𝑚𝑚−1 −
𝑎𝑎𝑚𝑚−2 −⋯− 𝑎𝑎0] . Compare this with definition of characteristic 
polynomial, this shows that 𝜆𝜆 = 1 is one of the zeros of the characteristic 
polynomial. 
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(6) Let 𝜆𝜆1 = 1 and 𝑐𝑐1 =  𝛼𝛼, solution  to 𝑦𝑦′ = 0,    𝑦𝑦(0) = 𝛼𝛼 is expressed as 
𝑤𝑤𝑖𝑖 = 𝛼𝛼 + ∑ 𝑐𝑐𝑗𝑗𝜆𝜆𝑗𝑗𝑖𝑖𝑚𝑚

𝑗𝑗=2 .  This means that 𝑐𝑐2, … , 𝑐𝑐𝑚𝑚  would be zero if all the 
calculations were exact. However, 𝑐𝑐2, … , 𝑐𝑐𝑚𝑚 are not zero in practice due to 
round-off error.  
 
(*) The stability of a multistep method with respect to round-off error is 
dictated by magnitudes of zeros of the characteristic polynomial. If �𝜆𝜆𝑗𝑗� >
1 for any of 𝜆𝜆2, 𝜆𝜆3, … , 𝜆𝜆𝑚𝑚, the round-off error grows exponentially.  
 

 
Example. Analyze stability of 𝑤𝑤𝑖𝑖+1 = −4𝑤𝑤𝑖𝑖 + 5𝑤𝑤𝑖𝑖−1 + ℎ(4𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) +
2𝑓𝑓(𝑡𝑡𝑖𝑖−1, 𝑤𝑤𝑖𝑖−1))  for solving 𝑦𝑦′ = 0,      0 ≤ 𝑡𝑡 ≤ 10,   𝑦𝑦(0) =  1 , with 
initial condition 𝑤𝑤0 = 1,𝑤𝑤1 = 1 + 𝛿𝛿. 𝛿𝛿 is due to round-off error.  
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Definition 5.22 Let 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑚𝑚  be the roots of the characteristic 
equation 𝑃𝑃(𝜆𝜆) = 𝜆𝜆𝑚𝑚 − 𝑎𝑎𝑚𝑚−1𝜆𝜆𝑚𝑚−1 − 𝑎𝑎𝑚𝑚−2𝜆𝜆𝑚𝑚−2 − ⋯− 𝑎𝑎1𝜆𝜆 − 𝑎𝑎0 = 0 
associated  with the m-step multistep method 

𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+ 𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚
+ℎ[𝑏𝑏𝑚𝑚𝑓𝑓(𝑡𝑡𝑖𝑖+1, 𝑤𝑤𝑖𝑖+1) + 𝑏𝑏𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + ⋯

+𝑏𝑏0𝑓𝑓(𝑡𝑡𝑖𝑖+1−𝑚𝑚, 𝑤𝑤𝑖𝑖+1−𝑚𝑚)],
 

If |𝜆𝜆𝑖𝑖| ≤ 1 and all roots with absolute value 1 are simple roots, then the 
difference equation is said to satisfy the root condition.  
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Stability of multistep method 
Definition 5.23  

1) Methods that satisfy the root condition and have 𝜆𝜆 = 1 as the only 
root of the characteristic equation with magnitude one are called 
strongly stable. 

2)  Methods that satisfy the root condition and have more than one 
distinct roots with magnitude one are called weakly stable.  

3) Methods that do not satisfy the root condition are called unstable.  
 

 
 
 
 
 
 
 
 



15 
 

Example. Show 4th order Adams-Bashforth method  
𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖

+
ℎ

24
[55𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) − 59𝑓𝑓(𝑡𝑡𝑖𝑖−1, 𝑤𝑤𝑖𝑖−1) + 37𝑓𝑓(𝑡𝑡𝑖𝑖−2, 𝑤𝑤𝑖𝑖−2)

− 9𝑓𝑓(𝑡𝑡𝑖𝑖−3, 𝑤𝑤𝑖𝑖−3)] 
is strongly stable.  

Solution: The characteristic equation of the 4th order Adams-Bashforth 
method is 

𝑃𝑃(𝜆𝜆) = 𝜆𝜆4 − 𝜆𝜆3 = 0 
0 = 𝜆𝜆4 − 𝜆𝜆3 = 𝜆𝜆3(𝜆𝜆 − 1) 

𝑃𝑃(𝜆𝜆) has roots 𝜆𝜆1 = 1, 𝜆𝜆2 = 0, 𝜆𝜆3 = 0, 𝜆𝜆4 = 0. 
Therefore 𝑃𝑃(𝜆𝜆) satisfies root condition and the method is strongly stable.  
 
 
 
 
 



16 
 

Example. Show 4th order Miline’s method  

𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖−3 +
4ℎ
3

[2𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) − 𝑓𝑓(𝑡𝑡𝑖𝑖−1, 𝑤𝑤𝑖𝑖−1) + 2𝑓𝑓(𝑡𝑡𝑖𝑖−2, 𝑤𝑤𝑖𝑖−2)] 

is weakly stable.  
Solution: The characteristic equation 𝑃𝑃(𝜆𝜆) = 𝜆𝜆4 − 1 = 0 

0 = 𝜆𝜆4 − 1 = (𝜆𝜆2 − 1)(𝜆𝜆2 + 1) 
𝑃𝑃(𝜆𝜆) has roots 𝜆𝜆1 = 1, 𝜆𝜆2 = −1, 𝜆𝜆3 = 𝑖𝑖, 𝜆𝜆4 = −𝑖𝑖. 
All roots have magnitude one. So the method is weakly stable.  
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Theorem 5.24 A multistep method  
𝑤𝑤𝑖𝑖+1 = 𝑎𝑎𝑚𝑚−1𝑤𝑤𝑖𝑖 + 𝑎𝑎𝑚𝑚−2𝑤𝑤𝑖𝑖−1 + ⋯+ 𝑎𝑎0𝑤𝑤𝑖𝑖+1−𝑚𝑚

+ℎ[𝑏𝑏𝑚𝑚𝑓𝑓(𝑡𝑡𝑖𝑖+1, 𝑤𝑤𝑖𝑖+1) + 𝑏𝑏𝑚𝑚−1𝑓𝑓(𝑡𝑡𝑖𝑖, 𝑤𝑤𝑖𝑖) + ⋯
+𝑏𝑏0𝑓𝑓(𝑡𝑡𝑖𝑖+1−𝑚𝑚, 𝑤𝑤𝑖𝑖+1−𝑚𝑚)],

 

is stable if and only if it satisfies the root condition. If it is also consistent, 
then it is stable if and only if it is convergent.    
 


